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PREFACE

Twenty-five years after writing the first edition of Thermodynamics 1 am
gratified that the book is now the thermodynamic reference most fre-
quently cited in physics research literature, and that the postulational
formulation which it introduced is now widely accepted. Nevertheless
several considerations prompt this new edition and extension.

First, thermodynamics advanced dramatically in the 60s and 70s, pri-
marily in the area of critical phenomena. Although those advances are
largely beyond the scope of this book, I have attempted to at least
describe the nature of the problem and to introduce the critical exponents
and scaling functions that characterize the non-analytic behavior of ther-
modynamic functions at a second-order phase transition. This account is
descriptive and simple. It replaces the relatively complicated theory of
second-order transitions that, in the view of many students, was the most
difficult section of the first edition.

Second, 1 have attempted to improve the pedagogical attributes of the
book for use in courses from the junior undergraduate to the first year
graduate level, for physicists, engineering scientists and chemists. This
purpose has been aided by a large number of helpful suggestions from
students and instructors. Many explanations are simplified, and numerous
examples are solved explicitly. The number of problems has been ex-
panded, and partial or complete answers are given for many.

Third, an introduction to the principles of statistical mechanics has
been added. Here the spirit of the first edition has been maintained; the
emphasis is on the underlying simplicity of principles and on the central
train of logic rather than on a multiplicity of applications. For this
purpose, and to make the text accessible to advanced undergraduates, 1
have avoided explicit non-commutivity problems in quantum mechanics.
All that is required is familiarity with the fact that quantum mechanics
predicts discrete energy levels in finite systems. However, the formulation
is designed so that the more advanced student will properly interpret the
theory in the non-commutative case.



vin Prefuce

Fourth, T have long been puzzled by certain conceptual problems iying
at the foundations of thermodynamics, and this has led me to an interpre-
tation of the “meaning” of thermodynamics. In the final chapter—an
“interpretive postlude” to the main body of the text—1I develop the thesis
that thermostatistics has its roots in the symmetries of the fundamental
laws of physics rather than in the quantitative content of those laws. The
discussion is qualitative and descriptive, seeking to establish an intuitive
framework and to encourage the student to see science as a coherent
structure in which thermodynamics has a natural and fundamental role.

Although both statistical mechanics and thermodynamics are included
in this new edition, I have attempted neither to separate them completely
nor to meld them into the undifferentiated form now popular under the
rubric of “thermal physics.” I believe that each of these extreme options is
migdirected. To divorce thermodynamics completely from its statistical
Qﬁchanieal base is to rob thermodynamics of its fundamental physical
origins. Without an insight into statistical mechanics a scientist remains
rooted in the macroscopic empiricism of the nineteenth century, cut off
from contemporary developments and from an integrated view of science.
Conversely, the amalgamation of thermodynamics and statistical me-
chanics into an undifferentiated “thermal physics” tends to eclipse ther-
modynamics. The fundamentality and profundity of statistical mechanics
are treacherously seductive; “thermal physics” courses almost perforce
give short shrift to macroscopic operational principles.* Furthermore the
amalgamation of thermodynamics and statistical mechanics runs counter
to the “principle of theoretical economy”; the principle that predictions
should be drawn from the most general and least detailed assumptions
possible. Models, endemic to statistical mechanics, should be eschewed
whenever the general methods of macroscopic thermodynamics are suffi-
cient. Such a habit of mind is hardly encouraged by an organization of the
subjects in which thermodynamics is little more than a subordinate clause.

The balancing of the two distinct components of the thermal sciences is
carried out in this book by introducing the subject at the macroscopic
level, by formulating thermodynamics so that its macroscopic postulates
are precisely and clearly the theorems of statistical mechanics, and by
frequent explanatory allusions to the interrelationships of the two compo-
nents. Nevertheless, at the option of the instructor, the chapters on
statistical mechanics can be interleaved with those on thermodynamics in
a sequence to be described. But even in that integrated option the basic
macroscopic structure of thermodynamics is established before statistical
reasoning is introduced. Such a separation and sequencing of the subjects

*The American Physical Society Committee on Applications of Physies reported [ Bulletin of the
APS, Vol 22 #10, 1233 (1971)] that a survey of industnal research leaders designated thermody-
namics above all other subjects as requiring increased emphasis in the undergraduate curriculum. That
emphasis subsequently has decreused
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preserves and emphasizes the hierarchical structure of science, organizing
physics into coherent units with clear and easily remembered interrela-
tionships. Similarly, classical mechanics is best understood as a self-
contained postulatory structure, only later to be validated as a limiting
case of quantum mechanics.

Two primary curricular options are listed in the “menu” following. In
one option the chapters are followed in sequence (Column A alone, or.
followed by all or part of column B). In the “integrated” option the menu
is followed from top to bottom. Chapter 15 is a short and elementary
statistical interpretation of entropy; it can be inserted immediately after
Chapter 1, Chapter 4, or Chapter 7.

The chapters listed below the first dotted line are freely flexible with
respect to sequence, or to inclusion or omission. To balance the concrete
and particular against more esoteric sections, instructors may choose to
insert parts of Chapter 13 (Properties of Materials) at various stages, or to
insert the Postlude (Chapter 21, Symmetry and Conceptual Foundations)
at any point in the course.

The minimal course, for junior year undergraduates, would involve the
first seven chapters, with Chapter 15 and 16 optionally included as time
permits.

Philadelphia, Pennsylvania Herbert B. Callen

Preface to the Fourth Printing

In the issuance of this fourth printing of the second edition, the publisher has
graciously given me the opportunity to correct various misprints and “minor”
errors. I am painfully aware that no error, numerical or textual, is truly minor to
the student reader. Accordingly, I am deeply grateful both to the numerous read-
ers who have called errors to my attention, and to the charitable forbearance of the
publisher in permitting their correction in this printing.

November, 1987 Herbert Callen
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2 General Principles of Classical Thermodynamics

INTRODUCTION
The Nature of Thermodynamics and the Basis of ThermoStatistics

Whether we are physicists, chemists, biologists, or engineers, our primary
interface with nature is through the properties of macroscopic matter.
Those properties are subject to universal regularities and to stringent
limitations. Subtle relationships exist among apparently unconnected
properties.

The existence of such an underlying order has far reaching implications.
Physicists and chemists familiar with that order need not confront each
new material as a virgin puzzle. Engineers are able to anticipate limita-
tions to device designs predicated on creatively imagined (but yet undis-
covered) materials with the requisite properties. And the specific form of
the underlying order provides incisive clues to the structure of fundamen-
tal physical theory.

Certain primal concepts of thermodynamics are intuitively familiar. A
metallic block released from rest near the rim of a smoothly polished
metallic bowl oscillates within the bowl, approximately conserving the
sum of potential and kinetic energies. But the block eventually comes to
rest at the bottom of the bowl. Although the mechanical energy appears to
have vanished, an observable effect is wrought upon the material of the
bowl and block; they are very slightly, but perceptibly, “warmer.” Even
before studying thermodynamics, we are qualitatively aware that
the mechanical energy has merely been converted to another form, that
the fundamental principle of energy conservation is preserved, and
that the physiological sensation of “warmth” is associated with the
thermodynamic concept of “temperature.”

Vague and undefined as these observations may be, they nevertheless
reveal a notable dissimilarity between thermodynamics and the other
branches of classical science. Two prototypes of the classical scientific
paradigm are mechanics and electromagnetic theory. The former ad-
dresses itself to the dynamics of particles acted upon by forces, the latter
to the dynamics of the fields that mediate those forces. In each of these
cases a new “law” is formulated—for mechanics it is Newton’s Law (or
Lagrange or Hamilton’s more sophisticated variants); for electromag-
netism it is the Maxwell equations. In either case it remains only to
explicate the consequences of the law.

Thermodynamics is quite different. It neither claims a unique domain of
systems over which it asserts primacy, nor does it introduce a new
fundamental law analogous to Newton’s or Maxwell’s equations. In
contrast to the specificity of mechanics and electromagnetism, the hall-
mark of thermodynamics is generality. Generality first in the sense that
thermodynamics applies to all types of systems in macroscopic aggrega-
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tion, and second in the sense that thermodynamics does not predict
specific numerical values for observable quantities. Instead, thermody-
namics sets limits (inequalities) on permissible physical processes, and it
establishes relationships among apparently unrelated properties.

The contrast between thermodynamics and its counterpart sciences
raises fundamental questions which we shall address directly only in the
final chapter. There we shall see that whereas thermodynamics is not
based on a new and particular law of nature, it instead reflects a
commonality or universal feature of all laws. In brief, thermodynamics is
the study of the restrictions on the possible properties of matter that follow
from the symmetry properties of the fundamental laws of physics.

The connection between the symmetry of fundamental laws and the
macroscopic properties of matter is not trivially evident, and we do not
attempt to derive the latter from the former. Instead we follow the
postulatory formulation of thermodynamics developed in the first edition
of this text, returning to an interpretive discussion of symmetry origins in
Chapter 21. But even the preliminary assertion of this basis of thermody-
namics may help to prepare the reader for the somewhat uncommon form
of thermodynamic theory. Thermodynamics inherits its universality, it
nonmetric nature, and its emphasis on relationships from its symmetry
parentage.






THE PROBLEM AND THE POSTULATES

1-1 THE TEMPORAL NATURE OF
MACROSCOPIC MEASUREMENTS

Perhaps the most striking feature of macroscopic matter is the incredi-
ble simplicity with which it can be characterized. We go to a pharmacy
and request one liter of ethyl alcohol, and that meager specification is
pragmatically sufficient. Yet from the atomistic point of view, we have
specified remarkably little. A complete mathematical characterization of
the system would entail the specification of coordinates and momenta for
each molecule in the sample, plus sundry additional variables descriptive
of the internal state of each molecule—altogether at least 102* numbers to
describe the liter of alcohol! A computer printing one coordinate each
microsecond would require 10 billion years—the age of the universe—to
list the atomic coordinates. Somehow, among the 10?* atomic coordinates,
or linear combinations of them, all but a few are macroscopically irrele-
vant. The pertinent few emerge as macroscopic coordinates, or *“thermody-
namic coordinates.”

Like all sciences, thermodynamics is a description of the results to be
obtained in particular types of measurements. The character of the
contemplated measurements dictates the appropriate descriptive variables;
these variables, in turn, ordain the scope and structure of thermodynamic
theory.

The key to the simplicity of macroscopic description, and the criterion
for the choice of thermodynamic coordinates, lies in two attributes of
macroscopic measurement. Macroscopic measurements are extremely slow
on the atomic scale of time, and they are extremely coarse on the atomic
scale of distance.

While a macroscopic measurement is being made, the atoms of a system
go through extremely rapid and complex motions. To measure the length
of a bar of metal we might choose to calibrate it in terms of the
wavelength of yellow light, devising some arrangement whereby reflection

<
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from the end of the bar produces interference fringes. These fringes are
then to be photographed and counted. The duration of the measurement
is determined by the shutter speed of the camera— typically on the order
of one hundredth of a second. But the characteristic period of vibration of
the atoms at the end of the bar is on the order of 10~ !* seconds!

A macroscopic observation cannot respond to those myriads of atomic
coordinates which vary in time with typical atomic periods. Only those few
particular combinations of atomic coordinates that are essentially time
independent are macroscopically observable.

The word essentially is an important qualification. In fact we are able to
observe macroscopic processes that are almost, but not quite, time inde-
pendent. With modest difficulty we might observe processes with time
scales on the order of 107 s or less. Such observable processes are still
enormously slow relative to the atomic scale of 10 ° s. It is rational then
to first consider the limiting case and to erect a theory of time-indepen-
dent phenomena. Such a theory 1s thermodynamics.

By definition, suggested by the nature of macroscopic observations, ther-
modynamics describes only static states of macroscopic systems.

Of all the 102 atomic coordinates, or combinations thereof, only a few
are time independent.

Quantities subject to conservation principles are the most obvious
candidates as time-independent thermodynamic coordinates: the energy,
each component of the total momentum, and each component of the total
angular momentum of the system. But there are other time-independent
thermodynamic coordinates, which we shall enumerate after exploring the
spatial nature of macroscopic measurement.

1-2 THE SPATIAL NATURE OF
MACROSCOPIC MEASUREMENTS

Macroscopic measurements are not only extremely slow on the atomic
scale of time, but they are correspondingly coarse on the atomic scale of
distance. We probe our system always with “blunt instruments.” Thus an
optical observation has a resolving power defined by the wavelength of
light, which is on the order of 1000 interatomic distances. The smallest
resolvable volume contains approximately 10° atoms! Macroscopic ob-
servations sense only coarse spatzal averages of atomic coordinates.

The two types of averaging implicit in macroscopic observations to-
gether effect the enormous reduction in the number of pertinent variables,
from the initial 102 atomic coordinates to the remarkably small number
of thermodynamic coordinates. The manner of reduction can be il-
lustrated schematically by considering a simple model system, as shown in
Fig. 1.1. The model system consists not of 102 atoms, but of only 9
These atoms are spaced along a one-dimensional line, are constrained to
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FIGURE 11

Three normal modes of oscillation in a nine-atom model system. The wave lengths of the
three modes are four, eight and sixteen interatomic distances. The dotted curves are a
transverse representation of the longitudinal displacements.

move only along that line, and interact by linear forces (as if connected by
springs).

The motions of the individual atoms are strongly coupled, so the atoms
tend to move in organized patterns called normal modes. Three such
normal modes of motion are indicated schematically in Fig. 1.1. The
arrows indicate the displacements of the atoms at a particular moment;
the atoms oscillate back and forth, and half a cycle later all the arrows
would be reversed.

Rather than describe the atomic state of the system by specifying the
position of each atom, it is more convenient (and mathematically equiv-
alent) to specify the instantaneous amplitude of each normal mode. These
amplitudes are called normal coordinates, and the number of normal
coordinates is exactly equal to the number of atomic coordinates.

In a “macroscopic” system composed of only nine atoms there is no
precise distinction between “macroscopic” and “atomic” observations.
For the purpose of illustration, however, we think of a macroscopic
observation as a kind of “blurred” observation with low resolving power;
the spatial coarseness of macroscopic measurements is qualitatively analo-
gous to visual observation of the system through spectacles that are
somewhat out of focus. Under such observation the fine structure of the
first two modes in Fig. 1.1 is unresolvable, and these modes are rendered
unobservable and macroscopically irrelevant. The third mode, however,
corresponds to a relatively homogeneous net expansion (or contraction) of
the whole system. Unlike the first two modes, it is easily observable
through “blurring spectacles.” The amplitude of this mode describes the
length (or volume, in three dimensions) of the system. The length (or
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volume) remains as a thermodynamic variable, undestroyed by the spatial
averaging, because of its spatially homogeneous (long wavelength) structure.

The time averaging associated with macroscopic measurements aug-
ments these considerations. Each of the normal modes of the system has a
characteristic {requency, the frequency being smaller for modes of longer
wavelength. The frequency of the third normal mode in Fig. 1.1 is the
lowest of those shown, and if we were to consider systems with very large
numbers of atoms, the frequency of the longest wavelength mode would
approach zero (for reasons to be explored more fully in Chapter 21). Thus
all the short wavelength modes are lost in the time averaging, but the long
wavelength mode corresponding to the “volume’ is so slow that it survives
the time averaging as well as the spatial averaging.

This simple example illustrates a very general result. Of the enormous
number of atomic coordinates, a very few, with unique symmetry proper-
ties, survive the statistical averaging associated with a transition to a
macroscopic description. Certain of these surviving coordinates are me-
chanical in nature—they are volume, parameters descriptive of the shape
(components of elastic strain), and the like. Other surviving coordinates
are electrical in nature—they are electric dipole moments, magnetic dipole
moments, various multipole moments, and the like. The study of mechanics
(including elasticity) is the study of one set of surviving coordinates. The
subject of electricity (including electrostatics, magnetostatics, and ferromag-
netism) is the study of another set of surviving coordinates.

Thermodynamics, in contrast, is concerned with the macroscopic conse-
quences of the myriads of atomic coordinates that, by virtue of the coarseness
of macroscopic observations, do not appear explicitly in a macroscopic
description of a system.

Among the many consequences of the “hidden” atomic modes of
motion, the most evident is the ability of these modes to act as a
repository for energy. Energy transferred via a “mechanical mode” (i.e.,
one associated with a mechanical macroscopic coordinate) is called me-
chanical work. Energy transferred via an “electrical mode” is called electri-
cal work. Mechanical work is typified by the term —PdV (P is pressure,
V' is volume), and electrical work is typified by the term —E_ d% (E, is
electric field, 2 is electric dipole moment). These energy terms and
various other mechanical and electrical work terms are treated fully in the
standard mechanics and electricity references. But it is equally possible to
transfer energy via the hidden atomic modes of motion as well as via those that
happen to be macroscopically observable. An energy transfer via .he hidden
atomic modes is called heat. Of course this descriptive characterization of
heat is not a sufficient basis for the formal development of thermody-
namics, and we shall soon formulate an appropriate operational defini-
tion.

With this contextual perspective we proceed to certain definitions and
conventions needed for the theoretical development.
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1-3 THE COMPOSITION OF THERMODYNAMIC SYSTEMS

Thermodynamics is a subject of great generality, applicable to systems
of elaborate structure with all manner of complex mechanical, electrical,
and thermal properties. We wish to focus our chief attention on the
thermal properties. Therefore it is convenient to idealize and simplify the
mechanical and electrical properties of the systems that we shall study
initially. Similarly, in mechanics we consider uncharged and unpolarized
systems; whereas in electricity we consider systems with no elastic com-
pressibility or other mechanical attributes. The generality of either subject
is not essentially reduced by this idealization, and after the separate
content of each subject has been studied it is a simple matter to combine
the theories to treat systems of simultaneously complicated electrical and
mechanical properties. Similarly, in our study of thermodynamics we
idealize our systems so that their mechanical and electrical properties are
almost trivially simple. When the essential content of thermodynamics has
thus been developed, it again is a simple matter to extend the analysis to
systems with relatively complex mechanical and electrical structure. The
essential point to be stressed is that the restrictions on the types of
systems considered in the following several chapters are not basic limita-
tions on the generality of thermodynamic theory but are adopted merely
for simplicity of exposition.

We (temporarily) restrict our attention to simple systems, defined as
systems that are macroscopically homogeneous, isotropic, and uncharged,
that are large enough so that surface effects can be neglected, and that are
not acted on by electric, magnetic, or gravitational fields.

For such a simple system there are no macroscopic electric coordinates
whatsoever. The system is uncharged and has neither electric nor magnetic
dipole, quadrupole, or higher-order moments. All elastic shear compo-
nents and other such mechanical parameters are zero. The volume V' does
remain as a relevant mechanical parameter. Furthermore, a simple system
has a definite chemical composition which must be described by an
appropriate set of parameters. One reasonable set of composition parame-
ters is the numbers of molecules in each of the chemically pure compo-
nents of which the system is a mixture. Alternatively, to obtain numbers
of more convenient size, we adopt the mole numbers, defined as the actual
number of each type of molecule divided by Avogadro’s number (N, =
6.02217 x 10%).

This definition of the mole number refers explicitly to the “number of
molecules,” and it therefore lies outside the boundary of purely macro-
scopic physics. An equivalent definition which avoids the reference to
molecules simply designates 12 grams as the molar mass of the isotope
12C. The molar masses of other isotopes are then defined to stand in the
same ratio as the conventional “atomic masses,” a partial list of which is
given in Table 1.1.
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TABLE 11
Atomic Masses (g) of Some Naturally
Occurring Elements (Mixtures of Isotopes)®

H 1.0080 F 18.9984
Li 6.941 Na 22.9898
C 12.011 Al 26.9815
N 14.0067 S 32.06
0] 15.9994 Ci 35.453

“ As adopted by the Internatnonal Uruon of Pure and
Applied Chemistry, 1969

If a system is a mixture of r chemical components, the r ratios
N/ N) (k=1,2,...,r) are called the mole fractions. The sum of all
r mole fractions is unity. The quantity V/(ZJ’,,INJ) is called the molar
volume.

The macroscopic parameters V, N, N,, ..., N, have a common property
that will prove to be quite significant. Suppose that we are given two
identical systems and that we now regard these two systems taken together
as a single system. The value of the volume for the composite systemn is
then just twice the value of the volume for a single subsystem. Similarly,
each of the mole numbers of the composite system is twice that for a
single subsystem. Parameters that have values in a composite system equal
to the sum of the values in each of the subsystems are called extensive
parameters. Extensive parameters play a key role throughout thermody-
namic theory.

PROBLEMS

1.3-1. One tenth of a kilogram of NaCl and 0.15 kg of sugar (C,,H,,0,,) are
dissolved in 0.50 kg of pure water. The volume of the resultant thermodynamic
system is 0.55 X 10" * m*. What are the mole numbers of the three components of
the system? What are the mole fractions? What 1s the molar volume of the
system? It is sufficient to carry the calculations only to two significant figures.

Answer:
Mole fraction of NaCl = 0.057;
molar volume = 18 X 10" *m¥mole.

1.3-2. Naturally occurring boron has an atomic mass of 10.811 g. It is a mixture
of the isotopes 1°B with an atomic mass of 10.0129 g and B with an atomic mass
of 11.0093 g. What is the mole fraction of 1°B in the mixture?

1.3-3. Twenty cubic centimeters each of ethyl alcohol (C,H,OH; density = 0.79
g/cm’), methyl alcohol (CH,OH; density = 0.81 g/cm’), and water (H,O:
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density = 1 g/cm’) are mixed together. What are the mole numbers and mole
fractions of the three components of the system?

Answer:
mole fractions = 0.17, 0.26, 0.57

1.3-4. A 0.01 kg sample is composed of S0 molecular percent H,, 30 molecular
percent HD (hydrogen deuteride), and 20 molecular percent D,. What additional
mass of D, must be added if the mole fraction of D, in the final mixture 1s to be
0.3?

1.3-5. A sqlution of sugar (C,,H,,0,,) in water is 20% sugar by weight. What is
the mole fraction of sugar in the solution?

1.3-6. An aqueous solution of an unidentified solute has a total mass of 0.1029
kg. The mole fraction of the solute is 0.1. The solution is diluted with 0.036 kg of
water, after which the mole fraction of the solute is 0.07. What would be a
reasonable guess as to the chemical identity of the solute?

1.3-7. One tenth of a kg of an aqueous solution of HCl is poured into 0.2 kg of an
aqueous solution of NaOH. The mole fraction of the HCI solution was 0.1,
whereas that of the NaOH solution was 0.25. What are the mole fractions of each
of the components in the solution after the chemical reaction has come to
completion?

Answer:
tzo = NHIO/N = 0.84

1-4 THE INTERNAL ENERGY

The development of the principle of conservation of energy has been
one of the most significant achievements in the evolution of physics. The
present form of the principle was not discovered in one magnificent stroke
of insight but was slowly and laboriously developed over two and a half
centuries. The first recognition of a conservation principle, by Leibniz in
1693, referred only to the sum of the kinetic energy (3 mp?) and the
potential energy (mgh) of a simple mechanical mass point in the terrestrial
gravitational field. As additional types of systems were considered the
established form of the conservation principle repeatedly failed, but in
each case it was found possible to revive it by the addition of a new
mathematical term—a “new kind of energy.” Thus consideration of
charged systems necessitated the addition of the Coulomb interaction
energy (Q,0,/r) and eventually of the energy of the electromagnetic field.
In 1905 Einstein extended the principle to the relativistic region, adding
such terms as the relativistic rest-mass energy. In the 1930s Enrico Fermi
postulated the exictenca nf n mans mamet1 300
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purpose of retaining the energy conservation principle in nuclear reac-
tions. The principle of energy conservation is now seen as a reflection of
the (presumed) fact that the fundamental laws of physics are the same
today as they were eons ago, or as they will be in the remote future; the
laws of physics are unaltered by a shift in the scale of time (r — ¢t +
constant). Of this basis for energy conservation we shall have more to say
in Chapter 21. Now we simply note that the energy conservation principle
is one of the most fundamental, general, and significant principles of
physical theory.

Viewing a macroscopic system as an agglomerate of an enormous
number of electrons and nuclei, interacting with complex but definite
forces to which the energy conservation principle applies, we conclude
that macroscopic systems have definite and precise energies, subject to a
definite conservation principle. That is, we now accept the existence of a
well-defined energy of a thermodynamic system as a macroscopic mani-
festation of a conservation law, highly developed, tested to an extreme
precision, and apparently of complete generality at the atomic level.

The foregoing justification of the existence of a thermodynamic energy
function is quite different from the historical thermodynamic method.
Because thermodynamics was developed largely before the atomic hy-
pothesis was accepted, the existence of a conservative macroscopic energy
function had to be demonstrated by purely macroscopic means. A signifi-
cant step in that direction was taken by Count Rumford in 1798 as he
observed certain thermal effects associated with the boring of brass
cannons. Sir Humphry Davy, Sadi Carnot, Robert Mayer, and, finally
(between 1840 and 1850), James Joule carried Rumford’s initial efforts to
their logical fruition. The history of the concept of heat as a form of
energy transfer is unsurpassed as a case study in the tortuous development
of scientific theory, as an illustration of the almost insuperable inertia
presented by accepted physical doctrine, and as a superb tale of human
ingenuity applied to a subtle and abstract problem. The interested reader
is referred to The Early Development of the Concepts of Temperature and
Heat by D. Roller (Harvard University Press, 1950) or to any standard
work on the history of physics.

Although we shall not have recourse explicitly to the experiments of
Rumford and Joule in order to justify our postulate of the existence of an
energy function, we make reference to them in Section 1.7 in our discus-
sion of the measurability of the thermodynamic energy.

Only differences of energy, rather than absolute values of the energy,
have physical significance, either at the atomic level or in macroscopic
systems. It is conventional therefore to adopt some particular state of a
system as a fiducial state, the energy of which is arbitrarily taken as zero.
The energy of a system in any other state, relative to the energy of the
system in the fiducial state, is then called the thermodynamic internal
energy of the system in that state and is denoted by the symbol U. Like
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the volume and the mole numbers, the internal energy is an extensive
parameter.

1-5 THERMODYNAMIC EQUILIBRIUM

Macroscopic systems often exhibit some “memory” of their recent
history. A stirred cup of tea continues to swirl within the cup. Cold-worked
steel maintains an enhanced hardness imparted by its mechanical treat-
ment. But memory eventually fades. Turbulences damp out, internal
strains yield to plastic flow, concentration inhomogeneities diffuse to
uniformity. Systems tend to subside to very simple states, independent of
their specific history.

In some cases the evolution toward simplicity is rapid; in other cases it
can proceed with glacial slowness. But in all systems there is a tendency to
evolve toward states in which the properties are determined by intrinsic
factors and not by previously applied external influences. Such simple
terminal states are, by definition, time independent. They are called equi-
librium states.

Thermodynamics seeks to describe these simple, static “equilibrium”
states to which systems eventually evolve.

To convert this statement to a formal and precise postulate we first
recognize that an appropriate criterion of simplicity is the possibility of
description in terms of a small number of variables. It therefore seems
plausible to adopt the following postulate, suggested by experimental
observation and formal simplicity, and to be verified ultimately by the
success of the derived theory:

Postulate 1. There exist particular states (called equilibrium states) of
simple systems that, macroscopically, are characterized completely by the
internal energy U, the volume V, and the mole numbers N, N,, ..., N, of the
chemical components.

As we expand the generality of the systems to be considered, eventually
permitting more complicated mechanical and electrical properties, the
number of parameters required to characterize an equilibrium state in-
creases to include, for example, the electric dipole moment and certain
elastic strain parameters. These new variables play roles in the formalism
which are completely analogous to the role of the volume V for a simple
system.

A persistent problem of the experimentalist is to determine somehow
whether a given system actually is in an equilibrium state, to which
thermodynamic analysis can be applied. He or she can, of course, observe
whether the system is static and quiescent. But quiescence is not sufficient.
As the state is assumed to be characterized completely by the extensive
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parameters, U,V, N, N,,...,N,, it follows that the properties of the
system must be independent of the past history. This is hardly an
operational prescription for the recognition of an equilibrium state, but in
certain cases this independence of the past history is obviously rot
satisfied, and these cases give some insight into the significance of equi-
librium. Thus two pieces of chemically identical commercial steel may
have very different properties imparted by cold-working, heat treatment,
quenching, and annealing in the manufacturing process. Such systems are
clearly not in equilibrium. Similarly, the physical characteristics of glass
depend upon the cooling rate and other details of its manufacture; hence
glass is not in equilibrium.

If a system that is not in equilibrium is analyzed on the basis of a
thermodynamic formalism predicated on the supposition of equilibrium,
inconsistencies appear in the formalism and predicted results are at
variance with experimental observations. This failure of the theory is used
by the experimentalist as an a posteriori criterion for the detection of
nonequilibrium states.

In those cases in which an unexpected inconsistency arises in the
thermodynamic formalism a more incisive quantum statistical theory
usually provides valid reasons for the failure of the system to attain
equilibrium. The occasional theoretical discrepancies that arise are there-
fore of great heuristic value in that they call attention to some unsus-
pected complication in the molecular mechanisms of the system. Such
circumstances led to the discovery of ortho- and parahydrogen,! and to
the understanding of the molecular mechanism of conversion between the
two forms.

From the atomic point of view, the macroscopic equilibrium state is
associated with incessant and rapid transitions among all the atomic states
consistent with the given boundary conditions. If the transition mecha-
nism among the atomic states is sufficiently effective, the system passes
rapidly through all representative atomic states in the course of a macro-
scopic observation; such a system is in equilibrium. However, under
certain unique conditions, the mechanism of atomic transition may be
ineffective and the system may be trapped in a small subset of atypical
atomic states. Or even if the system is not completely trapped the rate of
transition may be so slow that a macroscopic measurement does not yield
a proper average over all possible atomic states. In these cases the system
is not in equilibrium. It is readily apparent that such situations are most
likely to occur in solid rather than in fluid systems, for the comparatively
high atomic mobility in fluid systems and the random nature of the

'If the two nuclei in a H, molecule have parallel angular momentum, the molecule is called
ortho-H,; if antiparallel, para-H,. The ratio of ortho-H, to para-H, in a gaseous H, system should
have a definite value in equilibrium, but this ratio may not be obtained under certain conditions The
resultant failure of H, to satisfy certain thermodynamic equations motivated the investigations of the
ortho- and para-forms of H,.
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interatomic collisions militate strongly against any restrictions of the
atomic transition probabilities.

In actuality, few systems are in absolute and true equilibrium. In
absolute equilibrium all radioactive materials would have decayed com-
pletely and nuclear reactions would have transmuted all nuclei to the most
stable of isotopes. Such processes, which would take cosmic times to
complete, generally can be ignored. A system that has completed the
relevant processes of spontaneous evolution, and that can be described by
a reasonably small number of parameters, can be considered to be in
metastable equilibrium. Such a limited equilibrium is sufficient for the
application of thermodynamics.

In practice the criterion for equilibrium is circular. Operationally, a
system is in an equilibrium state if its properties are consistently described by
thermodynamic theory!

It is important to reflect upon the fact that the circular character of
thermodynamics is not fundamentally different from that of mechanics. A
particle of known mass in a known gravitational field might be expected
to move in a specific trajectory; if it does not do so we do not reject the
theory of mechanics, but we simply conclude that some additional force
acts on the particle. Thus the existence of an electrical charge on the
particle, and the associated relevance of an electrical force, cannot be
known a priori. It is inferred only by circular reasoning, in that dynamical
predictions are incorrect unless the electric contribution to the force is
included. Our model of a mechanical system (including the assignment of
its mass, moment of inertia, charge, dipole moment, etc.) is “correct” if it
yields successful predictions.

1-6 WALLS AND CONSTRAINTS

A description of a thermodynamic system requires the specification of
the “walls” that separate it from the surroundings and that provide its
boundary conditions. It is by means of manipulations of the walls that the
extensive parameters of the system are altered and processes are initiated.

The processes arising by manipulations of the walls generally are
associated with a redistribution of some quantity among various systems
or among various portions of a single system. A formal classification of
thermodynamic walls accordingly can be based on the property of the
walls in permitting or preventing such redistributions. As a particular
illustration, consider two systems separated by an internal piston within a
closed, rigid cylinder. If the position of the piston is rigidly fixed the
“wall” prevents the redistribution of volume between the two systems, but
if the piston is left free such a redistribution is permitted. The cylinder
and the rigidly fixed piston may be said to constitute a wall restrictive
with respect to the volume, whereas the cylinder and the movable piston
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may be said to constitute a wall nonrestrictive with respect to the volume.
In general, a wall that constrains an extensive parameter of a system to
have a definite and particular value is said to be restrictive with respect to
that parameter, whereas a wall that permits the parameter to change freely
is said to be nonrestrictive with respect to that parameter.

A wall that is impermeable to a particular chemical component is
restrictive with respect to the corresponding mole number; whereas a
permeable membrane is nonrestrictive with respect to the mole number.
Semipermeable membranes are restrictive with respect to certain mole
numbers and nonrestrictive with respect to others. A wall with holes in it
is nonrestrictive with respect to all mole numbers.

The existence of walls that are restrictive with respect to the energy is
associated with the larger problem of measurability of the energy, to
which we now turn our attention.

1-7 MEASURABILITY OF THE ENERGY

On the basis of atomic considerations, we have been led to accept the
existence of a macroscopic conservative energy function. In order that this
energy function may be meaningful in a practical sense, however, we must
convince ourselves that it is macroscopically controllable and measurable.
We shall now show that practical methods of measurement of the energy
do exist, and in doing so we shall also be led to a quantitative operational
definition of heat.

An essential prerequisite for the measurability of the energy is the
existence of walls that do not permit the transfer of energy in the form of
heat. We briefly examine a simple experimental situation that suggests
that such walls do indeed exist.

Consider a system of ice and water enclosed in a container. We find
that the ice can be caused to melt rapidly by stirring the system vigor-
ously. By stirring the system we are clearly transferring energy to it
mechanically, so that we infer that the melting of the ice is associated with
an input of energy to the system. If we now observe the system on a
summer day, we find that the ice spontaneously melts despite the fact that
no work is done on the system. It therefore seems plausible that energy is
being transferred to the system in the form of heat. We further observe
that the rate of melting of the ice is progressively decreased by changing
the wall surrounding the system from thin metal sheet, to thick glass, and
thence to a Dewar wall (consisting of two silvered glass sheets separated
by an evacuated interspace). This observation strongly suggests that the
metal, glass, and Dewar walls are progressively less permeable to the flow
of heat. The ingenuity of experimentalists has produced walls that are able
to reduce the melting rate of the ice to a negligible value, and such walls
are correspondingly excellent approximations to the limiting idealization
of a wall that is truly impermeable to the flow of heat.
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It 1s conventional to refer to a wall that is impermeable to the flow of
heat as adiabatic; whereas a wall that permits the flow of heat is termed
diathermal. 1f a wall allows the flux of neither work nor heat, it is
restrictive with respect to the energy. A system enclosed by a wall that is
restrictive with respect to the energy, volume, and all the mole numbers
is said to be closed.?

The existence of these several types of walls resolves the first of our
concerns with the thermodynamic energy. That is, these walls demonstrate
that the energy is macroscopically controllable. It can be trapped by
restrictive walls and manipulated by diathermal walls. If the energy of a
system is measured today, and if the system is enclosed by a wall
restrictive with respect to the energy, we can be certain of the energy of
the system tomorrow. Without such a wall the concept of a macroscopic
thermodynamic energy would be purely academic.

We can now proceed to our second concern—that of measurability of
the energy. More accurately, we are concerned with the measurability of
energy differences, which alone have physical significance. Again we
invoke the existence of adiabatic walls, and we note that for a simple
system enclosed by an impermeable adiabatic wall the only type of
permissible energy transfer is in the form of work. The theory of me-
chanics provides us with quantitative formulas for its measurement. If the
work is done by compression, displacing a piston in a cylinder, the work is
the product of force times displacement; or if the work is done by stirring,
it is the product of the torque times the angular rotation of the stirrer
shaft. In either case, the work is well defined and measurable by the
theory of mechanics. We conclude that we are able to measure the energy
difference of two states provided that one state can be reached from the
other by some mechanical process while the system is enclosed by an
adiabatic impermeable wall.

The entire matter of controllability and measurability of the energy can
be succinctly stated as follows: There exist walls, called adiabatic, with the
property that the work done in taking an adiabatically enclosed system
berween two given states is determined entirely by the states, independent of
all external conditions. The work done is the difference in the internal energy
of the two states.

As a specific example suppose we are given an equilibrium system
composed of ice and water enclosed in a rigid adiabatic impermeable wall.
Through a small hole in this wall we pass a thin shaft carrying a propellor
blade at the inner end and a crank handle at the outer end. By turning the
crank handle we can do work on the system. The work done is equal to
the angular rotation of the shaft multiplied by the viscous torque. After
turning the shaft for a definite time the system is allowed to come to a
new equilibrium state in which some definite amount of the ice is observed

2Thus definition of closure differs from a usage common 1n chemistry, m which closure imphes only
a wall restrictive with respect to the transfer of matter
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to have been melted. The difference in energy of the final and initial states
is equal to the work that we have done in turning the crank.

We now inquire about the possibility of starting with some arbitrary
given state of a system, of enclosing the system in an adiabatic imperme-
able wall, and of then being able to contrive some mechanical process that
will take the system to another arbitrarily specified state. To determine the
existence of such processes, we must have recourse to experimental
observation, and it is here that the great classical experiments of Joule are
relevant. His work can be interpreted as demonstrating that for a system
enclosed by an adiabatic impermeable wall any two egquilibrium states with
the same set of mole numbers N,, N,, ..., N, can be joined by some possible
mechanical process. Joule discovered that if two states (say 4 and B) are
specified it may not be possible to find a mechanical process (consistent
with an adiabatic impermeable wall) to take the system from A fo B but
that it is always possible to find either a process to take the system from
A to B or a process to take the system from B to 4. That is, for any states
A and B with equal mole numbers, either the adiabatic mechanical
process A — B or B — A exists. For our purposes either of these processes
is satisfactory. Experiment thus shows that the methods of mechanics
permit us to measure the energy difference of any two states with equal mole
numbers.

Joule’s observation that only one of the processes A - B or B —» 4
may exist is of profound significance. This asymmetry of two given states
is associated with the concept of irreversibility, with which we shall
subsequently be much concerned.

The only remaining limitation to the measurability of the energy
difference of any two states is the requirement that the states must have
equal mole numbers. This restriction is easily eliminated by the following
observation. Consider two simple subsystems separated by an imperme-
able wall and assume that the energy of each subsystem is known (relative
to appropriate fiducial states, of course). If the impermeable wall is
removed, the subsystems will intermix, but the total energy of the com-
posite system will remain constant. Therefore the energy of the final
mixed system is known to be the sum of the energies of the original
subsystems. This technique enables us to relate the energies of states with
different mole numbers.

In summary, we have seen that by employing adiabatic walls and by
measuring only mechanical work, the energy of any thermodynamic system,
relative to an appropriate reference state, can be measured.

1-8 QUANTITATIVE DEFINITION OF HEAT—UNITS

The fact that the energy difference of any two equilibrium states is
measurable provides us directly with a quantitative definition of the heat:
The heat flux to a system in any process (at constant mole numbers) is
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simply the difference in internal energy between the final and initial states,
diminished by the work done in that process.

Consider some specified process that takes a system from the initial
state A to the final state B. We wish to know the amount of energy
transferred to the system in the form of work and the amount transferred
in the form of heat in that particular process. The work is easily measured
by the method of mechanics. Furthermore, the total energy difference
U, — U, is measurable by the procedures discussed in Section 1.7. Sub-
tracting the work from the total energy difference gives us the heat flux in
the specified process.

It should be noted that the amount of work associated with different

rocesses may be different, even though each of the processes initiates in
the same state 4 and each terminates in the same state B. Similarly, the
heat flux may be different for each of the processes. But the sum of the
work and heat fluxes is just the total energy difference U, — U, and is
the same for each of the processes. In referring to the total energy flux we
therefore need specify only the initial and terminal states, but in referring
to heat or work fluxes we must specify in detail the process considered.

Restricting our attention to thermodynamic simple systems, the quasi-
static work is associated with a change in volume and is given quantita-
tively by

dw,, = —Pdv (1.1)

where P is the pressure. In recalling this equation from mechanics, we
stress that the equation applies only to quasi-static processes. A precise
definition of quasi-static processes will be given in Section 4.2, but now we
merely indicate the essential qualitative idea of such processes. Let us
suppose that we are discussing, as a particular system, a gas enclosed in a
cylinder fitted with a moving piston. If the piston is pushed in very
rapidly, the gas immediately behind the piston acquires kinetic energy and
is set into turbulent motion and the pressure is not well defined. In such a
case the work done on the system is not quasi-static and is not given by
equation 1.1. If, however, the piston is pushed in at a vanishingly slow rate
(quasi-statically), the system is at every moment in a quiescent equilibrium
state, and equation 1.1 then applies. The “infinite slowness™ of the process
is, roughly, the essential feature of a quasi-static process.

A second noteworthy feature of equation 1.1 is the sign convention, The
work is taken to be positive if it increases the energy of the system. If the
volume of the system is decreased, work is done on the system, increasing
its energy; hence the negative sign in equation 1.1.

With the quantitative expression dW,, = — PdV for the quasi-static
work, we can now give a quantitative expression for the heat flux. In an
infinitesimal quasi-static process at constant mole numbers the guasi-static
heat dQ is defined by the equation

dQ = dU — dW,, at constant mole numbers (1.2)
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or
dQ = dU + PdV at constant mole numbers (1.3)

It will be noted that we use the terms heat and heat flux interchange-
ably. Heat, like work, is only a form of energy transfer. Once energy is
transferred to a system, either as heat or as work, it is indistinguishable
from energy that might have been transferred differently. Thus, although
dQ and dW,, add together to give dU, the energy U of a state cannot be
considered as the sum of “work™ and “heat” components. To avoid this
implication we put a stroke through the symbol d: infinitesimals such as
dw,, and dQ are called imperfect differentials. The integrals of dW,, and
dQ for a particular process are the work and heat fluxes in that process;
the sum is the energy difference AU, which alone is independent of the
process.

The concepts of heat, work, and energy may possibly be clarified in
terms of a simple analogy. A certain farmer owns a pond, fed by one
stream and drained by another. The pond also receives water from an
occasional rainfall and loses it by evaporation, which we shall consider as
“negative rain.” In this analogy the pond is our system, the water within it
is the internal energy, water transferred by the streams is work, and water
transferred as rain is heat. )

The first thing to be noted is that no examination of the pond at any
time can indicate how much of the water within it came by way of the
stream and how much came by way of rain. The term rain refers only to a
method of water transfer.

Let us suppose that the owner of the pond wishes to measure the
amount of water in the pond. He can purchase flow meters to be inserted
in the streams, and with these flow meters he can measure the amount of
stream water entering and leaving the pond. But he cannot purchase a rain
meter. However, he can throw a tarpaulin over the pond, enclosing the
pond in a wall impermeable to rain (an adiabatic wall). The pond owner
consequently puts a vertical pole into the pond, covers the pond with his
tarpaulin, and inserts his flow meters into the streams. By damming one
stream and then the other, he varies the level in the pond at will, and by
consulting his flow meters he is able to calibrate the pond leve), as read on
his vertical stick, with total water content (U). Thus, by carrying out
processes on the system enclosed by an adiabatic wall, he is able to
measure the total water content of any state of his pond.

Our obliging pond owner now removes his tarpaulin to permit rain as
well as stream water to enter and leave the pond. He is then asked to
evaluate the amount of rain entering his pond during a particular day. He
proceeds simply; he reads the difference in water content from his vertical
stick, and from this he deducts the total flux of stream water as registered
by his flow meters. The difference is a quantitative measure of the rain.
The strict analogy of each of these procedures with its thermodynamic
counterpart is evident.
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Since work and heat refer to particular modes of energy transfer, each is
measured in energy units. In the cgs system the unit of energy, and hence
of work and heat, is the erg. In the mks system the unit of energy is the
joule, or 107 ergs.

A practical unit of energy is the calorie,® or 4.1858 J. Historically, the
calorie was introduced for the measurement of heat flux before the
relationship of heat and work was clear, and the prejudice toward the use
of the calorie for heat and of the joule for work still persists. Nevertheless,
the calorie and the joule are simply alternative units of energy, either of
which is acceptable whether the energy flux is work, heat, or some
combination of both.

Other common units of energy are the British thermal unit (Btu), the
liter—atmosphere, the foot-pound and the watt—hour. Conversion factors
among energy units are given inside the back cover of this book.

Example 1

A particular gas is enclosed in a cylinder with a moveable piston. It is observed
that if the walls are adiabatic, a quasi-static increase in volume results in a
decrease in pressure according to the equation

P3® = constant  (for Q = 0)

a) Find the quasi-static work done on the system and the net heat transfer to the
system in each of the three processes (ADB, ACB, and the direct linear process
AB) as shown in the figure.
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In the process ADB the gas is heated at constant pressure (P = 10° Pa) until
its volume increases from its initial value of 1073 m? to its final value of 8 x 1073
m’. The gas is then cooled at constant volume until its pressure decreases to
10%/32 Pa. The other processes (ACB and AB) can be similarly interpreted,
according to the figure.

*Nutritionists refer to a kilocalorie as a *“Calone” —presumably to spare calorie counters the
trauma of large numbers To compound the confusion the initial caprtal C is often dropped, so that a
kilocalorie becomes a *calorie™t
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b) A small paddle is installed inside the system and is driven by an external
motor (by means of a magnetic coupling through the cylinder wall). The motor
exerts a torque, driving,the paddle at an angular velocity w, and the pressure of
the gas (at constant volume) is observed to increase at a rate given by

X torque

[N
~
W

«
%

Show that the energy difference of any two states of equal volumes can be
determined by this process. In particular, evaluate U- — U, and U, — U.
Explain why this process can proceed only in one direction (vertically upward
rather than downward in the P- I plot).
¢) Show that any two states (any two ponts in the P- 1 plane) can be connected
by a combination of the processes in (a) and (b). In particular, evaluate U, — U,.
d) Calculate the work W, mn the process A — D. Calculate the heat transfer
Q,p- Repeat for D - B, and for C — A. Are these results consistent with those
of (a)?

The reader should attempt to solve this problem before reading the
following solution!

Solution
a) Given the equation of the “adiabat™ (for which Q = 0 and AU = W), we find

V 5/3
Up— U, = W= —fVV"PdV= —P,,fVV"(—V’i) av

3 }
— EPAVA5/3(VB 2/3 _ VA 2/3)

3
= 5(25-100) = -1125

Now consider process ADB:

Wipp = —deV= -103 X(8 X 1073 — 10*3)= —700 1

But
Ug = Ug=Wipp+ Qups
Qupp= —1125 4+ 700 = 5875
Note that we are able to calculate Q 5, bttt not Q ,,, and Q pp, separately, for we
do not (yet) know U, — U,.

Similarly we find W, , = —21.9 J and Q5 = —90.6 J. Also W, ; = — 360.9
Jand Q,, = 2484 J.

b) As the motor exerts a torque, and turns through an angle d6, it delivers an
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energy? dU = torque X d6 to the system. But d6 = w dt, so that

21
dP = '5 ? (torque) wdt
21
=3y
or
dU = 2vap
2

This process is carried out at constant ¥ and furthermore dU > 0 (and conse-
quently dP 2 0). The condition dU = 0 follows from dU = torque X d6, for the
sign of the rotation d@ is the same as the sign of the torque that induces that
rotation. In particular

U~ U= —%V(PA ~-P)= % x 1073 x(105 - % X 105) =14531]
and
Up— Uy = —;—V(PD—P,,)= % ><8><10‘3><(105— 515 ><105)= 1162517

¢) To connect any two points in the plane we draw an adiabat through one and
an isochor (¥ = constant) through the other. These two curves intersect, thereby
connecting the two states. Thus we have found (using the adiabatic process) that
Up — Uy = —112.5 J and (using the irreversible stirrer process) that U, — Uy =
1162.5 J. Therefore U, — U, = 1050 J. Equivalently, if we assign the value zero
to U, then

U=0, Ug=-1125J, U.=—1453), U, =1050]

and similarly every state can be assigned a value of U.
d) Now having U, — U, and W, , we can calculate Q , ..
Up—Usy=Wipp+ Qup
1050 = —700 + Q,p
Qup = 17501
Also
Upg— Up=Wps + Opy
or
—1162.5= 0 + Q,,

To check, we note that Q,, + Qpp = 587.5 J, which is equal to Q ,,,5 as found
in (a).

“Note that the energy output of the motor is delivered to the system as energy that cannot be
classified either as work or as heat—it is a non-quast-static transfer of energy.
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PROBLEMS

1.8-1. For the system considered in Example 1, calculate the energy of the state
with P =5 X 10* Paand V =8 X 1073 m’.

1.8-2. Calculate the heat transferred to the system considered in Example 1 in the
process in which it is taken in a straight line (on the P—V diagram) from the state
A to the state referred to in the preceding problem.

1.8-3. For a particular gaseous system it has been determined that the energy is
given by

U= 2.5PV + constant

The system is initially in the state P = 0.2 MPa (mega-Pascals), ¥ = 0.01 m?,
designated as point 4 in the figure. The system is taken through the cycle of three
processes (4 — B, B — C, and C — A) shown in the figure. Calculate Q and W
for each of the three processes. Calculate Q and W for a process from 4 to B
along the parabola P = 10° + 10° X (¥ — .02)%

05 G
04}—
F 03
E3
& 02— B
A
o1
0 l | l
] 001 002 003

V(m3) —>

Answer:
Wee =T X 103 J; Opgc= —95x% 103 )

1.8-4. For the system of Problem 1.8-3 find the equation of the adiabats in the
P-V plane (i.e., find the form of the curves P = P(V') such that dQ = 0 along
the curves).

Answer:
VP’ = constant
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1.8-5. The energy of a particular system, of one mole, is given by
U= APV

where A is a positive constant of dimensions [P]™!. Find the equation of the
adiabats in the P-V plane.

1.8-6. For a particular system it is found that if the volume is kept constant at the
value ¥, and the pressure is changed from P, to an arbitrary pressure P’, the heat
transfer to the system is

Q' =4(P-R) (4>0)
In addition it is known that the adiabats of the system are of the form
PV = constant (y a positive constant)

Find the energy U(P,V) for an arbitrary point in the P-V plane, expressing
U(P,V)in terms of Py, Vy, A, Uy = U(Py, V;) and v (as well as P and V).

Answer:
U-U,=APr—-P)+[PV/(y-D)1-r"""H where r = V/V,

1.8-7. Two moles of a particular single-component system are found to have a
dependence of intemal energy U on pressure and volume given by

U=APV?  (for N =2)

Note that doubling the system doubles the volume, energy, and mole number, but
leaves the pressure unaltered. Write the complete dependence of U on P, V, and
N for arbitrary mole number.

1-9 THE BASIC PROBLEM OF THERMODYNAMICS

The preliminaries thus completed, we are prepared to formulate first the
seminal problem of thermodynamics and then its solution.

Surveying those preliminaries retrospectively, it is remarkable how far
reaching and how potent have been the consequences of the mere choice
of thermodynamic coordinates. Identifying the criteria for those coordi-
nates revealed the role of measurement. The distinction between the
macroscopic coordinates and the incoherent atomic coordinates suggested
the distinction between work and heat. The completeness of the descrip-
tion by the thermodynamic coordinates defined equilibrium states. The
thermodynamic coordinates will now provide the framework for the
solution of the central problem of thermodynamics.

There is, in fact, one central problem that defines the core of thermody-
na]mic theory. All the ults of thermodynamics propagate from its
solution.
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The single, all-encompassing problem of thermodynamics is the determina-
tion of the equilibrium state that eventually results after the removal of
internal constraints in a closed, composite system.

Let us suppose that two simple systems are contained within a closed
cylinder, separated from each other by an internal piston. Assume that the
cylinder walls and the piston are rigid, impermeable to matter, and
adiabatic and that the position of the piston is firmly fixed. Each of the
systems is closed. If we now free the piston, it will, in general, seek some
new position. Similarly, if the adiabatic coating is stripped from the fixed
piston, so that heat can flow between the two systems, there will be a
redistribution of energy between the two systems. Again, if holes are
punched in the piston, there will be a redistribution of matter (and also of
energy) between the two systems. The removal of a constraint in each case
results in the onset of some spontaneous process, and when the systems
finally settle into new equilibrium states they do so with new values of the
parameters UM, VO, N® ... and UPD, VO N® ...  The basic prob-
lem of thermodynamics is the calculation of the equilibrium values of
these parameters.

FIGURE12

Before formulating the postulate that provides the means of solution of
the problem, we rephrase the problem in a slightly more general form
without reference to such special devices as cylinders and pistons. Given
two or more simple systems, they may be considered as constituting a
single composite system. The composite system is termed closed if it is
surrounded by a wall that is restrictive with respect to the total energy, the
total volume, and the total mole numbers of each component of the
composite system. The individual simple systems within a closed com-
posite system need not themselves be closed. Thus, in the particular
example referred to, the composite system is closed even if the internal
piston is free to move or has holes in it. Constraints that prevent the flow
of energy, volume, or matter among the simple systems constituting the
composite system are known as infernal constraints. If a closed composite
system is in equilibrium with respect to internal constraints, and if some
of these constraints are then removed, certain previously disallowed
processes become permissible. These processes bring the system to a new
equilibrium state. Prediction of the new equilibrium state is the central
problem of thermodynamics.
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1.10 THE ENTROPY MAXIMUM POSTULATES

The induction from experimental observation of the central principle
that provides the solution of the basic problem is subtle indeed. The
historical method, culminating in the analysis of Caratheodory, is a tour
de force of delicate and formal logic. The statistical mechanical approach
pioneered by Josiah Willard Gibbs required a masterful stroke of induc-
tive inspiration. The symmetry-based foundations to be developed in
Chapter 21 will provide retrospective understanding and interpretation,
but they are not yet formulated as a deductive basis. We therefore merely
formulate the solution to the basic problem of thermodynamics in a set of
postulates depending upon a posteriori rather than a priori justification.
These postulates are, in fact, the most natural guess that we might make,
providing the simplest conceivable formal solution to the basic problem. On
this basis alone the problem might have been solved; the tentative
postulation of the simplest formal solution of a problem is a conventional
and frequently successful mode of procedure in theoretical physics.

What then is the simplest criterion that reasonably can be imagined for
the determination of the final equilibrium state? From our experience with
many physical theories we might expect that the most economical form
for the equilibrium criterion would be in terms of an extremum principle.
That is, we might anticipate the values of the extensive parameters in the
final equilibrium state to be simply those that maximize® some function.
And, straining our optimism to the limit, we might hope that this
hypothetical function would have several particularly simple mathematical
properties, designed to guarantee simplicity of the derived theory. We
develop this proposed solution in a series of postulates.

Postulate II. There exists a function (called the entropy S) of the extensive
parameters of any composite system, defined for all equilibrium states and
having the following property: The values assumed by the extensive parame-
ters in the absence of an internal constraint are those that maximize the
entropy over the manifold of constrained equilibrium states.

It must be stressed that we postulate the existence of the entropy only
for equilibrium states and that our postulate makes no reference
whatsoever to nonequilibrium states. In the absence of a constraint the
system is free to select any one of a number of states, each of which might
also be realized in the presence of a suitable constraint. The entropy of each
of these constrained equilibrium states is definite, and the entropy is
largest in some particular state of the set. In the absence of the constraint
this state of maximum entropy is selected by the system.

3Or minimize the function, this being purcly a matter of convention in the choice of the sign of the
function, having no consequence whatever in the logical structure of the theory.
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In the case of two systems separated by a diathermal wall we might
wish to predict the manner in which the total energy U distributes
between the two systems. We then consider the composite system with the
internal diathermal wall replaced by an adiabatic wall and with particular
values of U™ and U™ (consistent, of course, with the restriction that
UMD + U@ = U). For each such constrained equilibrium state there is an
entropy of the composite system, and for some particular values of U
and U® this entropy is maximum. These, then, are the values of U® and
U® that obtain in the presence of the diathermal wall, or in the absence
of the adiabatic constraint.

All problems in thermodynamics are derivative from the basic problem
formulated in Section 1.9. The basic problem can be completely solved
with the aid of the extremum principle if the entropy of the system is
known as a function of the extensive parameters. The relation that gives
the entropy as a function of the extensive parameters is known as a
fundamental relation. It therefore follows that if the fundamental relation of
a particular system is known all conceivable thermodynamic information
about the system is ascertainable from it.

The importance of the foregoing statement cannot be overemphasized.
The information contained in a fundamental relation is all-inclusive—it 1s
equivalent to all conceivable numerical data, to all charts, and to all
imaginable types of descriptions of thermodynamic properties. If the
fundamental relation of a system is known, every thermodynamic attri-
bute is completely and precisely determined.

Postulate III. The entropy of a composite system is additive over the
constituent subsystems. The entropy is continuous and differentiable and is a
monotonically increasing function of the energy.

Several mathematical consequences follow immediately. The additivity
property states that the entropy S of the composite system is merely the
sum of the entropies S® of the constituent subsystems:

NED I (1.4)

The entropy of each subsystem is a function of the extensive parameters
of that subsystem alone

S = Sy p N N@) (1.5)

The additivity property applied to spatially separate subsystems re-
quires the following property: The entropy of a simple system is a homoge-
neous first-order function of the extensive parameters. That is, if all the
extensive parameters of a system are multiplied by a constant A, the
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entropy is multiplied by this same constant. Or, omitting the superscript

(),
S(AU,AV,ANy,...,AN,) = AS(U,V, N,,...,N.) (1.6)

The monotonic property postulated implies that the partial derivative
(9S/9U)y . n is a positive quantity,

(as

%)V,N,, ,N,>0 (17)

As the theory develops in subsequent sections, we shall see that the
reciprocal of this partial derivative is taken as the definition of the
temperature. Thus the temperature is postulated to be nonnegative.®

The continuity, differentiability, and monotonic property imply that the
entropy function can be inverted with respect to the energy and that the
energy is a single-valued, continuous, and differentiable function of
S,V, Ny, ..., N,. The function

S=S(U,V,N,...,N) (1.8)
can be solved uniquely for U in the form
U= U(S,V,N,...,N,) (1.9)

Equations 1.8 and 1.9 are alternative forms of the fundamental relation,
and each contains all thermodynamic information about the system.

We note that the extensivity of the entropy permits us to scale the
properties of a system of N moles from the properties of a system of 1
mole. The fundamental equation is subject to the identity

S(U,V,N,N,,...,N))=NS(U/N,V/N,N,/N,...,N/N) (1.10)

in which we have taken the scale factor A of equation 1.6 to be equal to
1/N = 1/%, N,. For a single-component simple system, in particular,

S(U,v,N)=NS(U/N,V/N,1) (1.11)
But U/N is the energy per mole, which we denote by w.
u=U/N (1.12)

$The possibility of negative values of this derivative (i.e., of negative temperatures) has been
discussed by N F Ramsey, Phys. Rev. 103, 20 (1956) Such states are not equilibrium states in real
systems, and they do not invalidate equation 1 7 They can be produced only 1n certain very unique
systems (specifically in isolated spin systems) and they spontaneously decay away Nevertheless the
study of these states is of stahstical mechanical interest, elucidating the stanstical mechanical concept
of temperature
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Also, V/N is the volume per mole, which we denote by v.
v=V/N (1.13)

Thus S(U/N,V/N,1) = S(u,v,1) is the entropy of a system of a single
mole, to be denoted by s(u, v).

s{u,v) = S(u,v,1) (1.14)
Equation 1.11 now becomes
S(U,V,N) = Ns(u,v) (1.15)
Postulate 1V. The entropy of any system vanishes in the state for which
(oU/dS)v.n, n=0 (that is, at the zero of temperature)

We shall see later that the vanishing of the derivative (dU/dS), . »,
is equivalent to the vanishing of the temperature, as indicated. Hence the
fourth postulate is that zero temperature implies zero entropy.

It should be noted that an immediate implication of postulate IV is that
S (like V and N, but unlike U) has a uniquely defined zero.

This postulate is an extension, due to Planck, of the so-called Nernst
postulate or third law of thermodynanucs. Historically, it was the latest of
the postulates to be developed, being inconsistent with classical statistical
mechanics and requiring the prior establishment of quantum statistics in
order that it could be properly appreciated. The bulk of thermodynamics
does not require this postulate, and 1 make no further reference to it until
Chapter 10. Nevertheless, I have chosen to present the postulate at this
point to close the postulatory basis.

The foregoing postulates are the logical bases of our development of
thermodynamics. In the light of these postulates, then, it may be wise to
reiterate briefly the method of solution of the standard type of thermody-
namic problem, as formulated in Section 1.9. We are given a composite
system and we assume the fundamental equation of each of the con-
stituent systems to be known in principle. These fundamental equations
determine the individual entropies of the subsystems when these systems
are in equilibrium. If the total composite system is in a constrained
equilibrium state, with particular values of the extensive parameters of
each constituent system, the total entropy is obtained by addition of the
individual entropies. This total entropy is known as a function of the
various extensive parameters of the subsystems. By straightforward differ-
entiation we compute the extrema of the total entropy function, and then,
on the basis of the sign of the second derivative, we classify these extrema
as minima, maxima, or as horizontal inflections. In an appropriate physi-
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cal terminology we first find the equilibrium states and we then classify
them on the basis of stability. It should be noted that in the adoption of
this conventional terminology we augment our previous definition of
equilibrium; that which was previously termed equilibrium is now termed
stable equilibrium, whereas unstable equilibrium states are newly defined in
terms of extrema other than maxima.

It is perhaps appropriate at this point to acknowledge that although all
applications of thermodynamics are equivalent in principle to the proce-
dure outlined, there are several alternative procedures that frequently
prove more convenient. These alternate procedures are developed in
subsequent chapters. Thus we shall see that under appropriate conditions
the energy U(S,V, N,,...) may be minimized rather than the entropy
S(U,V, N,,...), maximized. That these two procedures determine the
same final state is analogous to the fact that a circle may be characterized
either as the closed curve of minimum perimeter for a given area or as the
closed curve of maximum area for a given perimeter. In later chapters we
shall encounter several new functions, the minimization of which is
logically equivalent to the minimization of the energy or to the maximiza-
tion of the entropy.

The inversion of the fundamental equation and the alternative state-
ment of the basic extremum principle in terms of a minimum of the
energy (rather than a maximum of the entropy) suggests another view-
point from which the extremum postulate perhaps may appear plausible.
In the theories of electricity and mechanics, ignoring thermal effects, the
energy 1s a function of various mechanical parameters, and the condition
of equilibrium is that the energy shall be a minimum. Thus a cone is stable
lying on its side rather than standing on its point because the first position
is of lower energy. If thermal effects are to be included the energy ceases
to be a function simply of the mechanical parameters. According to the
inverted fundamental equation, however, the energy is a function of the
mechanical parameters and of one additional parameter (the entropy). By
the introduction of this additional parameter the form of the energy-
munimum principle is extended to the domain of thermal effects as well as
to pure mechanical phenomena. In this manner we obtain a sort of
correspondence principle between thermodynamics and mechanics—
ensuring that the thermodynamic equilibrium principle reduces to the me-
chanical equilibrium principle when thermal effects can be neglected.

We shall see that the mathematical condition that a maximum of
S(U,V, Ny, ...) implies a minimum of U(S,V, Ny,...) is that the deriva-
tive (dS/dU), »,  be positive. The motivation for the introduction of
this statement in postulate III may be understood in terms of our desire to
ensure that the entropy-maximum principle will go over into an energy-
minimum principle on inversion of the fundamental equation.

In Parts II and II1 the concept of the entropy will be more deeply
explored, both in terms of its symmetry roots and in terms of its statistical
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mechanical interpretation. Pursuing those inquires now would take us too
far afield. In the classical spirit of thermodynamics we temporarily defer
such interpretations while exploring the far-reaching consequences of our
simple postulates.

PROBLEMS

1.10-1. The following ten equations are purported to be fundamental equations
of various thermodynamic systems. However, five are inconsistent with one or
more of postulates II, III, and IV and consequently are not physically acceptable.
In each case qualitatively sketch the fundamental relationship between S and U
(with N and V constant). Find the five equations that are not physically
permissible and indicate the postulates violated by each.

The quantities vy, #, and R are positive constants, and in all cases in which
fractional exponents appear only the real positive root is to be taken.

R2 1/3
a) S =(ET)) (NVU)'3
0
R\ NU\
ns=() (F)
1/2
1/2 2
0 5=(5) v+ 2]
Vo
2
d) S =(¥)V3/NU
Vo
R 1/5
e) s=(u 02) [N?VURP/s
(1]
f) S = NRIn(UV/N?Rlu,)
R 1/2
9 S=(7) WUrexp-v2and
_(R\ 172 U
h) s—(g) (NU) exp(— NRovo)

iy v =(U;f0)% exp(S/NR)

RO s
M U=(~;0—)NV(1 + g ) exp(~S/NR)

1.10-2. For each of the five physically acceptable fundamental equations in
problem 1.10-1 find U as a function of S, ¥, and N.
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1.10-3. The fundamental equation of system A is

R\ .
5= (Z) oy
and similarly for system B. The two systems are separated by a rigid, imperme-
able, adiabatic wall. System A has a volume of 9 X 10”¢ m® and a mole number
of 3 moles. System B has a volume of 4 X 10 ¢ m® and a mole number of 2
moles. The total energy of the composite system is 80 J. Plot the entropy as a
function of U,/(U, + Uy). If the internal wall is now made diathermal and the
system is allowed to come to equilibrium, what are the internal energies of each of
the individual systems? (As in Problem 1.10-1, the quantities v,, #, and R are
positive constants.)






THE CONDITIONS
OF EQUILIBRIUM

2-1 INTENSIVE PARAMETERS

By virtue of our interest in processes, and in the associated changes of
the extensive parameters, we anticipate that we shall be concerned with
the differential form of the fundamental equation. Writing the fundamen-
tal equation in the form

U= U(S,V,N,N,,...,N) (2.1)
we compute the first differential:

aUu au " aU
v = (‘ES:)V,N, ..... N,dS +(W)S.Nl, ...N,dV+ }: (3N')s,v,. NdN’

j=1 J N,

(2.2)

The various partial derivatives appearing in the foregoing equation recur
so frequently that it is convenient to introduce special symbols for them.
They are called intensive parameters, and the following notation is conven-
tional:

au _
(7’}?) vn T, the temperature (2.3)
au
{2 = 4
( 3V)s N P, the pressure (2.4)
U _ . the electrochemical potential of (2.5)
N, sv. N =4y the jth component ’

35
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With this notation, equation 2.2 becomes
dU=TdS — PdV + pdN, + --- +pu,dN, (2.6)

The formal definition of the temperature soon will be shown to agree
with our intuitive qualitative concept, based on the physiological sensa-
tions of “hot” and “cold.” We certainly would be reluctant to adopt a
definition of the temperature that would contradict such strongly en-
trenched although qualitative notions. For the moment, however, we
merely introduce the concept of temperature by the formal definition
(2.3).

Similarly, we shall soon corroborate that the pressure defined by
equation 2.4 agrees in every respect with the pressure defined in mecha-
nics. With respect to the several electrochemical potentials, we have no
prior definitions or concepts and we are free to adopt the definition
(equation 2.5) forthwitH.

For brevity, the electrochemical potential is often referred to simply
as tlhe chemical potential, and we shall use these two terms interchangea-
bly'.

The term — PdV in equation 2.6 is identified as the quasi-static work
dWw,,, as given by equation 1.1.

In the special case of constant mole numbers equation 2.6 can then be
written as

TdS =dU—dW,, if dN,=dN,=dN, =0 2.7

Recalling the definition of the quasi-static heat, or comparing equation 2.7
with equation 1.2, we now recognize TdS as the quasi-static heat flux.

dQ = TdS (2.8)

A quasi-static flux of heat into a system is associated with an increase of
entropy of that system.

The remaining terms in equation 2.6 represent an increase of internal
energy associated with the addition of matter to a system. This type of
energy flux, although intuitively meaningful, is not frequently discussed
outside thermodynamics and does not have a familiar distinctive name.
We shall call ¥ u dN, the quasi-static chemical work.

dW,= ¥ u,dN, (29)

=1

THowever it should be noted that occasionally, and particularly in the theory of solids, the
“chemical potential” is defined as the electrochemical potential p miry  %e molar electrostatic
energy.
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Therefore

dU = dQ + dW,, + dW, (2.10)

Each of the terms 7dS,— PdV, p, de, in equation 2.6 has the dimen-
sions of energy. The matter of units will be considered in Section 2.6. We
can observe here, however, that having not yet specified the units (nor
even the dimensions) of entropy, the units and dimensions of temperature
remain similarly undetermined. The units of p are the same as those of
energy (as the mole numbers are dimensionless). The units of pressure are
familiar, and conversion factors are listed inside the back cover of this
book.

2.2 EQUATIONS OF STATE

The temperature, pressure, and electrochemical potentials are partial
derivatives of functions of S,V,N,,...,N, and consequently are also
functions of §,V, M,,..., N,. We thus have a set of functional relation-
ships

T=T1(S,V,N,...,N) (2.11)
P=P(S,V,N,...,N,) (2.12)
p;=n,(S,V,Ny,...,N) (2.13)

Such relationships, expressing intensive parameters in terms of the inde-
pendent extensive parameters, are called equations of state.

Knowledge of a single equation of state does not constitute complete
knowledge of the thermodynamic properties of a system. We shall see,
subsequently, that knowledge of all the equations of state of a system is
equivalent to knowledge of the fundamental equation and consequently is
thermodynamically complete.

The fact that the fundamental equation must be homogeneous first
order has direct implications for the functional form of the equations of
state. It follows immediately that the equations of state are homogeneous
zero order. That is, multiplication of each of the independent extensive
Parameters by a scalar A leaves the function unchanged.

T(AS,AV, X |,...,AN,)=T(S,V,N,,...,N.) (2.14)
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It therefore follows that the temperature of a portion of a system is
equal to the temperature of the whole system. This is certainly in agree-
ment with the intuitive concept of temperature. The pressure and the
electrochemical potentials also have the property (2.14), and together with
the temperature are said to be intensive.

To summarize the foregoing considerations it is convenient to adopt a
condensed notation. We denote the extensive parameters ¥V, N,,..., N, by
the symbols Xj, X,,..., X,, so that the fundamental relation takes the
form

U= U(S, X, X,,..., X) (2.15)

The intensive parameters are denoted by

U o
(§§)X,.X2, =T=T(5,X,X,,.... X,) (2.16)
U B .

X =P =P(S,X,X,,.... %) j=12,..,t (217)

I8, X, .

whence
4
dU = TdS + ZledXJ (2.18)
=

It should be noted that a negative sign appears in equation 2.4, but does
not appear in equation 2.17. The formalism of thermodynamics is uniform
if the negative pressure, — P, is considered as an intensive parameter
analogous to T and p, p,,.... Correspondingly one of the general
intensive parameters P, of equation 2.17 is — P.

For single-component simple systems the energy differential is fre-
quently written in terms of molar quantities. Analogous to equations 1.11
through 1.15, the fundamental equation per mole is

u=u(s,v) (2.19)
where
s=S/N, v=V/N (2.20)

and

u(s,v) == U(S,V,N) (2.21)

1
N
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Taking an infinitesimal variation of equation 2.19

du du

du = a5 ds + N dv (2.22)
However
Ju Ju U
(E)f(%)y,,v-(ﬁ)y.”” (223)
and similarly
Ju
(%)s—- —P (2.24)
Thus
du=Tds — Pdv (2.25)
PROBLEMS

2.2-1. Find the three equations of state for a system with the fundamental
equation
vf\ S3
()5
Corroborate that the equations of state are homogeneous zero order (i.e., that T,
P, and p are intensive parameters).
2.2-2. For the system of problem 2.2-1 find p as a function of 7, V, and N.

2.2-3. Show by a diagram (drawn to arbitrary scale) the dependence of pressure
on volume for fixed temperature for the system of problem 2.2-1. Draw two such
“isotherms,” corresponding to two values of the temperature, and indicate which
isotherm corresponds to the higher temperature.

22-4. Find the three equations of state for a system with the fundamental

equation
_(8\2_[RE) ,

and show that, for this system, u = —u.
2.2-5. Express p as a function of T'and P for the system of problem 2.2-4.

2.2-6. Find the three equations of state for a system with the fundamental
equation

_(vf)\s? . r
u—(R)ve
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2.2-7. A particular system obeys the relation
u=Av 2erﬁcpts/R)

N moles of this substance, initially at temperature 7, and pressure F,, are
expanded isentropically (s = constant) until the pressure is halved. What is the
final temperature?

Answer:
T/ = 0.63 T,

2.2-8. Show that, in analogy with equation 2.25, for a system with r components

r 1
du=Tds— Pdvo+ ) (n, — n,)dx,
J=1
where the x, are the mole fractions (= N,/N).

2.2-9. Show that if a single-component system is such that PV* is constant in an
adiabatic process (k is a positive constant) the energy is

U= k—_l_—1PV+ Nf(PVA/Nk)
where f is an arbitrary function.

Hint: PV* must be a function of S, so that (JU/3V )¢ = g(S) - V' *, where g(S)
is an unspecified function.

2-3 ENTROPIC INTENSIVE PARAMETERS

If, instead of considering the fundamental equation in the form U =
U(S,..., X,,...) with U as dependent, we had considered S as depen-
dent, we could have carried out all the foregoing formalism in an inverted

but equivalent fashion. Adopting the notation X, for U. we write
S=5(X,, X,..., X)) (2.26)
We take an infinitesimal variation to obtain

AN
ds = k};ﬂ ax, dx, (2.27)
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The quantities dS/dX, are denoted by F,.

as

Fe=3x,

(2.28)

By carefully noting which variables are kept constant in the various partial
derivatives (and by using the calculus of partial derivatives as reviewed in
Appendix A) the reader can demonstrate that

.
F,=—2 (k=1,2.3,...) (2.29)

ko = T

1
T’

These equations also follow from solving equation 2.18 for dS and
comparing with equation 2.27.

Despite the close relationship between the F, and the P, there is a very
important difference in principle. Namely, the P, are obtained by dif-
ferentiating a function of S,..., X,,... and are considered as functions
of these variables, whereas the F, are obtained by differentiating a
function of U,..., X,... and are considered as functions of these latter
variables. That is, in one case the entropy i1s a member of the set of
independent parameters, and in the second case the energy is such a
member. In performing formal manipulations in thermodynamics it is
extremely important to make a definite commitment to one or the other of
these choices and to adhere rigorously to that choice. A great deal of
confusion results from a vacillation between these two alternatives within
a single problem.

If the entropy is considered dependent and the energy independent, as
in §=S(,...,X,...), we shall refer to the analysis as being in the
entropy representation. If the energy is dependent and the entropy is
independent, as in U = U(S,..., X,,...). we shall refer to the analysis as
being in the energy representation.

The formal development of thermodynamics can be carried out in either
the energy or entropy representations alone, but for the solution of a
particular problem either one or the other representation may prove to be
by far the more convenient. Accordingly, we shall develop the two
representations in parallel, although a discussion presented in one repre-
sentation generally requires only a brief outline in the alternate represen-
tation.

The relation § = S(X,,..., X,...) is said to be the entropic fundamen-
tal relation, the set of variables X vo-rr X,,... 1s called the entropic
extensive parameters, and the set of variables Fy,..., F,,... is called the
entropic intensive parameters. Similarly, the relation U = U(S, X|
s-+-» X,,...) is said to be the energetic fundamental relation; the set of
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variables S, X|,..., X is called the energetic extensive parameters,

and the set of variablé:s. .T, Py,..., P,... is called the energetic intensive
parameters.
PROBLEMS

2.3-1. Find the three equations of state in the entropy representation for a system
with the fundamental equation

( o/ ) %
u =

R32 | p172
Answer
-2/5
Log(dee) e
T 5 R3/2 u3/5

~25
r__2 vy*0 BNV
T 5\ R32

2.3-2. Show by a diagram (drawn to arbitrary scale) the dependence of tempera
ture on volume for fixed pressure for the system of problem 2.3-1. Draw two such
“isobars” corresponding to two values of the pressure, and indicate which isobar
corresponds to the higher pressure.

2.3-3. Find the three equations of state in the entropy representation for a system
with the fundamental equation

6
u= (E)sle"’l/"é

2.3-4. Consider the fundamental equation

S=AU"V"N’
where A is a positive constant. Evaluate the permissible values of the three
constants n, m, and r if the fundamental equation is to satisfy the thermody-
namic postulates and if. in addition, we wish to have P increase with U/F, at
constant N. (This latter condition is an intuitive substitute for stability require-

ments to be studied in Chapter 8.) For definiteness, the zero of energy is to be
taken as the energy of the zero-temperature state.

2.3-5. Find the three equations of state for a system with the fundamental
relation
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a) Show that the equations of state in entropy representation are homogeneous
gzero-order functions.

p) Show that the temperature is intrinsically positive.
¢) Find the “mechanical equation of state” P = P(T,v).

d) Find the form of the adiabats in the P-v plane. (An “adiabat” is a locus of
constant entropy, or an “isentrope”).

2-4 THERMAL EQUILIBRIUM-—TEMPERATURE

We are now in a position to illustrate several interesting implications of
the extremum principle which has been postulated for the entropy.
Consider a closed composite system consisting of two simple systems
separated by a wall that is rigid and impermeable to matter but that does
allow the flow of heat. The volumes and mole numbers of each of the
simple systems are fixed, but the energies U and U'? are free to change,
subject to the conservation restriction

UM + U® = constant (2.30)

imposed by the closure of the composite system as a whole. Assuming that
the system has come to equilibrium, we seek the values of UV and U®,
According to the fundamental postulate, the values of U™ and U® are
such as to maximize the entropy. Therefore, by the usual mathematical
condition for an extremum, it follows that in the equilibrium state a
virtual infinitesimal transfer of energy from system 1 to system 2 will
produce no change in the entropy of the whole system. That is,

ds =0 (2.31)
The additivity of the entropy for the two subsystems gives the relation
S = S‘”(U‘”,V‘”,...,NI‘”,...) + S‘z’(U(z’, V(”,...,N]‘Z’,..,).
(2.32)

As UM and U@ are changed by the virtual energy transfer, the entropy
change is

s @
au®

)
ds — ( aS

»_ dU® +
U | pm, AN,

) dUu®  (2.33)
yva M(Z)_
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or, employing the definition of the temperature

1
_ ) 2
as = Y auvu’’ + e du® (2.34)

By the conservation condition (equation 2.30), we have

du® = —4du® (2.35)
whence
as =L - 1) o (2.36)
T 7O ’

The condition of equilibrium (equation 2.31) demands that 4S vanish for
arbitrary values of dU", whence

1 1

T @ (2.37)
This is the condition of equilibrium. If the fundamental equations of each
of the subsystems were known, then 1/T™ would be a known function of
U® (and of VM and N, ..., which, however, are merely constants).
Similarly, 1/T® would be a known function of U@, and the equation
1/TV =1/T™® would be one equation in UM and U'®. The conserva-
tion condition UV + U® = constant provides a second equation, and
these two equations completely determine, in principle, the values of U
and of U®. To proceed further and actually to obtain the values of U
and U® would require knowledge of the explicit forms of the fundamen-
tal equations of the systems. In thermodynamic theory, however, we
accept the existence of the fundamental equations, but we do not assume
explicit forms for them, and we therefore do not obtain explicit answers.
In practical applications of thermodynamics the fundamental equations
may be known, either by empirical observations (in terms of measure-
ments to be described later) or on the basis of statistical mechantcal
calculations based on simple models. In this way applied thermodynamics
is able to lead to explicit numerical answers.

Equation 2.37 could also be written as 7 = T, We write it in the
form 1/TY = 1/T® to stress the fact that the analysis is couched in the
entropy representation. By writing 1/7TY, we indicate a function of
U v® | whereas TV would imply a function of S, ¥ The
Pphysical significance of equation 2.37, however, remains the equality of the
temperatures of the two subsystems.

A second phase of the problem is the investigation of the stability of the
predicted final state. In the solution given we have not exploited fully the
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pasic postulate that the entropy 1s a maximum in equilibrium; rather, we
merely have investigated the consequences of the fact that it is an
extremum. The condition that it be a maximum requires, in addition to
the condition dS = 0, that

d’s <0 (2.38)

The consequences of this condition lead to considerations of stability, to
which we shall give explicit attention in Chapter 8.

2-5 AGREEMENT WITH
INTUITIVE CONCEPT OF TEMPERATURE

In the foregoing example we have seen that if two systems are separated
by a diathermal wall, heat will flow until each of the system attains the
same temperature. This prediction i1s in agreement with our intuitive
notion of temperature, and it is the first of several observations that
corroborate the plausibility of the formal definition of the temperature.

Inquiring 1nto the example in slightly more detail, we suppose that the
two subsystems imtially are separated by an adiabatic wall and that the
temperatures of the two subsystems are almost, but not quite, equal. In
particular we assume that

TH > 7O (2.39)

The system is considered initially to be in equilibrium with respect to the
internal adiabatic constraint. If the internal adiabatic constraint now is
removed, the system is no longer in equilibrium, heat flows across the
wall, and the entropy of the composite system increases. Finally the
system comes to a new equilibrium state, determined by the condition that
the final values of T and T are equal, and with the maximum possible
value of the entropy that is consistent with the remaining constraints.
Compare the initial and the final states. If AS denotes the entropy
difference between the final and initial states

AS >0 (2.40)
But, as in equation 2.36,
{1 1 .
AS = (F” - }E) AU (2.41)

where TM and T® are the initial values of the temperatures. By the
P
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condition that T® > T@_ it follows that
AUWY < 0 (2.42)

This means that the spontaneous process that occurred was one in which
heat flowed from subsystem 1 to subsystem 2. We conclude therefore that
heat tends to flow from a system with a high value of T to a system with a
low value of T. This is again in agreement with the intuitive notion of
temperature. It should be noted that these conclusions do not depend on
the assumption that T® is approximately equal to 7®@; this assumption
was made merely for the purpose of obtaining mathematical simplicity in
equation 2.41, which otherwise would require a formulation in terms of
integrals.

If we now take stock of our intuitive notion of temperature, based on
the physiological sensations of hot and cold, we realize that it is based
upon two essential properties. First, we expect temperature to be an
intensive parameter, having the same value in a part of a system as it has
in the entire system. Second, we expect that heat should tend to flow from
regions of high temperature toward regions of low temperature. These
properties imply that thermal equilibrium is associated with equality and
homogeneity of the temperature. Our formal definition of the temperature
possesses each of these properties.

2-6 TEMPERATURE UNITS

The physical dimensions of temperature are those of energy divided by
those of entropy. But we have not yet committed ourselves on the
dimensions of entropy; in fact its dimensions can be selected quite
arbitrarily. If the entropy is multiplied by any positive dimensional
constant we obtain a new function of different dimensions but with
exactly the same extremum properties—and therefore equally acceptable
as the entropy. We summarily resolve the arbitrariness simply by adopting
the convention that the entropy is dimensionless (from the more incisive
viewpoint of statistical mechanics this is a physically reasonable choice).
Consequently the dimensions of temperature are identical to those of
energy. However, just as torque and work have the same dimensions, but
are different types of quantities and are measured in different units (the
meter—Newton and the joule, respectively), so the temperature and the
energy should be carefully distinguished. The dimensions of both energy
and temperature are [mass - (length)?/(time)?]. The units of energy are

Joules, ergs, calories, and the like. The units of temperature remain to be
discussed.

In our later discussion of thermodynamic “Carnot” engines, in Chapter
4, we shall find that the optimum performance of an engine in contact
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with two thermodynamic systems is completely determined by the ratio of
the temperatures of those two systems. That is, the principles of thermody-
namics provide an experimental procedure that unambiguously determines
the ratio of the temperatures of any two given systems.

The fact that the ratio of temperatures is measurable has immediate
consequences. First the zero of temperature is uniquely determined and
cannot be arbitrarily assigned or “shifted.” Second we are free to assign
the value of unity (or some other value) to one arbitrary chosen state. All
other temperatures are thereby determined.

Equivalently, the single arbitrary aspect of the temperature scale is the
size of the temperature unit, determined by assigning a specific tempera-
ture to some particular state of a standard system.

The assignment of different temperature values to standard states leads
to different thermodynamic temperature scales, but all thermodynamic
temperature scales coincide at T = 0. Furthermore, according to equation
1.7 no system can have a temperature lower than zero. Needless to say,
this essential positivity of the temperature is in full agreement with all
measurements of thermodynamic temperatures.

The Kelvin scale of temperature, which is the official Systéme Interna-
tional (SI) system, is defined by assigning the number 273.16 to the
temperature of a mixture of pure ice, water, and water vapor in mutual
equilibrium; a state which we show in our later discussion of “triple
points” determines a unique temperature. The corresponding unit of
temperature is called a kelvin, designated by the notation K.

The ratio of the kelvin and the joule, two units with the same dimen-
sions, is 1.3806 X 10~ joules /kelvin. This ratio is known as Boltzmann’s
constant and is generally designated as k. Thus kT is an energy.

The Rankine scale is obtained by assigning the temperature (2) X
273.16 = 491.688°R to the ice—water—water vapor system just referred to.
The unit, denoted by °R, is called the degree Rankine. Rankine tempera-
tures are merely 2 times the corresponding Kelvin temperature.

Closely related to the “absolute” Kelvin scale of temperature is the
International Kelvin scale, which is a “practical” scale, defined in terms of
the properties of particular systems in various temperature ranges and
contrived to coincide as closely as possible with the (absolute) Kelvin
scale. The practical advantage of the International Kelvin scale is that it
provides reproducible laboratory standards for temperature measurement
throughout the temperature range. However, from the thermodynamic
point of view, it is not a true temperature scale, and to the extent that it
deviates from the absolute Kelvin scale it will not yield temperature ratios
that are consistent with those demanded by the thermodynamic for-
malism.

The values of the temperature of everyday experiences are large num-
bers on both the Kelvin and the Rankine scales. Room temperatures are
in the region of 300 K, or 540°R. For common usage, therefore, two



48 The Conditions of Equilibrium

derivative scales are in common use. The Celsius scale is defined as
T(°C) = T (K) — 273.15 (2.43)

where T(°C) denotes the “Celsius temperature,” for which the unit is
called the degree Celsius, denoted by °C. The zero of this scale is
displaced relative to the true zero of temperature, so the Celsius tempera-
ture scale is not a thermodynamic temperature scale at all. Negative temper-
atures appear, the zero is incorrect, and ratios of temperatures are not in
agreement with thermodynamic principles. Only temperature differences
are correctly given.

On the Celsius scale the “temperature” of the triple point (ice, water,
and water vapor in mutual equilibrium) is 0.01°C. The Celsius tempera-
ture of an equilibrium mixture of ice and water, maintained at a pressure
of 1 atm, is even closer to 0°C, with the difference appearing only in the
third decimal place. Also the Celsius temperature of boiling water at 1
atm pressure is very nearly 100°C. These near equalities reveal the
historical origin? of the Celsius scale; before it was recognized that the
zero of temperature is unique it was thought that two points, rather than
one, could be arbitrarily assigned and these were taken (by Anders
Celsius, in 1742) as the 0°C and 100°C just described.

The Fahrenheit scale is a similar “practical” scale. It is now defined by

T(°F) = T(°R) — 459.67 = 2T(°C) +32 (2.44)

The Fahrenheit temperature of ice and water at 1 atm pressure is roughly
32°F; the temperature of boiling water at 1 atm pressure is about 212°F;
and room temperatures are in the vicinity of 70°F. More suggestive of the
presumptive origins of this scale are the facts that ice, salt, and water
coexist in equilibrium at 1 atm pressure at a temperature in the vicinity of
OOF; and that the body (i.e., rectal) temperature of a cow is roughly
100°F.

Although we have defined the temperature formally in terms of a partial
derivative of the fundamental relation, we briefly note the conventional
method of introduction of the temperature concept, as developed by
Kelvin and Caratheodory. The heat flux dQ is first defined very much as
we have introduced it in connection with the energy conservation princi-
ple. From the consideration of certain cyclic processes it is then inferred
that there exists an integrating, factor (1/T) such that the product of this

in;legxc'fating factor with the imperfect differential dQ is a perfect differen-
tial (d4S).

1
ds = —dQ (2.45)
T
2A very short but fascinating review of the history of temperature scales is é by E. R. Jones, Jr..

The Physics Teacher 18, 594 (1980).
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The temperature and the entropy thereby are introduced by analysis of
the existence of integrating factors in particular types of differential
equations called Pfaffian forms.

PROBLEMS

2.6-1. The temperature of a system composed of ice, water, and water vapor in
mutual equilibrium has a temperature of exactly 273.16 K, by definition. The
temperature of a system of ice and water at 1 atm of pressure is then measured as
273.15 K, with the third and later decimal places uncertain. The temperature of a
system of water and water vapor (i.e., boiling water) at 1 atm is measured as
373.15 K + 0.01 K. Compute the temperature of water—water vapor at 1 atm,
with its probable error, on the Celsius, absolute Fahrenheit, and Fahrenheit
scales.

2.6-2. The “gas constant” R is defined as the product of Avogadro’s number
(N, = 6.0225 X 102 /mole) and Boltzmann’s constant R = N,k . Correspond-
ingly R = 8.314 J/mole K. Since the size of the Celsius degree is the same as the
size of Kelvin degree, 1t has the value 8.314 J/mole®C. Express R in units of
J/mole°F.

2.6-3. Two particular systems have the following equations of state:

m
1 _3,N®
TW 2 U(l)
and
1 5 N@
7@ 20O

where R is the gas constant (Problem 2.6-2). The mole number of the first system
is N = 2 and that of the second is N® = 3. The two systems are separated by a
diathermal wall, and the total energy in the composite system is 2.5 X 103 J.
What is the internal energy of each system in equilibrium?

Answer:
UM =714.31]

2.6-4. Two systems with the equations of state given in Problem 2.6-3 are
separated by a diathermal wall. The respective mole numbers are N = 2 and
N® = 3 The initial temperatures are T® = 250 K and 7@ = 350 K. What are
the values of UM and U™ after equilibrium has been established? What is the
equilibrium temperature?

2-7 MECHANICAL EQUILIBRIUM

A second application of extremum principle for the entropy yields
an even simpler result and ulerefore is useful in making the procedure
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clear. We consider a closed composite system consisting of two simple
systems separated by a movable diathermal wall that is impervious to the
flow of matter. The values of the mole numbers are fixed and constant.
but the values of UM and U® can change, subject only to the closure
condition

U® + UP = constant (2.46)

and the values of ¥ and V' can change, subject only to the closure
condition

V® + VD = constant (2.47)

The extremum principle requires that no change in entropy result from
infinitesimal virtual processes consisting of transfer of heat across the wall
or of displacement of the wall.

Then
das =0 (2.48)
where
1
as = 98 du® + HL(I) avw
UM [yo o, VO Jyw, N
as@ as@
dU@ 48 .
( AUD ) Ve @, v +( FI4% ) UB NP, g (2.49)
By the closure conditions
dU® = —qu® (2.50)
and
dv®d = —dv® (2.51)
whence
1 1 pm P
= o) LI IR M —
ds ( s T‘Z))dU +( porty T(2’) dv 0 (2.52)

As this expression must vanish for arbitrary and independent values of
dU® and dV®, we must have

1 1
}(T) - }727 =0 (2.53)
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and
—— = —= (2.54)

Although these two equations are the equilibrium conditions in the proper
form appropriate to the entropy representation, we note that they imply
the physical conditions of equality of both temperature and pressure.

TO=T7® (2.55)
PO =p® (2.56)

The equality of the temperatures is just our previous result for equi-
librium with a diathermal wall. The equality of the pressures is the new
feature mtroduced by the fact that the wall is movable. Of course, the
equality of the pressures is precisely the result that we would expect on the
basis of mechanics, and this result corroborates the identification of
the function P as the mechanical pressure.

Again we stress that this result is a formal solution of the given
problem. In the entropy representation, 1/T is a function of UM, V'™,
and N® (an entropic equation of state), so that equation 2.53 is formally
a relationship among U®, ¥®, U@, and V® (with N® and N each
held fixed). Similarly P®/T® is a function of UM, VD and NV, so
that equation 2.54 is a second relationship among U™, v®, U®, and
V@_The two conservation equations 2.46 and 2.47 complete the four equa-
tions required to determine the four sought-for variables. Again thermo-
dynamics provides the methodology, which becomes explicit when applied
to a concrete system with a definite fundamental relation, or with known
equations of state.

The case of a moveable adiabatic (rather than diathermal) wall presents
a unique problem with subtleties that are best discussed after the for-
malism is developed more fully; we shall return to that case in Problem
2.7-3 and in Problem 5.1-2.

Example 1

Three cylinders of identical cross-sectional areas are fitted with pistons, and each
contains a gaseous system (not necessarily of the same composition). The pistons
are connected to a rigid bar hinged on a fixed fulcrum, as indicated in Fig. 2.1.
The “moment arms,” or the distances from the fulcrum, are in the ratio of
1:2:3. The cylinders rest on a heat conductive table of negligible mass; the table
makes no contribution to the physics of the problem except to ensure that the
three cylinders are in diathermal contact. The entire system is isolated and no
pressure acts on the external surfaces of the pistons. Find the ratio of pressures
and of temperatures in the three cylinders.
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FIGURE 2.1
Three volume-coupled systems (Example 2.7-1).

Solution
The closure condition for the tota) energy is
UM+ 8UD +8UP =0
and the coupling of the pistons imposes the conditions that
VA =28vM
and
V=38
Then the extremal property of the entropy is

65 = L sum + Ao sy 6U<3>+——5V<1>
T“) 7O TG W

Eliminating U®, ¥, and V(”

1 1 1 1
[ I S [¢}) P 2
88 ( W T(3)) 8U +( T T(3)) 8y

PO P(2) P®

ot Te 0 Te
The remaining three variations §U™), U@, and 8V'") are arbitrary and uncon-
strained, so that the coefficient of each must vanish separately. From the coeffi-
cient of UM we find T® = TV, and from the coefficient of §U® we find
T®™ = TO, Hence all three systems come to a common final temperature. From
the coefficient of V™), and using the equality of the temperatures, we find

PO 4 2p@=3p3
This is the expected result, embodying the familiar mechanical principle of the

lever. Explicit knowledge of the equations of state would §  le us to convert this
into a solution for the volumes of the three systems.
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PROBLEMS

2.7-1. Three cylinders are fitted with four pistons, as shown in Fig. 2.2. The
cross-sectional areas of the cylinders are in the ratio 4;: A,: A3 = 1:2: 3. Pairs
of pistons are coupled so that their displacements (linear motions) are equal. The
walls of the cylinders are diathermal and are connected by a heat conducting bar
(crosshatched in the figure). The entire system is isolated (so that, for instance,
there is no pressure exerted on the outer surfaces of the pistons). Find the ratios
of pressures in the three cylinders.

~
~
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FIGURE 22
Three volume-coupled systems. (Problem 2.7-1)

2.7-2. Two particular systems have the following equations of state:

1 3 NO pm NOD

o 2Rpw To - fye
and

1 5 N@ P® N@

T® 27 per T® R @

The mole number of the first system is N = 0.5 and that of the second is
N® = 0,75. The two systems are contained in a closed cylinder, separated by a
fixed, adiabatic, and impermeable piston. The initial temperatures are T = 200
K and 7@ = 300 K, and the total volume is 20 liters. The “setscrew” which
prevents the motion of the piston is then removed, and simultaneously the
adiabatic insulation of the piston is stripped off, so that the piston becomes
moveable, diathermal, and impermeable. What is the energy, volume, pressure,
and temperature of each subsystem when equilibrium is established?
It is sufficient to take R = 8.3 J/mole K and to assume the external pressure to
be zero.
Answer:
U®=17001]

2.7-3. The hypothetical problem of equilibrium in a closed composite system with
an internal moveable adiabatic wall is a unique indeterminate problem. Physi-
C.ally, release of the piston would lead it to perpetual oscillation in the absence of
Viscous damping. With viscoy,  1mping the piston would eventually come to rest
8t such a position that the pressures on either side would be equal, but the
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temperatures 1n each subsystem would then depend on the relative viscosity in
each subsystem. The solution of this problem depends on dynamical considera-
tions. Show that the application of the entropy maximum formalism is corre-
spondingly indeterminate with respect to the temperatures (but determinate with
respect to the pressures).

Hinr: First show that with dUW = — PO P M and similarly for subsystem 2,
energy conservation gives P = P®_ Then show that the entropy maximum
condition vanishes identically, giving no solution for T® or 7.

2-8 EQUILIBRIUM WITH RESPECT TO MATTER FLOW

Consideration of the flow of matter provides insight into the nature of
the chemical potential. We consider the equilibrium state of two simple
systems connected by a rigid and diathermal wall, permeable to one type
of material (N,) and impermeable to all others (N,, N;,..., N,). We seek
the equilibrium values of U and U® and of N® and N/?. The virtual
change in entropy in the appropriate virtual process is

M
1w P

ds = T Tm

N0 L gpo P e (s
Ut e ~ e dNO (257)

and the closure conditions demand
dU®P = —qu® (2.58)
and

dAN® = —dN® (2.59)

whence

ds = 11 dU® — _il)__ﬁg dND (2.60
T TO® TO @ 60)

As dS must vanish for arbitrary values of both dUV and dN®, we find
as the conditions of equilibrium

= ——— (2.61)
and

pd P
76 @ (hence also p{® = u() (2.62)
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Thus, just as the temperature can be looked upon as a sort of “potential”
for heat flux and the pressure can be looked upon as a sort of “potential”
for volume changes, so the chemical potential can be looked upon as a
sort of “potential” for matter flux. A difference in chemical potential
provides a “generalized force” for matter flow.

The direction of the matter flow can be analyzed by the same method
used in Section 2.5 to analyze the direction of the heat flow. If we assume
that the temperatures TV and T® are equal, equation 2.60 becomes

(N
_ M TP'1 AN (2.63)

das
If pY is greater than p®, dN{P will be negative, since dS must be
positive. Thus matter tends to flow from regions of high chemical poten-
tial to regions of low chemical potential.

In later chapters we shall see that the chemical potential provides the
generalized force not only for the flow of matter from point to point but
also for its changes of phase and for chemical reactions. The chemical
potential thus plays a dominant role in theoretical chemistry.

The units of chemical potential are joules per mole (or any desired
energy unit per mole).

PROBLEMS

2.8-1. The fundamental equation of a particular type of two-component system is

U3/2V Iv1 N2
S=NA+ NRIHW - NlRan - N2Rln—ﬁ

N=N, + N,

where A is an unspecified constant. A closed rigid cylinder of total volume 10
liters is divided into two chambers of equal volume by a diathermal rigid
membrane, permeable to the first component but impermeable to the second. In
one chamber is placed a sample of the system with original parameters N = 0.5,
NV = 0.75, V® = 5 liters, and T™® = 300 K. In the second chamber is placed a
sample with original parameters N® = 1, N = 0.5, V@ = 5 liters, and T =
250 K. After equilibrium is established, what are the values of NV, N@ T, P®,
and P®?

Answer:
T=2727K

2.8-2. A two-component gaseous system has a fundamental equation of the form

BN,N,
N

S = AUVVIANYS 4 , N=N+N,
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where 4 and B are positive constants. A closed cylinder of total volume 2V} is
separated into two equal subvolumes by a rigid diathermal partition permeable
only to the first component. One mole of the first component, at a temperature
7,, is introduced in the left-hand subvolume, and a mixture of 3 mole of each
component, at a temperature 7,, is introduced into the right-hand subvolume.

Find the equilibrium temperature 7, and the mole numbers in each subvolume
when the system has come to equilibrium, assuming that 7, = 27, =400 K and
that 37B?=100A%V,. Neglect the heat capacity of the walls of the container!

Answer:

N, = 0.9

29 CHEMICAL EQUILIBRIUM

Systems that can undergo chemical reactions bear a strong formal
similarity to the diffusional systems considered in the preceding section.
Again they are governed by equilibrium conditions expressed in terms of
the chemical potential p—whence derives its name chemical potential.

In a chemical reaction the mole numbers of the system change, some
increasing at the expense of a decrease in others. The relationships among
the changing mole numbers are governed by chemical reaction equations
such as

2H, + O, = 2H,0 (2.64)
or

20 = 0, (2.65)

The meaning of the first of these equations is that the changes in the mole
numbers of hydrogen, oxygen, and water stand in the ratio of
—2:—1: +2. More generally one writes a chemical reaction equation,
for a system with r components, in the form

0=Yr4, (2.66)
J

The v, are the “stoichiometric coefficients” (—2, —1, +2 for the reaction
of hydrogen and oxygen to form water), and the A, are the symbols for
the chemical components (4, = H,, 4, = O,, and A, = H,0 for the
preceding reaction). If the reaction is viewed in the reverse sense (for
instance, as the dissociation of water to hydrogen plus oxygen) the
opposite signs would be assigned to each of the v,; this is a matter of
arbitrary choice and only the relative signs of the », are significant.
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The fundamental equation of the system is
S=S(UV,N,N,,...,N.) (2.67)

In the course of the chemical reaction both the total energy U and the
total volume V remain fixed, the system being considered to be enclosed
in an adiabatic and rigid “reaction vessel.” This is not the most common
boundary condition for chemical reactions, which are more often carried
out in open vessels, free to interchange energy and volume with the
ambient atmosphere; we shall return to these open boundary conditions in
Section 6.4.
The change in entropy in a virtual chemical process is then
rop
as = - Y, 7’ dN, (2.68)
j=1

However, the changes in the mole numbers are proportional to the

stoichiometric coefficients »,. Let the factor of proportionality be denoted
by dN, so that

~1|2,

Z (2.69)
Then the extremum principle dictates that, in equilibrium

e

(2.70)

If the equations of state of the mixture are known, the equilibrium
condition (2.70) permits explicit solution for the final mole numbers.

It is of interest to examine this “solution in principle” in a slightly
richer case. If hydrogen, oxygen, and carbon dioxide are introduced into a
vessel the following chemical reactions may occur.

H, + 10, = H,0
CO, + H, = CO + H,0 (2.71)
CO + 30, = CO,
In equilibrium we then have
Py, t %Hoz = Pu,0
Bco, ¥ P, = Bco t Bh,0 (2.72)

1 —
Bco t 2lo, = Ko,
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These constitute two independent equations, for the first equation is
simply the sum of the two following equations (just as the first chemical
reaction is the net result of the two succeeding reactions). The amounts of
hydrogen, oxygen, and carbon introduced into the system (in whatever
chemical combinations) specify three additional constraints. There are
thus five constraints, and there are precisely five mole numbers to be
found (the quantities of H,, O,, H,0, CO,, and CO). The problem is
thereby solved in principle.

As we observed earlier, chemical reactions more typically occur in open
vessels with only the final pressure and temperature determined. The
number of variables is then increased by two (the energy and the volume)
but the specification of T and P provides two additional constraints.
Again the problem is determinate.

We shall return to a more thorough discussion of chemical reactions in
Section 6.4. For now it is sufficient to stress that the chemical potential
plays a role in matter transfer or chemical reactions fully analogous to the
role of temperature in heat transfer or pressure in volume transfer.

PROBLEMS

2.9-1. The hydrogenation of propane (C;H;) to form methane (CH,) proceeds
by the reaction
C;H; + 2H, = 3CH,

Find the relationship among the chemical potentials and show that both the
problem and the solution are formally identical to Example 1 on mechanical
equilibrium.



L
SOME FORMAL RELATIONSHIPS,
AND SAMPLE SYSTEMS

3-1 THE EULER EQUATION

Having seen how the fundamental postulates lead to a solution of the
equilibrium problem, we now pause to examine in somewhat greater detail
the mathematical properties of fundamental equations.

The homogeneous first-order property of the fundamental relation
permits that equation to be written in a particularly convenient form,
called the Euler form.

From the definition of the homogeneous first-order property we have,
for any A

UAS,AX,,...,AX,) = AU(S, X,,..., X,) (3.1)
Diiferentiating with respect to A

U(...,AX,,...) a(AS) aU(...,\X,,...) d(AX))

+
JAS) A ix) A
+ -0 = U(S, X,y-.0, X)) (3.2)
or
U(...,\X,,...) LooU(.., N, ..)
S+ X
d(\S) El d(AX)) /
= U(S, X,,..., X)) (3.3)

This equation is true for any A and in particular for A = 1, in which case
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it takes the form

U L QU
55 ):l—a—ng+~--—u (3.4)
-
!
U=TS+ Y PX (3.5)
J=1

For a simple system in particular we have
U=TS - PV + p,N, + -+ +u N, (3.6)

The relation 3.5 or 3.6 is the particularization to thermodynamics of the
Euler theorem on homogeneous first-order forms. The foregoing develop-
ment merely reproduces the standard mathematical derivation. We refer
to equation 3.5 or 3.6 as the Euler relation.

In the entropy representation the Euler relation takes the form

S=3Y FX (3.7)
J=0
or
_(1 P\,_y H_k)
S—(T)U+(T)V k);l(T N, (3.8)
PROBLEMS

3.1-1. Write each of the five physically acceptable fundamental equations of
Problem 1.10-1 in the Euler form.

3-2 THE GIBBS-DUHEM RELATION

In Chapter 2 we arrived at equilibrium criteria involving the tempera-
ture, pressure, and chemical potentials. Each of the intensive parameters
entered the theory in a similar way, and the formalism is, in fact,
symmetric in the several intensive parameters. Despite this symmetry,
however, the reader is apt to feel an intuitive response to the concepts of
temperature and pressure, which is lacking, at least to some degree, in the
case of the chemical potential. It is of interest, then, to note that the
intensive parameters are not all independent. There is a relation among
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the intensive parameters, and for a single-component system p is a
function of 7 and P.

The existence of a relationship among the various intensive parameters
is a consequence of the homogeneous first-order property of the funda-
mental relation. For a single-component system this property permits the
fundamental relation to be written in the form u = u(s, v), as in equation
2.19; each of the three intensive parameters is then also a function of s
and v. Elimination of s and v from among the three equations of state
yields a relation among T, P, and p.

The argument can easily be extended to the more general case, and it
again consists of a straightforward counting of variables. Suppose we have
a fundamental equation in (¢ + 1) extensive variables

U=U(S, X, Xp---5 X,) (3.9

yielding, in turn, ¢ + 1 equations of state
P,=P(S, X,X,,.... X)) (3.10)
If we choose the parameter A of equation 2.14 as A = 1/X,, we then have
P=P(S/X,, X,/ X,s-... X,_1/X,,1) (3.11)

Thus each of the (¢+ + 1) intensive parameters is a function of just ¢
variables. Elimination of these ¢ variables among the (¢ + 1) equations
yields the desired relation among the intensive parameters.

To find the explicit functional relationship that exists among the set of
intensive parameters would require knowledge of the explicit fundamental
equation of the system. That is, the analytic form of the relationship varies
from system to system. Given the fundamental relation, the procedure is
evident and follows the sequence of steps indicated by equations 3.9
through 3.11.

A differential form of the relation among the intensive parameters can
be obtained directly from the Euler relation and is known as the
Gibbs-Duhem relation. Taking the infinitesimal variation of equation 3.5,
we find

t t
dU=TdS + SdT+ ) P dX,+ } X dP, (3.12)
=1 7=1

But, in accordance with equation 2.6, we certainly know that

!
dU=TdS + ) P dX, (3.13)

J=1
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whence, by subtraction we find the Gibbs- Duhem relation

t
S$dT+ ) X dP, =0 (3.14)

=1
For a single-component simple system, in particular, we have

S$dT — VdP + Ndp =0 (3.15)
or
dp= —sdT + vdP (3.16)

The variation in chemical potential 1s not independent of the variations in
temperature and pressure, but the variation of any one can be computed
in terms of the vanations of the other two.

The Gibbs—-Duhem relation presents the relationship among the inten-
sive parameters in differential form. Integration of this equation yields the
relation in explicit form, and this is a procedure alternative to that
presented in equations 3.9 through 3.11. In order to integrate the
Gibbs--Duhem relation, one must know the equations of state that enable
one to write the X’s in terms of the P’s, or vice versa.

The number of intensive parameters capable of independent variation is
called the number of thermodynamic degrees of freedom of a given system.
A simple system of r components has r + 1 thermodynamic degrees of
freedom.

In the entropy representation the Gibbs-Duhem relation again states
that the sum of products of the extensive parameters and the differentials
of the corresponding intensive parameters vanishes.

> X, dF, =0 (3.17)
1=0
or
1 Py_y Pl _
Ud( T) + Vd( T) kngkd( £) =0 (3.18)
PROBLEMS

3.2-1. Find the relation among 7, P, and p for the system with the fundamental

equation
U= ( vlg\ s4
R} [ NV?
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3-3 SUMMARY OF FORMAL STRUCTURE

Let us now summarize the structure of the thermodynamic formalism in
the energy representation. For the sake of clarity, and in order to be
explicit, we consider a single-component simple system. The fundamental
equation

U= U(S,V,N) (3.19)
contains all thermodynamic information about a system. With the defini-

tions T = dU/3S, and so forth, the fundamental equation implies three
equations of state

T=T(S,V,N)=T(s,v) (3.20)
P=P(S.V,N)=P(s,v) (3.21)
p=p(S,V,N)=p(s,v) (3.22)

If all three equations of state are known, they may be substituted into the
Euler relation, thereby recovering the fundamental’' equation. Thus the
totality of all three equations of state is equivalent to the fundamental
equation and contains all thermodynamic information about a system.
Any single equation of state contains less thermodynamic information
than the fundamental equation.

If two equations of state are known, the Gibbs—-Duhem relation can be
integrated to obtain the third. The equation of state so obtained will
contain an undetermined integration constant. Thus two equations of
state are sufficient to determine the fundamental equation, except for an
undetermined constant.

A logically equivalent but more direct and generally more convenient
method of obtaining the fundamental equation when two equations of
state are given is by direct integration of the molar relation

du=Tds — Pdv (3.23)

Clearly, knowledge of T'= 7(s,v) and P = P(s,v) yields a differential
equation in the three vanables u, s, and v, and integration gives

u=u(s,v) (3.24)

which is a fundamental equation. Again, of course, we have an unde-
termined constant of integration.

It is always possible to express the internal energy as a function of
parameters other than S, V, and N. Thus we could eliminate $ from
U=U(S,V,N)and T = T(S,V, N) to obtain an equation of the form
U= U(T,V, N). However, I stress that such an equation is not a funda-
mental relation and does not contain all possible thermodynamic informa-
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(@

FIGURE 3.1

tion about the system. In fact, recalling the definition of 7 as dU/dS, we
see that U = U(T,V, N) actually is a partial differential equation. Even if
this equation were integrable, it would yield a fundamental equation with
undetermined functions. Thus knowledge of the relation U = U(S,V, N)
allows one to compute the relation U = U(T,V, N), but knowledge of
U= U(T,V,N) does not permit one inversely to compute U =
U(S,V, N). Associated with every equation there is both a truth value and
an informational content. Each of the equations U = U(S,V, N) and
U= U(T,V,N) may be true, but only the former has the optimum
informational content.

These statements are graphically evident if we focus, for instance, on
the dependence of U on § at constant J and N. Let that dependence be
as shown in the solid curve in Fig. 3.1(a). This curve uniquely determines
the dependence of U on T, shown in Fig. 3.1(b); for each point on the
U(S) curve there is a definite U and a definite slope 7 = dU/dS,
determining a point on the U(T) curve. Suppose, however, that we are
given the U(T) curve (an equation of state) and we seek to recover the
fundamental U(S) curve. Each of the dotted curves in Fig. 3.1(a) is
equally compatible with the given U(T') curve, for all have the same slope
T at a given U. The curves differ by an arbitrary displacement, corre-
sponding to the arbitrary “constant of integration” in the solution of the
differential equation U = U(JU/dS). Thus, Fig. 3.1(a) implies Fig. 3.1(b),
but the reverse is not true. Equivalently stated, only U= U(S) is a
fundamental relation. The formal structure is illustrated by consideration

of several specific and explicit systems in the following Sections of this
book.

Example
A particular system obeys the equations
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and

T2 _ AU3/2
2

where A is a positive constant. Find the fundamental equation.

Solution

Writing the two equations in the form of equations of state in the entropy

representation (which is suggested by the appearance of U, ¥V, and N as

independent parameters)
1?=A~1/2u—3/4vl/2
£ = 24" V2yl /4,172

Then the differential form of the molar fundamental equation (the analogue of
equation 3.23) is

1 P
ds = 7 du + T dv

=4" ‘/Z(u‘ 39 2 du + 2uV V2 dy)
= 4A~l/2d(ul/4vl/2)
so that
- -1,2,,1/4,1,2
=44 V2V + 5,

and
S = 44 VUVAYVINYA 4 N5,

The reader should compare this method with the alternative technique of first
integrating the Gibbs-Duhem relation to obtain p(u,v), and then inserting the
three equations of state into the Euler equation.

Particular note should be taken of the manner in which ds is integrated to
obtain 5. The equation for ds in terms of du and dv is a partial differential
equation—it certainly cannor be integrated term by term, nor by any of the
familiar methods for ordinary differential equations in one independent variable.
We have integrated the equation by “inspection”; simply “recognizing” that
u 32 du + 2u'*% V2 dv is the differential of u'/%'/2.

PROBLEMS

3.3-1. A particular system obeys the two equations of state

_ 34s?

14

the thermal equation of state

’
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and

P=—, the mechanical equation of state

where A is constant.
a) Find p as a function of s and v, and then find the fundamental equation.
b) Find the fundamental equation of this system by direct integration of the
molar form of the equation.
3.3-2. It is found that a particular system obeys the relations
U=PV
and
P = BT?
where B is constant. Find the fundamental equation of this system.
3.3-3. A system obeys the equations

po__ NU
NV — 24VU
and
U212 W
= 92C———pAU/N
T 2CN——2AUe

Find the fundamental equation.
Hint: To integrate, let

s = Du"yme= ¥

where D, n, and m are constants to be determined.
3.3-4. A system obeys the two equations u = 2Pv and u'/? = BTv!/*. Find the
fundamental equation of this system.

3-4 THE SIMPLE IDEAL GAS AND
MULTICOMPONENT SIMPLE IDEAL GASES

A “simple ideal gas” is characterized by the two equations
PV = NRT (3.25)

and
U= cNRT (3.26)

where c is a constant and R is the “ universal gas constant” (R = N,k =
8.3144 J /mole K).

Gases composed of noninteracting monatomic atoms (such as He, Ar,
Ne) are observed to satisfy equations 3.25 and 3.26 at temperatures such
that kT is small compared to electronic excitation energies (i.e., 7 < 10*
K), and at low or moderate pressures. All such “monatomic ideal gases”
have a value of ¢ = 3.
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Under somewhat more restrictive conditions of temperature and pres-
sure other real gases may conform to the simple ideal gas equations 3.25
and 3.26, but with other values of the constant ¢. For diatomic molecules
(such as O, or NO) there tends to be a considerable region of temperature
for which ¢ =~ 3 and another region of higher temperature for which ¢ =
(with the boundary between these regions generally occurring at tempera-
tures on the order of 10° K).

Equations 3.25 and 3.26 permit us to determine the fundamental
equation. The explicit appearance of the energy U in one equation of state
(equation 3.26) suggests the entropy representation. Rewriting the equa-
tions in the correspondingly appropriate form

T= cR(—) = — (3.27)

and

=y

(3.28)

From these two entropic equations of state we find the third equation of
State

% = function of u, v (3.29)

by integration of the Gibbs—Duhem relation

d(%) - ud(%) + vd(;) (3.30)

Finally, the three equations of state will be substituted into the Euler
equation

s=(lT)U+(§)V—(%)N (3.31)

Proceeding in this way the Gibbs—Duhem relation (3.30) becomes

d(ﬁ) =u X(—ﬂ)du + v X(-—B)dv = —CR@ — R@
T uz UZ u v
(3.32)
and integrating
B _(F) _ _ u L 3.33
L (%), cRlIn- ~ Rin.. (3.33)

Here u, and v, are the parameters of a fixed reference state, and (p/T),
arises as an undetermined constant of integration. Then, from the Euler
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relation (3.31)

S=Nso+NRln[(g;)c(7Vo)(~%)‘(””] (3.34)
where
s0=(c+1)R-—(—;-)0 (3.35)

Equation 3.34 is the desired fundamental equation; if the integration
constant s, were known equation 3.34 would contain all possible thermo-
dynamic information about a simple ideal gas.

This procedure is neither the sole method, nor even the preferred
method. Alternatively, and more directly, we could integrate the molar
equation

1 P
ds = (7)du +(—T—)dv (3.36)
which, in the present case, becomes
ds=c(5)du+(5)du (3.37)
u v
giving, on integration,
s=s0+cR1n(l)+R1n(—”~) (3.38)
Uy Vo

This equation is equivalent to equation 3.34.

It should, perhaps, be noted that equation 3.37 is integrable term by
term, despite our injunction (in Example 3) that such an approach
generally is not possible. The segregation of the independent variables u
and v in separate terms in equation 3.37 is a fortunate but unusual
simplification which permits term by term integration in this special case.

A mixture of two or more simple ideal gases—a “multicomponent
simple ideal gas”—is characterized by a fundamental equation which is
most simply written in parametric form, with the temperature 7" playing
the role of the parametric variable.

N, v,

J

§ = ENJSJO+(ZNJCJ)Rln—7T: + ZNIRln( v )
J J 0 J

U= (ENJCJ)RT (3.39)
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Elimination of T between these equations gives a single equation of the
standard form S = S(U,V, N, N,,...).

Comparison of the individual terms of equations 3.39 with the expres-
sion for the entropy of a single-component ideal gas leads to the following
interpretation (often referred to as Gibbs’s Theorem). The entropy of a
mixture of ideal gases is the sum of the entropies that each gas would have if
it alone were to occupy the volume V at temperature T. The theorem is, in
fact, true for all ideal gases (Chapter 13).

It is also of interest to note that the first of equations 3.39 can be
written in the form

T 14 N,
S = ?stjo +(%‘,Njcj)Rln T, + NRlnNU0 - R%‘,len ~

(3.40)

and the last term is known as the “entropy of mixing.” It represents the
difference in entropies between that of a mixture of gases and that of a
collection of separate gases each at the same temperature and the same
density as the original mixture N,/V, = N/V, (and hence at the same
pressure as the original mixture); see Problem 3.4-15. The close similarity,
and the important distinction, between Gibbs’s theorem and the interpre-
tation of the entropy of mixing of ideal gases should be noted carefully by
the reader. An application of the entropy of mixing to the problem of
1sotope separation will be given in Section 4.4 (Example 4).

Gibbs’s theorem is demonstrated very neatly by a simple “thought
experiment.” A cylinder (Fig. 3.2) of total volume 2V, is divided into four
chambers (designated as a, 8,v,8) by a fixed wall in the center and by
two sliding walls. The two sliding walls are coupled together so that their
distance apart is always one half the length of the cylinder (V, = V, and
Vp = V). Initially, the two sliding walls are coincident with the left end
and the central fixed partition, respectively, so that V, = V, = 0. The
chamber B, of volume V, is filled with a mixture of N, moles of a simple
ideal gas A and N, moles of a simple ideal gas B. Chamber § is initially
evacuated. The entire system is maintained at temperature 7.

The left-hand sliding wall is permeable to component A, but not to
component B. The fixed partition is permeable to component B, but not
to component A. The right-hand sliding wall is impermeable to either
component.

The coupled sliding walls are then pushed quasi-statically to the right
until Vg = V;=0 and V, = V, = V,. Chamber a then contains pure A4
and chamber y contains pure B. The initial mixture, of volume V,
thereby is separated into two pure components, each of volume V.
According to Gibbs’s theorem the final entropy should be equal to the
initial entropy, and we shall now see directly that this 1s, in fact, true.
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FIGURE 32
Separation of a mixture of ideal gases,
Coupling bar demonstrating Gibbs’s theorem.

We first note that the second of equations 3.39, stating that the energy
is a function of only 7 and the mole number, ensures that the final energy
is equal to the initial energy of the system. Thus — TAS is equal to the
work done in moving the coupled walls.

The condition of equilibrium with respect to transfer of component A
across the left-hand wall is p, , = p, p. It is left to Problem 3.4-14 to
show that the conditions p, , = p, g and ppg g = py  imply that

=P, and Py= 2P,

That is, the total force on the coupled moveable walls (P, — Py + P)
vanishes. Thus no work is done in moving the walls, and consequently no
entropy change accompanies the process. The entropy of the original
mixture of A and B, in a common volume ¥V, is precisely equal to the
entropy of pure A and pure B, each in a separate volume ¥,. This is
Gibbs’s theorem.

Finally, we note that the simple ideal gas considered in this section is a
special case of the general ideal gas, which encompasses a very wide class
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of real gases at low or moderate pressures. The general ideal gas is again
characterized by the mechanical equation of state PV = NRT (equation
3.25), and by an energy that again is a function of the temperature
only—but not simply a linear function. The general ideal gas will be
discussed in detail in Chapter 13, and statistical mechanical derivations of
the fundamental equations will emerge in Chapter 16.

PROBLEMS

Note that Problems 3.4-1, 3.4-2, 34-3, and 3.4-8 refer to “quasi-static
processes”; such processes are to be interpreted not as real processes but merely
as loci of equilibrium states. Thus we can apply thermodynamics to such
quasi-static “processes”; the work done in a quasi-static change of volume (from
V, toV,)is W= — [PdV and the heat transfer is Q = [T'dS. The relationship of
real processes to these idealized “quasi-static processes” will be discussed in
Chapter 4.

34-1. A “constant volume ideal gas thermometer” is constructed as shown
(schematically) in Fig. 3.3. The bulb containing the gas is constructed of a
material with a negligibly small coefficient of thermal expansion. The point A4 is a
reference point marked on the stem of the bulb. The bulb is connected by
a flexible tube to a reservoir of liquid mercury, open to the atmosphere.. The
mercury reservoir is raised or lowered until the mercury miniscus coincides with
the reference point A. The height # of the mercury column is then read.

a) Show that the pressure of the gas is the sum of the external (atmospheric)
pressure plus the height # of the mercury column multiplied by the weight per
unit volume of mercury (as measured at the temperature of interest).

b) Using the equation of state of the ideal gas, explain how the temperature of
the gas is then evaluated.

e —>]

FIGURE 313
Constant-volume ideal gas thermometer.
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¢) Describe a “constant pressure ideal gas thermometer” (in which a changing
volume is directly measured at constant pressure).

3.4-2. Show that the relation between the volume and the pressure of a mon-
atomic ideal gas undergoing a quasi-static adiabatic compression (dQ = TdS = 0.
S = constant) is

Pu/? = (POUSﬂ( 110/3R)92’/3R = constant

Sketch a family of such “adiabats” in a graph of P versus V. Find the
corresponding relation for a simple ideal gas.

3.4-3. Two moles of a monatomic ideal gas are at a temperature of 0°C and a
volume of 45 liters. The gas is expanded adiabaticailly (dQ = 0) and quasi-stati-
cally until its temperature falls to —S0°C. What are its imtial and final pressures
and its final volume?

Answer:

P,=01MPa, V,=61x10 *m’

3.4-4. By carrying out the integral [P dV, compute the work done by the gas in
Problem 3.4-3. Also compute the initial and final energies, and corroborate that
the difference in these energies is the work done.

3.4-5. In a particular engine a gas is compressed in the initial stroke of the piston.
Measurements of the instantaneous temperature, carried out during the compres-
sion, reveal that the temperature increases according to

Vv n

7= (7) %
where T; and V}, are the initial temperature and volume, and 7 is a constant. The
gas is compressed to the volume V, (where V| < ;). Assume the gas to be
monatomic ideal, and assume the process to be quasi-static.
a) Calculate the work W done on the gas.
b) Calculate the change 1n energy AU of the gas.
c) Calculate the heat transfer Q to the gas (through the cylinder walls) by using
the results of (a) and (b).
d) Calculate the heat transfer directly by integrating dQ = TdS.
e) From the result of (c) or (d). for what value of 5 is Q0 = 0? Show that for this
value of 7 the locus traversed coincides with an adiabat (as calculated in Problem
3.4-2).
3.4-6. Find the three equations of state of the “simple ideal gas” (equation 3.34).
Show that these equations of state satisfy the Euler relation.

3.4-7. Find the four equations of state of a two-component mixture of simple

ideal gases (equations 3.39). Show that these equations of state sausfy the Fuler
relation.
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3.4-8. 1f a monatomic ideal gas is permitted to expand into an evacuated region,
thereby increasing its volume from V to AV, and if the walls are rigid and
adiabatic, what is the ratio of the initial and final pressures?” What is the ratio of
the initial and final temperatures? What is the difference of the initial and final
entropies?

3.4-9. A tank has a volume of 0.1 m* and 1s filled with He gas at a pressure of
5 X 10° Pa. A second tank has a volume of 0.15 m’ and is filled with He gas at a
pressure of 6 X 10° Pa. A valve connecting the two tanks is opened. Assuming He
to be a monatomic ideal gas and the walls of the tanks to be adiabatic and rigid,
find the final pressure of the system.

Hint: Note that the internal energy is constant.

Answer.
P/= 5.6 x 10° Pa

3.4-10.

a) If the temperatures within the two tanks of Problem 3.4-9, before opening the
valve, had been T =300 K and 350 K, respectively, what would the final
temperature be?

b) If the first tank had contained He at an initial temperature of 300 K, and the
second had contained a diatomic ideal gas with ¢ = 5/2 and an initial tempera-
ture of 350 K, what would the final temperature be?

Answer:
a) T, =330K
b) T/ = 337K

3.4-11. Show that the pressure of a multicomponent simple ideal gas can be
written as the sum of *partial pressures” P, where P = N, RT/V. These “partal
pressures” are purely formal quantities not subject to experimental observation.
(From the mechanistic viewpoint of kinetic theory the partial pressure P, is the
contribution to the total pressure that results from bombardment of the wall by
molecules of species :-—a distinction that can be made only when the molecules

are noninteracting, as in an ideal gas.)

3.4-12. Show that p , the electrochemical potential of the jth component in a
multicomponent simple ideal gas, satisfies
Ny, .
B, = RTln(-—V—) + (function of T)

and find the explicit form of the *function of 7.”

Show that u, can be expressed in terms of the “partial pressure” (Problem
3.4-11) and the temperature.
3.4-13. An impermeable, diathermal, and rigid partition divides a container into
two subvolumes, each of volume V. The subvolumes contam, respectively, one
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mole of H, and three moles of Ne. The system is maintained at constant
temperature 7. The partition is suddenly made permeable to H,, but not to Ne,
and equilibrium is allowed to reestablish. Find the mole numbers and the
pressures.

3.4-14. Use the results of Problems 3.4-11 and 3.4-12 to establish the results
P, = P, and Pz = 2P, in the demonstration of Gibbs’s theorem at the end of this
section.

3.4-15. An impermeable, diathermal and rigid partition divides a container into
two subvolumes, of volumes n¥;, and mV,. The subvolumes contain, respectively,
n moles of H, and m moles of Ne, each to be considered as a simple ideal gas.
The system is maintained at constant temperature 7. The partition 1s suddenly
ruptured and equilibrium is allowed to re-establish. Find the initial pressure in
each subvolume and the final pressure. Find the change in entropy of the system.
How is this result related to the *“entropy of mixing” (the last term in equation
3.40)?

3-5 THE “IDEAL VAN DER WAALS FLUID”

Real gases seldom satisfy the 1deal gas equation of state except in the
limit of low density. An improvement on the mechanical equation of state
(3.28) was suggested by J. D. van der Waals in 1873.

RT a
P= =

=D (3.41)
Here a and b are two empirical constants characteristic of the particular
gas. In strictly quantitative terms the success of the equation has been
modest, and for detailed practical applications it has been supplanted by
more complicated empirical equations with five or more empirical con-
stants. Nevertheless the van der Waals equation is remarkably successful
in representing the qualitative features of real fluids, including the
gas—liquid phase transition.

The heuristic reasoning that underlies the van der Waals equation is
intuitively plausible and informative, although that reasoning lies outside
the domain of thermodynamics. The ideal gas equation P = RT/v is
known to follow from a model of point molecules moving independently
and colliding with the walls to exert the pressure P. Two simple correc-
tions to this picture are plausible. The first correction recognizes that the
molecules are not point particles, but that each has a nonzero volume
b/N,. Accordingly, the volume V in the ideal gas equation is replaced by
V — Nb; the total volume diminished by the volume Nb occupied by the
molecules themselves.

The second correction arises from the existence of forces between the
molecules. A molecule in the interior of the vessel is acted upon by
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intermolecular forces in all directions, which thereby tend to cancel. But a
molecule approaching the wall of the container experiences a net back-
ward attraction to the remaining molecules, and this force in turn reduces
the effective pressure that the molecule exerts on colliding with the
container wall. This diminution of the pressure should be proportional to
the number of interacting pairs of molecules, or upon the square of the
number of molecules per unit volume (1/v?); hence the second term in
the van der Waals equation.

Statistical mechanics provides a more quantitative and formal deriva-
tion of the van der Waals equation, but 1t also reveals that there are an
infinite series of higher order corrections beyond those given in equation
3.41. The truncation of the higher order terms to give the simple van der
Waals equation results in an equation with appropriate qualitative fea-
tures and with reasonable (but not optimum) quantitative accuracy.

The van der Waals equation must be supplemented with a thermal
equation of state in order to define the system fully. It is instructive not
simply to appeal to experiment, but rather to inquire as to the simplest
possible (and reasonable) thermal equation of state that can be paired
with the van der Waals equation of state. Unfortunately we are not free
stimply to adopt the thermal equation of state of an ideal gas, for
thermodynamic formalism imposes a consistency condition between the
two equations of state. We shall be forced to alter the ideal gas equation
slightly.

We write the van der Waals equation as

= — (3.42)
and the sought for additional equation of state should be of the form

1
7=f(u,v) (3.43)
These two equations would permit us to integrate the molar equation

1 P
ds = 7 du + *7: dv (344)

to obtain the fundamental equation. However, if ds is to be a perfect
differential, it is required that the mixed second-order partial derivatives
should be equal

% 3’

dvou  dudv (3.45)
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or
J 1 Jd (P
3l 7), = 7l7), (3.46)
whence
A1) _2( R _al
dv\T/, dul\v—-b ,2T),
a 3 1 N
a7, (47

This condition can be written as

s 7).~ dm (7). (49

That is, the function 1/T must depend on the two variables 1/v and u/a
in such a way that the two derivatives are equal. One possible way of
accomplishing this is to have 1/7T depend only on the sum (1/v + u/a).
We first recall that for a simple ideal gas 1 /7T = ¢R/u; this suggests that
the simplest possible change consistent with the van der Waals equation is

1 cR
T u+ a/v (3.49)

For purposes of illustration throughout this text we shall refer to the
hypothetical system characterized by the van der Waals equation of state
(3.41) and by equation 3.49 as the “ideal van der Waals fluid.”

We should note that equation 3.41, although referred to as the “ van der
Waals equation of state,” is not in the appropriate form of an equation of
state. However, from equations 3.49 and 3.42 we obtain

P R acR
== - 3.50
T v-b w?+av (3.50)

The two preceding equations are the proper equations of state in the
entropy representation, expressing 1/7 and P/T as functions of u and v.

With the two equations of state we are now able to obtain the
fundamental relation. It is left to the reader to show that

S = NRIn[(v~ b)(u + a/v)‘] + Ns, (3.51)

where s, is a constant. As in the case of the ideal gas the fundamental
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TABLE 3.1
Van der Waals Constants and Molar Heat
Capacities of Common Gases“

Gas a(Pa-m°) b(l10™°m?) c
He 0.00346 23.7 1.5
Ne 0.0215 171 1.5
H, 0.0248 26.6 25
A 0.132 302 1.5
N, 0.136 38.5 2.5
o, 0.138 326 25
Co 0.151 39.9 2.5
co, 0.401 27 3.5
N,O 0.384 442 35
H,O 0.544 30.5 31
Cl, 0.659 56.3 2.8
SO, 0.680 56.4 35

¢ Adapted from Paul S Epsten, Textbook of Thermodynarucs,
Wiley, New York, 1937.

equation does not satisfy the Nernst theorem, and it cannot be valid at
very low temperatures.

We shall see later (in Chapter 9) that the ideal van der Waals fluid is
unstable in certain regions of temperature and pressure, and that it
spontaneously separates into two phases (“liqud” and “gas”). The funda-
mental equation (3.51) is a very rich one for the illustration of thermody-
namic principles.

The van der Waals constants for various real gases are given in Table
3.1. The constants @ and b are obtained by empirical curve fitting to the
van der Waals isotherms in the vicinity of 273 K; they represent more
distant isotherms less satisfactorily. The values of ¢ are based on the
molar heat capacities at room temperatures.

PROBLEMS

3.5-1. Are each of the listed pairs of equations of state compatible (recall
equation 3.46)? If so, find the fundamental equation of the system.
a) u = aPv and Pv* = bT
b) u = aPv? and Pv? = bT

u ¢+ bw u
9 P= v a+ b and T = a+ bu
3.5-2. Find the relationship between the volume and the temperature of an ideal
van der Waals fluid in a quasi-static adiabatic expansion (i.e., in an isentropic
expansion, with dQ = TdS = 0, or S = constant).
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3.5-3. Repeat Problem 3.4-3 for CO,, rather than for a monatomic ideal gas.
Assume CO, can be represented by an ideal van der Waals fluid with constants as
given in Table 3.1.

At what approximate pressure would the term (—a/v?) in the van der Waals
equation of state make a 10% correction to the pressure at room temperature?

Answer:
Vf = 0.091 rﬂ3
3.5-4. Repeat parts (a), (b), and (c) of problem 3.4-5, assuming that n = — 3

and that the gas is an ideal van der Waals fluid.

Show that your results for AU and for W (and hence for Q) reduce to the
results of Problem 3.4-5 (for n = — 3) as the van der Waals constants a and b go
to zero, and ¢ = 3. Recall that In(1 + x) = x, for small x.

3.5-5. Consider a van der Waals gas contained in the apparatus described in
Problem 3.4-1 (i.e., in the “constant volume gas thermometer”).

a) Assuming it to be known in advance that the gas obeys a van der Waals
equation of state, show that knowledge of two reference temperatures enables one
to evaluate the van der Waals constants a and b.

b) Knowing the constants a and b, show that the apparatus can then be used as
a thermometer, to measure any other temperature.

¢) Show that knowledge of three reference temperatures enables one to determine
whether a gas satisfies the van der Waals equation of state, and if it does, enables
one to measure any other temperature.

3.5-6. One mole of a monatomic ideal gas and one mole of Cl, are contained in a
rigid cylinder and are separated by a moveable internal piston. If the gases are at
a temperature of 300 K the piston is observed to be precisely in the center of the
cylinder. Find the pressure of each gas. Treat Cl, as a van der Waals gas (see
Table 3.1).

Answer:
P =35%10" Pa

3-6 ELECTROMAGNETIC RADIATION

If the walls of any “empty” vessel are maintained at a temperature 7 it
is found that the vessel is, in fact, the repository of electromagnetic
energy. The quantum theorist might consider the vessel as containing
photons, the engineer might view the vessel as a resonant cavity support-
ing electromagnetic modes, whereas the classical thermodynamicist might
eschew any such mechanistic models. From any viewpoint, the empir-
ical equations of state of such an electromagnetic cavity are the
“Stefan-Boltzmann Law”

U=bVT* (3.52)
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and

U

P=3

(3.53)

where b is a particular constant (b = 7.56 X 107 '¢ J/m® K*) which will
be evaluated from basic principles in Section 16.8. It will be noted that
these empirical equations of state are functions of U and V, but not of N.
This observation calls our attention to the fact that in the “empty” cavity
there exist no conserved particles to be counted by a parameter N. The
electromagnetic radiation within the cavity is governed by a fundamental
equation of the form S = S(U, V') in which there are only two rather than
three independent extensive parameters!

For electromagnetic radiation the two known equations of state con-
stitute a complete set, which need only be substituted in the truncated
Euler relation

1 P
S—7U+7V (3.54)

to provide a fundamental relation. For this purpose we rewrite equations
3.52 and 3.53 in the appropriate form of entropic equations of state

1
T

|4 1/4
_ pal Y
b ( U) (3.55)

and

= _pl/a
b V

T 3

P 1 (U)-"/“ (3.56)

so that the fundamental relation becomes, on substitution into 3.54

R JE S (3.57)

PROBLEMS

3.6-1. The universe is considered by cosmologists to be an expanding electromag-
netic cavity containing radiation that now is at a temperature of 2.7 K. What will
be the temperature of the radiation when the volume of the universe is twice its
present value? Assume the expansion to be isentropic (this being a nonobvious
prediction of cosmological model calculations).

3-6.2. Assuming the electromagnetic radiation filling the universe to be in equi-
librium at T = 2.7 K, what is the pressure associated with this radiation? Express
the answer both in pascals and in atmospheres.
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3.6-3. The density of matter (primarily hydrogen atoms) in intergalactic space is
such that its contribution to the pressure is of the order of 10 » Pa.

a) What is the approximate density of matter (in atoms/m’) 1n intergalactic
space?

b) What is the ratio of the kinetic energy of matter to the energy of radiation in
intergalactic space? (Recall Problems 3.6-1 and 3.6-2.)

¢) What is the ratio of the total matter energy (i.e., the sum of the kinetic energy
plus the relativistic energy mc?) to the energy of radiation in intergalactic space?

3-7 THE “RUBBER BAND”

A somewhat different utility of the thermodynamic formalism is il-
lustrated by consideration of the physical properties of a rubber band;
thermodynamics constrains and guides the construction of simple phe-
nomenological models for physical systems.

Let us suppose that we are interested in building a descriptive model for
the properties of a rubber band. The rubber band consists of a bundle of
long-chain polymer molecules. The quantities of macroscopic interest are
the length L, the tension 7, the temperature T, and the energy U of the
rubber band. The length plays a role analogous to the volume and the
tension plays a role analogous to the negative pressure (4 ~ — P). An
analogue of the mole number might be associated with the number of
monomer units in the rubber band (but that number is not generally
variable and it can be taken here as constant and suppressed in the
analysis).

A qualitative representation of experimental observations can be sum-
marized in two properties. First, at constant length the tension increases
with the temperature—a rather startling property which is in striking
contrast to the behavior of a stretched metallic wire. Second, the energy is
observed to be essentially independent of the length, at least for lengths
shorter than the “elastic limit” of the rubber band (a length corresponding
to the “unkinking” or straightening of the polymer chains).

The simplest representation of the latter observation would be the
equation

U=cL,T (3.58)
where ¢ is a constant and L, (also constant) is the unstretched length of
the rubber band. The linearity of the length with tension, between the
unstretched length L, and the elastic limit length L,, is represented by
L-1L,

F=pbl——rn,
Ll - L()

Ly<L<L, (3.59)

where b is a constant. The insertion of the factor T in this equation
(rather than T? or some other function of T') is dictated by the thermody-
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namic condition of consistency of the two equations of state. That is, as in
equation 3.46

acl7),=aol-7), (340

which dictates the linear factor 7 in equation (3.59). Then

L._
ds = ~dU—ZﬂrdeU b Ly

T T U *1:_—1‘0 dL (3.61)

and the fundamental equation correspondingly is

S=&+d@m§ b (L - L,)" (3.62)

Uy 2(L, - L)

Although this fundamental equation has been constructed on the basis
only of the most qualitative of information, it does represent empirical
properties reasonably and, most important, consistently. The model 1l-
lustrates the manner in which thermodynamics guides the scientist in
elementary model building.

A somewhat more sophisticated model of polymer elasticity will be
derived by statistical mechanical methods in Chapter 15.

PROBLEMS

3.7-1. For the rubber band model, calculate the fractional change in (L — L)
that results from an increase 87 in temperature, at constant tension. Express the
result 1n terms of the length and the temperature.

3.7-2. A rubber band is stretched by an amount dL, at constant 7. Calculate the
heat transfer dQ to the rubber band. Also calculate the work done. How are these
related and why?

3.7-3. If the energy of the unstretched rubber band were found to increase qua-
dratically with T, so that equation 3.58 were t0 be replaced by U= cL,T", would
equation 3.59 require alteration? Again find the fundamental equation of the
rubber band.

3-8 UNCONSTRAINABLE VARIABLES; MAGNETIC SYSTEMS
In the preceding sections we have seen examples of several specific

systems, emphasizing the great diversity of types of systems to which
thermodynamics apphes and itlustrating the constraints on analytic mod-
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eling of simple systems. In this section ..¢ give an example of a magnetic
system. Here we have an additional purpose, for although the general
structure of thermodynamics is represented by the examples already given,
particular “idiosyncrasies” are associated with certain thermodynamic
parameters. Magnetic systems are particularly prone to such individual
peculiarities, and they well illustrate the special considerations that occa-
sionally are required.

In order to ensure magnetic homogeneity we focus attention on el-
lipsoidal samples in homogeneous external fields, with one symmetry axis
of the sample parallel to the external field. For simplicity we assume no
magnetocrystalline anisotropy, or, if such exists, that the “easy axis™ lies
parallel to the external field. Furthermore we initially consider only
paramagnetic or diamagnetic systems—that is, systems in which the
magnetization vanishes in the absence of an externally imposed magnetic
field. In our eventual consideration of phase transitions we shall include
the transition to the ferromagnetic phase, in which the system develops a
spontaneous magnetization.

As shown in Appendix B, the extensive parameter that characterizes the
magnetic state is the magnetic dipole moment I of the system. The
fundamental equation of the system is of the form U = U(S,V, I, N). In
the more general case of an ellipsoidal sample that is not coaxial with the
external field, the single parameter I would be replaced by the three
cartesian coordinates of the magnetic moment: U(S,V, 1,,1,,1,, N). The
thermodynamic structure of the problem is most convemently illustrated
in the one-parameter case.

The intensive parameter conjugate to the magnetic moment I is B,, the
external magnetic field that would exist in the absence of the system

B =

€

( ad (3.63)

W)S,V,N

The unit of B, is the tesla (T), and the units of I are Joules/Tesla (J/T).

It is necessary to note a subtlety of definition implicit in these identifi-
cations of extensive and intensive parameters (see Appendix B). The
energy U is here construed as the energy of the material system alone; in
addition the “vacuum” occupied by the system must be assigned an
energy 38 B2V (where pg, the permeability of free space, has the value
Ko =47 % 1077 tesla-meters/ampere) Thus the total energy within the
spatlal reglon occupxed by asystemis U + 3118 B2V. Whether the “ vacuum
term” in the energy is associated with the System or is treated separately
(as we do) is a matter of arbitrary choice, but considerable confusion can
arise if different conventions are not carefully distinguished To repeat, the
energy U is the change in energy within a particular region m the field
when the material system is introduced; it excludes the energy 44i¢ B2V of
the region prior to the introduction of the system.
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The Euler relation for a magnetic system is now
U=TS-PV+ B, I+ puN (3.64)
and the Gibbs—Duhem relation is
SdT — VdP + IdB, + Ndp =0 (3.65)

An “idiosyncrasy” of magnetic systems becomes evident if we attempt
to consider problems analogous to those of Sections 2.7 and 2.8 —namely,
the condition of equilibrium of two subsystems following the removal of a
constraint. We soon discover that we do not have the capability of
constraining the magnetic moment; in practice the magnetic moment is
always unconstrained! We can specify and control the magnetic field
applied to a sample (just as we can control the pressure), and we thereby
can bring about a desired value of the magnetic moment. We can even
hold that value of the magnetic moment constant by monitoring its value
and by continually adjusting the magnetic field—again, just as we might
keep the volume of a system constant by a feedback mechanism that
continually adjusts the external pressure. But that is very different from
simply enclosing the system in a restrictive wall. There exist no walls
restrictive with respect to magnetic moment.

Despite the fact that the magnetic moment is an unconstrainable
variable, the over-all structure of thermodynamic theory still applies. The
fundamental equation, the equations of state, the Gibbs-Duhem, and the
Euler relations maintain their mutual relationships. The nonavailability of
walls restrictive to magnetic moment can be viewed as a “mere experi-
mental quirk,” that does not significantly influence the applicability of
thermodynamic theory.

Finally, to anchor the discussion of magnetic systems in an explicit
example, the fundamental equation of a simple paramagnetic model
system is

2
U= NRYE,exp[% + NI"F ] (3.66)
0

where T, and [, are positive constants. This model does not describe any
particular known system-——it is devised to provide a simple, tractable
model on which examples and problems can be based, and to illustrate
characteristic thermomagnetic interactions. We shall leave it to the prob-
lems to explore some of these properties.

With the magnetic case always in mind as a prototype for generaliza-
tions, we return to explicit consideration of simple systems.
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PROBLEMS

38-1. Calgulate the three equations of state of the paramagnetic model of
equation 3.66. That is, calculate 7(S, I, N), B.(S,I, N), and p(S, I, N). (Note
that the fundamental equation of this problem is independent of V, and that
more generally there would be four equations of state.) Show that the three
equations of state satisfy the Euler relation.

3.8-2. Repeat Problem 3.8-1 for a system with the fundamental equation

= Fo 42
U 2NXI + Neexp (2S/NR)

where x and ¢ are positive constants.

3-9 MOLAR HEAT CAPACITY AND OTHER DERIVATIVES

The first derivatives of the fundamental equation have been seen to
have important physical significance. The various second derivatives are
descriptive of material properties, and these second derivatives often are
the quantities of most direct physical interest. Accordingly we exhibit a
few particularly useful second derivatives and illustrate their utility. In
Chapter 7 we shall return to study the formal structure of such second
derivatives, demonstrating that only a small number are independent and
that all others can be related to these few by a systematic “reduction
scheme.” For simple nonmagnetic systems the basic set of derivatives (to
which a wide set of others can be related) are just three.

The coefficient of thermal expansion 1s defined by

_1/avy _ 1(0dV
«=(57), - v(57), (3.67)
The coefficient of thermal expansion is the fractional increase in the
volume per unit increase in the temperature of a system maintained at

constant pressure (and constant mole numbers).
The isothermal compressibility is defined by

1{ dv 1(dV
~o58), =~ %(57), (3.68)
The isothermal compressibility is the fractional decrease in volume per

unit increase in pressure at constant temperature.
The molar heat capacity at constant pressure is defined by

ool RE),-HE), oo

It

Ky
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The molar heat capacity at constant pressure 1s the quasi-static heat flux
per mole required to produce unit increase in the temperature of a system
maintained at constant pressure.

For systems of constant mole number all other second derivatives can
be expressed in terms of these three, and these three are therefore
normally tabulated as functions of temperature and pressure for a wide
variety of materials.

The origin of the relationships among second derivatives can be under-
stood in principle at this point, although we postpone a full exploration to
Chapter 7. Perhaps the simplest such relationship 1s the identity

A I

which follows directly from the elementary theorem of calculus to the
effect that the two mixed second partial denivatives of U with respect to V/
and S are equal

d (HU) d (HU) (3.71)

v\ as as\av

The two quantities appearing in equation (3.70) have direct physical
interpretations and each can be measured. The quantity (dT/dV), , is
the temperature change associated with adiabatic expansion of the volume;
the quantity (dP/dS), v, when written as T(dP/dQ),  is the product
of the temperature and the change in pressure associated with an intro-
duction of heat dQ into a system at constant volume. The prediction of
equality of these apparently unrelated quantities is a nontrivial result; in
effect, the first “triumph” of the theory. Needless to say, the prediction is
corroborated by experiment.

The analogue of equation 3.70, in the entropy representation, is

Jd (1 d (P
W(?)M = 5&(7% (3.72)

and we recognize that this is precisely the identity that we invoked in
equation 3.46 in our quest for a thermal equation of state to be paired
with the van der Waals equation.

In Chapter 7 we show in considerable detail that these equalities are
prototypes of a general class of analogous relationships referred to as
Maxwell relations. Although the Maxwell relations have the simple form
of equality of two derivatives, they, in turn, are degenerate cases of a more
general theorem that asserts that there must exist a relation among any
four derivatives. These general relations will permit any second derivative
(at constant N) to be expressed in terms of the basic set c,, a, and «;.
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To illustrate such anticipated relationships we first introduce two ad-
ditional second derivatives of practical interest; the adiabatic com-
pressibility k¢ and the molar heat capacity at constant volume c,.

The adiabatic compressibility is defined by

1/ dv 1/(3V
ke = ‘E(:a‘ﬁ): ‘v(:a?)s (3.73)

This quantity characterizes the fractional decrease in volume associated
with an isentropic increase in pressure (i.e., for a system that is adiabati-
cally insulated).

The molar heat capacity at constant volume, defined by

o).~ wlar), - wlam), e

CU

measures the quasi-static heat flux per mole required to produce unit
increase in the temperature of a system maintained at constant volume.
In Chapter 7 we show that

TVa?
cp=rc,+ 3.75
, N (3.75)
and
TVa?
Ky=Kg+ 3.76
T S NCP ( )

Again, our purpose here is not to focus on the detailed relationships (3.75)
and (3.76), but to introduce definitions of ¢,, a, and «, to call attention
to the fact that ¢,, a, and &, are normally tabulated as functions of T
and P, and to stress that all other derivatives (such as ¢, and «g) can be
related to ¢, a, and k. A systematic approach to all such equalities, and
a mnemonic device for recalling them as needed, is presented in Chap-
ter 7.
Problem 3.9-6 is particularly recommended to the student.

Example
For a particular material ¢p, «, and k, are tabulated as functions of T and P.
Find the molar volume v as a function of T and P.

Solution
We consider the “T-P plane.” The quantities ¢, @, and x;, are known at all
points in the plane, and we seek to evaluate v(T, P) at an arbitrary point in the

plane. Then
v v

dv = (—B—I;)po +(ﬁ)pd7—

= —uKk;dP + vadT
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or

‘f}" = —x;dP + adT

If (Ty, Fy) is a chosen reference point in the plane, and if (77, P’) is a point of
interest, we can integrate along the path shown (or any other convenient path).
For the path that we have chosen the term in dT vanishes for the “horizontal”

section of the path, and the term in dP vanishes for the * vertical” section of the
path, so that

.[T = ";:a(T, Po)dT— ";:'KT(TI, P)dP

or

v T P
In— = (T, Py) dT — kAT, P)dP
oo = [ AT B AT = [ (T P)

The value of the molar volume at the reference point (v,) must be specified; we
are then able to relate all other volumes to this volume.

P’ b —
P
BT 1
| |
| !
! |
[ I
| |
T, r—s T
PROBLEMS
3.9-1.
a) Show that for the multicomponent simple ideal gas
¢, =CcR
a=1/T

xkr=1/P
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[>]]

and Kg =

|

1

-+

¢
_ _ 1
cp=(c+1)R  wherec= Y cx;= NZCJNJ
J J

b) What is the value of ¢ for a monatomic ideal gas?

¢) Using the values found in part (a), corroborate equations 3.75 and 3.76.
3.9.2. Corroborate equation 3.70 for a multicomponent simple ideal gas, showing
that both the right- and left-hand members of the equation equal —~ T/c¥V (where
¢ is defined in Problem 3.9-1).

3.9-3. Compute the coefficient of expansion « and the isothermal compressibility
kr in terms of P and v for a system with the van der Waals equation of state
(equation 3.41).

3.9-4. Compute cj, c,, k5, and k- for the system in Problem 1.10-1(a). With these
values corroborate the validity of equations 3.75 and 3.76.

3.9-5. From equations 3.75 and 3.76 show that
cp/C, = Kp/Ks

3.96. A simple fundamental equation that exhibits sorme of the qualitative
properties of typical crystaline solids is

Y |
u= Aeb(v vg) S4/Je s/3R

where A, b, and y, are positive constants.

a) Show that the system satisfies the Nernst theorem.

b) Show that ¢, is proportional to T at low temperature. This is commonly
observed (and was explained by P. Debye by a statistical mechanical analysis,
which will be developed in Chapter 16).

¢) Show that ¢, = 3k, at high temperatures. This is the “equipartition value,”
which is observed and which will be demonstrated by statistical mechanical
analysis in Chapter 16.

d) Show that for zero pressure the coefficient of thermal expansion vanishes in
this model—a result that is incorrect. Hint: Calculate the value of v at P = 0.

3.9-7. The density of mercury at various temperatures is given here in grams /cr-

13.6202 (—10°C) 13.5217 (30°C)  13.3283 (110°C)
13.5955 (0°C) 13.4973 (40°C)  13.1148 (200°C)
13.5708 (10°C)  13.4729 (50°C)  12.8806 (300°C)
13.5462 (20°C)  13.3522 (100°C) 12.8572 (310°C)

Calculate a at 0°C, at 45°C, at 105°C, and at 305°C.

Should the stem of a mercury-in-glass thermometer be marked off in equal
divisions for equal temperature intervals if the coefficient of t+ -nal expansion of
glass is assumed to be strictly constant?
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3.9-8. For a particular material ¢p, a, and x, can be represented empirically by
power series in the vicinity of Ty, Py, as follows

cp=Cco+Asx+ Bz*>+ D.p+ E.p>+ Fp

a=a’+A7r+Bgs+ D,p+ E_p*+ Fap

kr=x°+ A7+ Bs*+Dp+Ep>+ Frp whearer=T-Ty,, p=P—P,
Find the molar volume explicitly as a function of T and P in the vicinity of
(To, Po)-

3.9-9. Calculate the molar entropy s(T, P,) for fixed pressure P, and for tempera-

ture T in the vicinity of T,,. Assume that ¢,, a, and x are given in the vicinity of

(T, Pp) as in the preceding problem, and assume that s(75, P,) is known.
3.9-10. By analogy with equations 3.70 and 3.71 show that for a paramagnetic

SyStCm
( ) V., ( aél ) S, V.N
E'S I, N ¥

oS o1
T =T| =
(aBe)lyN (aT)S,V,N

Interpret the physical meaning of this relationship.
3.9-11. By analogy with equations 3.70 and 3.71 show that for a paramagnetic

system
() 0= ()
vV Jsawn ol Jsv.w

3.9-12. The magnetic analogues of the molar heat capacities ¢, and ¢, are cg and
¢;. Calculate cgx(T, B,,N) and ¢,(T, B,, N) for the paramagnetic model of
equation 3.66. (Note that no distinction necd be made between ¢; , and ¢, , for
this model, because of the absence of a dependence on volume in the fundamental
relation (3.66). Generally all four heat capacities exist and are distinct.)

or, inverting,

3.9-13. The (isothermal) molar magnetic susceptibility is defined by
- ol a)
X=~N\38
Show that the susceptibility of the paramagnetic model of equation 3.66 varies

lnversely with the temperature, and evaluate x,, defined as the value of y for
= 1K.

3.9-14. Calculate the adiabatic molar susceptibility
a1
Xs= N 3B,

s a function of T and B, for ...e paramagnetic model of equation 3.66.
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3.9-15. Calculate the isothermal and adia. .¢ic molar susceptibilities (defined iy
Problems 3.9-13 and 3.9-14) for the system with fundamental equation

U=E L | Neexp(2SINR)
=2 Ny P

How are each of these related to the constant “x” appearing in the fundamenta}
relation?
3.9-16. Show that for the system of Problem 3.8-2

(52, (8,45,

o), (&), (5. - (55). -0

ar ), \as ), \aT]s as)s,_

That is, there is no “coupling” between the thermal and magnetic properties,
What is the (atypical) feature of the equation of state of this system that leads to
these results?

3.9-17. Calculate the heat transfer to a particular system if 1 mole is taken from
(Ty, Pp) to (2T, 2 P,) along a straight line in the TP plane. For this system it is
known that:

and

T, P)=a° (%) , where a° is a constant
0
cp(T, P) = ¢}, a constant
k(T, P) = x%, a constant
Hint: Use the relation (ds/3P);= —(dv/dT),, analogous to equations 3.70

through 3.72 (and to be derived systematically in Chapter 7), to establish that
dQ = Tds = ¢, dT — TvadP.
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REVERSIBLE PROCESSES AND
THE MAXIMUM WORK THEOREM

4-1 POSSIBLE AND IMPOSSIBLE PROCESSES

An engineer may confront the problem of designing a device to accom-
plish some specified task—perhaps to lift an elevator to the upper floors
of a tall building. Accordingly the engineer contrives a linkage or “engine”
that conditionally permits transfer of energy from a furnace to the
elevator; if heat flows from the furnace then, by virtue of the interconnec-
tion of various pistons, levers, and cams, the elevator is required to rise.
But “nature” (i.e., the laws of physics) exercises the crucial decision—will
the proposition be accepted or will the device sit dormant and inactive,
with no heat leaving the furnace and no rise in height of the elevator? The
outcome is conditioned by two criteria. First, the engine must obey the
laws of mechanics (including, of course, the conservation of energy).
Second, the process must maximally increase the entropy.

Patent registration offices are replete with failed inventions of impecca-
ble conditional logic (if 4 occurs then B must occur)—ingenious devices
that conform to all the laws of mechanics but that nevertheless sit
stubbornly inert, in mute refusal to decrease the entropy. Others operate,
but with unintended results, increasing the entropy more effectively than
envisaged by the inventor.

If, however, the net changes to be effected correspond to a maximal
permissible increase in the total entropy, with no change in total energy,
then no fundamental law precludes the existence of an appropriate
process. It may require considerable ingenuity to devise the appropriate
engine, but such an engine can be assumed to be permissible in principle.

Example 1
A particular system is constrained to constant mole number and volume, so that
no work can be done on or by the system. Furthermore, the heat capacity of the

91
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system is C, a constant. The fundamental equation of the system, for constant
volume, is § = S, + Cln(U/ ), so U = CT.

Two such systems, with equal heat capacities, have initial temperatures T,
and T, with T,, < T,,. An engine is to be designed to lift an elevator (i.e., to
deliver work to a purely mechanical system), drawing energy from the two
thermodynamic systems. What is the maximum work that can be so delivered?

Solution
The two thermal systems will be left at some common temperature 7;. The change
in energy of the two thermal systems accordingly will be

AU = 2CT, - C(Tyo + Typ)
and the work delivered to the mechanical system (the “elevator”) will be W =
—AU, or
W =C(Tyo + Ty — 2T;)
The change in total entropy will occur entirely in the two thermal systems, for
which

A Cl d Cl i Cl i
S=Clh—+Cln==2Cln—

Tyo Ty V1T
To maximize W we clearly wish to minimize 7, (¢f. the second equation
preceding), and by the third equation this dictates that we minimize AS. The
minimum possible AS is zero, corresponding to a reversible process. Hence the
optimum engine will be one for which

T/ = VTloTzo

W= C(Tyo + Ty — 2TyoTy )

As a postscript, we note that the assumption that the two thermal systems are
left at a common temperature is not necessary; W can be minumized with respect
to 7y, and T, separately, with the same result. The simplifying assumption of a
common temperature follows from a self-consistent argument, for if the final
temperature were different we could obtain additional work by the method
described.

and

Example 2

An interesting variant of Example 1 is one in which three bodies (each of the type
described in Example 1, with U = CT) have initial temperatures of 300 K, 350 K,
and 400 K, respectively. It is desired to raise one body to as high a temperature as
possible, independent of the final temperatures of the other two (and without
changing the state of any external system). What is the maximum achievable
temperature of the single body?

Solution
Designate the three initial temperatures, measured in units of 100 K, as T3, T,
and T, (T, = 3, T, = 3.5, and T; = 4). Similarly, designate the high temperature
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achieved by one of the bodies (in the same umts) as 7. It is evident that the two
remaining bodies will be left at the same temperature T, (for if they were to be
left at different temperatures we could extract work, as in Example 1, and insert it
as heat to further raise the temperature of the hot body). Then energy conserva-
tion requires

T,+2T. =T, + T, + T,=105

The total entropy change is

T?T,
AS:Cln( ¢ h)

TIT2T3
and the requirement that this be positive implies
T'T,2 LT, (=42)
Eliminating 7, by the energy conservation condition
T, 2
(5.25 - Th) T, > 42

A plot of the left-hand side of this equation is shown. The plot is restricted to
values of 7, between 0 and 10.5, the latter bound following from the energy
conservation condition and the requirement that T, be positive. The plot indi-
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cates that the maximum value of 7, for wiuch the ordinate is greater than 42, js
T, = 4.095 (or T, = 409.5 K)

and furthermore that this value satisfies the equality, and therefore corresponds to
a reversible process.

Another solution to this problem will be developed in Problem 4.6-7.

PROBLEMS

4.1-1. One mole of a monatomic ideal gas and one mole of an ideal van der
Waals fluid (Section 3.5) with ¢ = 3/2 are contained separately in vessels of fixed
volumes v and v,. The temperature of the ideal gas is T} and that of the van der
Waals fluid is T,. It is desired to bring the ideal gas to temperature T,,
maintaining the total energy constant. What is the final temperature of the van
der Waals fluid? What restrictions apply among the parameters (73, 7,, a, b, v,, 1,)
if it is to be possible to design an engine to accomplish this temperature inversion
(assuming, as always, that no external system is to be altered in the process)?

4.1-2. A rubber band (Section 3.7) is initially at temperature T and length Lp.
One mole of a monatomic ideal gas is initially at temperature 7; and volume V.
The ideal gas, maintained at constant volume Vg, is to be heated to a final
temperature TZ. The energy required is to be supplied entirely by the rubber
band. Need the length of the rubber band be changed, and, if so, by what
amount?

Answer:
Ifl=L,— L,
3R T¢-T,
P~(1"Y*>2b™YeLy( Ly~ Lo)In} 1- SRL —G—T—G + 3Rb™" (L~ Lo) In (T5/ T)
0 B

4.1-3. Suppose the two systems in Example 1 were to have heat capacities of the
form C(T) = DT", with n > 0:

a) Show that for such systems U = Uy + DT"*'/(n + 1)and S = S, + DT"/n.
What is the fundamental equation of such a system?

b) If the initial temperature of the two systems were T, and T, what would be
the maximum delivered work (leaving the two systems at a common temperature)?

Answer:
b)forn=2:

D 1 !
W=— Tl::) + Tzz) - _(leo + Tz%)) ]

3 7
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4-2 QUASI-STATIC AND REVERSIBLE PROCESSES

The central principle of entropy maximization spawns various theorems
of more specific content when specialized to particular classes of processes.
We shall turn our attention to such theorems after a preliminary refine-
ment of the descriptions of states and of processes.

To describe and characterize thermodynamic states, and then to de-
scribe possible processes, it is useful to define a thermodynamic configura-
tion space. The thermodynamic configuration space of a simple system is
an abstract space spanned by coordinate axes that correspond to the
entropy S and to the extensive parameters U, V, N,,..., N, of the system.
The fundamental equation of the system S§ = S(U,V, N,,..., N,) defines a
surface in the thermodynamic configuration space, as indicated schemati-
cally in Fig. 4.1. It should be noted that the surface of Fig. 4.1 conforms
to the requirements that (4S/dU)..., X3 e (=1/T) be positive, and
that U be a single valued function of S,..., Xp e

By definition, each point in the configuration space represents an
equilibrium state. Representation of a nonequilibrium state would require
a space of immensely greater dimension.

The fundamental equation of a composite system can be represented by
a surface in a thermodynamic configuration space with coordinate axes

, ...)

FIGURE 41
The hyper-surface S = S(U,. ..) in the thermodynamic configuration space of a
simple system.
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1 &;S =8SU--., X(I.l,)... UpX )

FIGURE 4.2
The hypersurface § = S(U®,...,X",...,U,...,X,...) in the thermodynamic con-
figuration space of a composite system.

corresponding to the extensive parameters of all of the subsystems. For a
composite system of two simple subsystems the coordinate axes can be
associated with the total entropy S and the extensive parameters of the
two subsystems. A more convenient choice is the total entropy S, the
extensive parameters of the first subsystem (U®, VM, N ND -y and
the extensive parameters of the composite system (U, V, N, N,, ...). An
appropriate section of the thermodynamic configuration space of a com-
posite system is sketched in Fig. 42.

Consider an arbitrary curve drawn on the hypersurface of Fig. 4.3, from
an initial state to a terminal state. Such a curve is known as a quasi-static
locus or a quasi-static process. A quasi-static process is thus defined in
terms of a dense succession of equilibrium states. It is to be stressed that a
quasi-static process therefore is an idealized concept, quite distinct from a
real physical process, for a real process always involves nonequilibrium
intermediate states having no representation in the thermodynamic con-
figuration space. Furthermore, a quasi-static process, in contrast to a real
process, does not involve considerations of rates, velocities, or time. The
quasi-static process simply is an ordered succession of equilibrium states,
whereas a real process is a femporal succession of equilibrium and
nonequilibrium states.

Although no real process is identical to a quasi-static process, it is
possible to contrive real processes that have a close relationship to
quasi-static processes. In particular, it is possible to} 1 a system through
a succession of states that coincides at any desired i _aber of points with
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N
FIGURE 4.3

Representation of a quasi-static process in the thermodynamic configuration space.

a given quasi-static locus. Thus consider a system originally in the state A
of Fig. 4.3, and consider the quasi-static locus passing through the points
A, B,C,..., H. We remove a constraint which permits the system to
proceed from A to B but not to points further along the locus. The system
“disappears” from the point A and subsequently appears at B, having
passed en route through nonrepresentable nonequilibrium states. If the
constraint is further relaxed, making the state C accessible, the system
disappears from B and subsequently reappears at C. Repetition of the
operation leads the system to states D, E, ..., H. By such a succession of
real processes we construct a process that is an approximation to the
abstract quasi-static process shown in the figure. By spacing the points
A, B,C, ... arbitrarily closely along the quasi-static locus we approximate
the quasi-static locus arbitrarily closely.

The identification of — P dV as the mechanical work and of TdS as the
heat transfer is valid only for quasi-static processes.

Consider a closed system that is to be led along the sequence of states
4,B,C,..., H approximating a quasi-static locus. The system is induced
to go from A to B by the removal of some internal constraint. The closed
System proceeds to B if (and only if) the state B has maximum entropy
among all newly accessible states. In particular the state B must have
higher entropy than the state 4. Accordingly, the physical process joining
States A and B in a closed system has unique directionality. It proceeds
from the state A4, of lowes tropy, to the state B, of higher entropy, but
hot inversely. Such processes are irreversible.
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A quasi-static locus can be approxi  ‘ed by a real process in a closed
system only if the entropy is monotonically nondecreasing along the quasi-.
static locus.

The limiting case of a quasi-static process in which the increase in the
entropy becomes vanishingly small is called a reversible process (Fig. 4.4). :
For such a process the final entropy is equal to the initial entropy, and the
process can be traversed in either direction.

S
The plane

/s=so

X g) \\\
N,
—
—
S—
—
A
(&)
X ]

FIGURE 44

A reversible process, along a quasi-static isentropic locus.

PROBLEMS

4.2-1. Does every reversible process coincide with a quasi-static locus? Does every
quasi-static locus coincide with a reversible process? For any real process starting
in a state A and terminating in a state H, does there exist some quasi-static locus
with the same two terminal states 4 and H? Does there exist some reversible
process with the same two terminal states?

4.2-2. Consider a monatomic ideal gas in a cylinder fitted with a piston. The walls
of the cylinder and the piston are adiabatic. The system is initially in equilibrium,
but the external pressure is slowly decreased. The energy change of the gas in the
resultant expansion dV is dU = — PdV. Show, from equation 3.34, that dS = 0,
so that the quasi-static adiabatic expansion is isentropic and reversible.
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4.2-3. A monatomic ideal gas is permitted to expand by a free expansion from V
to V + dV (recall Problem 3.4-8). Show that

NR
as = —V—dV

In a series of such infinitesimal free expansions, leading from ¥, to V;, show that

v,

%)
AS = NRIn| =
]

Whether this atypical (and infamous) “continuous free expansion” process
should be considered as quasi-static is a delicate point. On the positive side is the
observation that the terminal states of the infinitesimal expansions can be spaced
as closely as one wishes along the locus. On the negative side is the realization
that the system necessarily passes through nonequilibrium states during each
expansion; the irreversibility of the microexpansions is essential and irreducible.
The fact that dS > 0 whereas dQ = 0 is inconsistent with the presumptive
applicability of the relation dQ = TdS to all quasi-static processes. We define
(by somewhat circular logic!) the continuous free expansion process as being
“essentially irreversible” and non-quasi-static.

4.2-4. In the temperature range of interest a system obeys the equations
T = Av*/s P = —2AvIn(s/sy)

where A is a positive constant. The system undergoes a free expansion from v, to
u; (with v, > vp). Find the final temperature 7} in terms of the initial temperature
T, Vg, and u,. Find the increase in molar entropy.

4-3 RELAXATION TIMES AND IRREVERSIBILITY

Consider a system that is to be led along the quasi-static locus of Fig.
4.3. The constraints are to be removed step by step, the system being
permitted at each step to come to a new equilibrium state lying on the
locus. After each slight relaxation of a constraint we must wait until the
system fully achieves equilibrium, then we proceed with the next slight
relaxation of the constraint and we wait again, and so forth. Although this
is the theoretically prescribed procedure, the practical realization of the
process seldom follows this prescription. In practice the constraints usu-
ally are relaxed continuously, at some “sufficiently slow” rate.

The rate at which constraints can be relaxed as a system approximates a
quasi-static locus is characterized by the relaxation time 7 of the system.
For a given system, with a given relaxation time 7, processes that occur in
times short compared to 7 are not quasi-static, whereas processes that
occur in times long compared to 7 can be approximately quasi-static.

The physical considerations that determine the relaxation time can be
illustrated by the adiabatic expansion of a gas (recall Problem 4.2-2). If
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the plston is permitted to move outward only extremely slowly the process
is quasi-static (and reversible). If, however, the external pressure is de-
creased rapidly the resulting rapid motion of the piston is accompanied by
turbulence and inhomogeneous flow within the cylinder (and by an
entropy increase that “drives” these processes). The process is then neither
quasi-static nor reversible. To estimate the relaxation time we first recog-
nize that a slight outward motion of the piston reduces the density of the
gas immediately adjacent to the piston. If the expansion is to be reversible
this local *“rarefaction” in the gas must be homogenized by hydrodynamic
flow processes before the piston again moves appreciably. The rarefaction
itself propagates through the gas with the velocity of sound, reflects from
the walls of the cylinder, and gradually dissipates. The mechanism of
dissipation involves both diffusive reflection from the walls and viscous
damping within the gas. The simplest case would perhaps be that in which
the cylinder walls are so rough that a single reflection would effectively
dissipate the rarefaction pulse—admittedly not the common situation, but
sufficient for our purely illustrative purposes. Then the relaxation time
would be on the order of the time required for the rarefaction to

propagate across the system, or 7 = Vs /¢, where the cube root of the
volume is taken as a measure of the “length” of the system and c is
the velocity of sound in the gas. If the adiabatic expansion of the gas in
the cylinder is performed in times much longer than this relaxation time
the expansion occurs reversibly and isentropically. If the expansion is
performed in times comparable to or shorter than the relaxation time
there 1s an irreversible increase in entropy within the system and the
expansion, though adiabatic, is not isentropic.

PROBLEMS

4.3-1. A cylinder of length L and cross-sectional area A is divided into two
equal-volume chambers by a piston, held at the midpoint of the cylinder by a
setscrew. One chamber of the cylinder contains N moles of a monatomic ideal gas
at temperature T,. This same chamber contains a spring connected to the piston
and to the end-wall of the cylinder; the unstretched length of the spring is L/2,
so that it exerts no force on the piston when the piston is at its initial midpoint
position. The force constant of the spring is K. The other chamber of the
cylinder is evacuated. The setscrew is suddenly removed. Find the volume and
temperature of the gas when equilibrium is achieved. Assume the walls and the
piston to be adiabatic and the heat capacities of the spring, piston, and walls to be
negligible.

Discuss the nature of the processes that lead to the final equilibrium state. If
there were gas in each chamber of the cylinder the probler stated would be
indeterminate! Why?
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4-4 HEAT FLOW: COUPLED SYSTEMS
AND REVERSAL OF PROCESSES

Perhaps the most characteristic of all thermodynamic processes is the
quasi-static transfer of heat between two systems, and it is instructive to
examine this process with some care.

In the simplest case we consider the transfer of heat 4Q from one
system at temperature 7 to another at the same temperature. Such a
process is reversible, the increase in entropy of the recipient subsystem
dQ/T being exactly counterbalanced by the decrease in entropy —dQ/T
of the donor subsystem.

In contrast, suppose that the two subsystems have different initial
temperatures T,, and Ty, with T\, < T,,. Further, let the heat capacities
(at constant volume) be C,(T') and C,(T). Then if a quantity of heat dQ,
is quasi-statically inserted into system 1 (at constant volume) the entropy
increase is

_do, dT,
dSl - Tl - Cl(ﬂ) Tl (41)

and similarly for subsystem 2. If such infinitesimal transfers of heat from
the hotter to the colder body continue until the two temperatures become
equal, then energy conservation requires

7, T,
AU = ["c(T) T, + ['c(T) dT, = 0 (4.2)
Tho Ty

which determines 7. The resultant change in entropy is

7, C(T7) dT. +fT/C2(T2)
1
T;

AS =
To 1t I,

dT, (4.3)

In the particular case in which C; and C, are independent of T the
energy conservation condition gives

_ G, + G Ty
TG+ G 44
and the entropy increase is
AS = CI(T) Cl(T) (4.5)
n + G,In .
' TlO 2 T20

It is left to Problem 4.4-3 \ ‘emonstrate that this expression for AS is
lntrmswally positive,
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Several aspects of the heat transfer process deserve reflection.

First, we note that the process, though quasi-static, is irreversible; it is
represented in thermodynamic configuration space by a quasi-static locus
of monotonically increasing S.

Second, the process can be associated with the spontaneous flow of heat
from a hot to a cold system providing (a) that the intermediate wall
through which the heat flow occurs s thin enough that its mass (and hence
its contribution to the thermodynamic properties of the system) is negligi-
ble, and (&) that the rate of heat flow is sufficiently slow (i.e., the thermal
resistivity of the wall is sufficiently high) that the temperature remains
spatially homogeneous within each subsystem.

Third, we note that the entropy of one of the subsystems is decreased,
whereas that of the other subsystem is increased. It is possible to decrease
the entropy of any particular system, providing that this decrease is linked to
an even greater entropy increase in some other system. In this sense an
irreversible process within a given system can be “reversed”—with the
hidden cost paid elsewhere.

PROBLEMS

4.4-1. Each of two bodies has a heat capacity given, in the temperature range of
interest, by
C=A4+ BT

where 4 =8 J/K and B =2 X 1072 J/K2 If the two bodies are initially at
temperatures T;, = 400 K and T,, = 200 K, and if they are brought into thermal
contact, what is the final temperature and what is the change in entropy?

4.4-2. Consider again the system of Problem 4.4-1. Let a third body be available,
with heat capacity
C,= BT

and with an initial temperature of T,,. Bodies 1 and 2 are separated, and body 3
is put into thermal contact with body 2. What must the initial temperature T;, be
in order thereby to restore body 2 to its initial state? By how much is the entropy
of body 2 decreased in this second process?

4.4-3. Prove that the entropy change in a heat flow process, as given in equation
4.5, is intrinsically positive.

4.4-4. Show that if two bodies have equal heat capacities, each of which is
constant (independent of temperature), the equilibrium temperature achieved by
direct thermal contact is the arithmetic average of the initial temperatures.

4.4-5. Over a limited temperature range the heat capacity at constant volume of a
particular type of system is inversely proportional to the temperature.

a) What is the temperature dependence of the energy, at constant volume, for
this type of system?
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b) If two such systems, at initial temperatures T,, and T, are put into thermal
contact what is the equilibrium temperature of the pair?

4.4-6. A series of N + 1 large vats of water have temperatures Ty, T, T5,..., Ty
(with 7, > T,_,). A small body with heat capacity C (and with a constant
volume, independent of temperature) is initially in thermal equilibrium with the
vat of temperature T;,. The body is removed from this vat and immersed in the vat
of temperature T;. The process is repeated until, after N steps, the body is in
equilibrium with the vat of temperature 7. The sequence is then reversed, until
the body is once again in the initial vat, at temperature Tj,. Assuming the ratio of
temperatures of successive vats to be a constant, or

1/N
T./T, = (Ty/Tp)"

and neglecting the (small) change in temperature of any vat, calculate the change

in total entropy as

a) the body is successively taken “ up the sequence” (from T to Ty), and

b) the body is brought back “down the sequence” (from T, to T).

What is the total change in entropy in the sum of the two sequences above?
Calculate the leading nontrivial limit of these results as N — oo, keeping T

and T, constant. Note that for large N

N(x* —1) =Inx +(lnx)’/2N + ---

4-5 THE MAXIMUM WORK THEOREM

The propensity of physical systems to increase their entropy can be
channeled to deliver useful work. All such applications are governed by
the maximum work theorem.

Consider a system that is to be taken from a specified initial state to a
specified final state. Also available are two auxiliary systems, into one of
which work can be transferred, and into the other of which heat can be
transferred. Then the maximum work theorem states that for all processes
leading from the specified initial state to the specified final siate of the
primary system, the delivery of work is maximum (and the delivery of heat is
minimum) for a reversible process. Furthermore the delivery of work (and
of heat) is identical for every reversible process.

The repository system into which work is delivered is called a “reversi-
ble work source.” Reversible work sources are defined as systems enclosed by
adiabatic impermeable walls and characterized by relaxation times suffi-
ciently short that all processes within them are essentially quasi-static. From
the thermodynamic point of view the “conservative” (nonfrictional) sys-
tems considered in the theory of mechanics are reversible work sources.
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System

State A —> State B

(—AU) = Up=Ug

Reversible
heat source

Reversible

work source

FIGURE 4.5
Maximum work process. The delivered work Wy, is maximum and the delivered heat
Qrus is minimum if the entire process is reversible (A8, = 0).

The repository system into which heat is delivered is called a “reversible
heat source”!. Reversible heat sources are defined as systems enclosed by
rigid impermeable walls and characterized by relaxation times sufficiently
short that all processes of interest within them are essentially quasi-static. 1f
the temperature of the reversible heat source is T the transfer of heat dQ
to the reversible heat source increases its entropy according to the quasi-
static relationship dQ = TdS. The external interactions of a reversible
heat source accordingly are fully described by its heat capacity C(T) (the
definition of the reversible heat source imphes that this heat capacity is at
constant volume, but we shall not so indicate by an explicit subscript).
The energy change of the reversible heat source is dU = dQ = C(T)dT
and the entropy change is dS = [C(T)/T]dT. The various transfers
envisaged in the maximum work theorem are indicated schematically in
Fig. 4.5.

The proof of the maximum work theorem is almost immediate. Con-
sider two processes. Each leads to the same energy change AU and the
same entropy change AS within the primary subsystem, for these are
determined by the specified initial and final states. The two processes
differ only in the apportionment of the energy difference (— AU ) between
the reversible work source and the reversible heat source (— AU = Wy
+ Qgrus)- But the process that delivers the maximum possible work to the
reversible work source correspondingly delivers the least possible heat to
the reversible heat source, and therefore leads 1o the least possible entropy
increase of the reversible heat source (and thence of the entire system).

The use of the term source might be construed as biasing the terminology in favor of extraction of
heat, as contrasted with nyection; such a bias is not intended.
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The absolute minimum of AS,,,, for all possible processes, is attained
by any reversible process (for all of which AS,(,m, 0).

To recapitulate, energy conservation requires AU + Wipyws + Qgps = 0.
With AU fixed, to maximize Wyys is to mininuze Qgys. This is achieved by

minimizing Sp3s (since Sgpyg increases monotonically with positive heat

input Qgys). The minimum SRES therefore is achieved by minimum AS
or by Asmtal 0.

The foregoing “descriptive” proof can be cast into more formal lan-
guage, and this is particularly revealing in the case in which the initial and
final states of the subsystem are so close that all differences can be

expressed as differentials. Then energy conservation requires

total >

dU + dQgps + dWgws =0 (4.6)
whereas the entropy maximum principle requires

dQ RHS

dS,, = dS +
ot TRHS

>0 4.7)

It follows that

dWws < TausdS — dU (4.8)

The quantities on the right-hand side are all specified. In particular dS
and dU are the entropy and energy differences of the primary subsystem
in the specified final and initial states. The maximum work transfer
dWyws corresponds to the equality sign in equation 4.8, and therefore in
equation 4.7 (dS,,, = 0).

It is useful to calculate the maximum delivered work which, from
equation 4.8 and from the identity dU = dQ + dW, becomes

T,
dWgws (maximum) = (——';,@)dQ - dU

= [1 ~(Trus/T)(—dQ) +(—dW) (4.9)

That is, in an infinitesimal process, the maximum work that can be delivered
to the reversible work source is the sum of

(a) the work (—dW) directly extracted from the subsystem,
(b) a fraction (1 — Trys/T) of the heat (—dQ) directly extracted from
the subsystem.

The fraction (1 ~ Tgys/T) of the extracted heat that can be “converted”
to work in an infinitesimal process is called the thermodynamic engine
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efficiency, and we shall return to a discussion of that quantity in Section
4.5. However, it generally is preferable to solve maximum work problems in
terms of an overall accounting of energy and entropy changes (rather than to
integrate over the thermodynamic engine efficiency).

Returning to the total (noninfinitesimal) process, the energy conserva-
tion condition becomes

AUsubsysnem + Qgpus + Waws = 0 (4-10)

whereas the reversibility condition is

AS ot = ASqbsystem T fdQRHS/TRHS =0 (4.11)

In order to evaluate the latter integral it is necessary to know the heat
capacity Crus(T) = dQrus/dTrus of the reversible heat source. Given
Crus(T) the integral can be evaluated, and one can then also infer the net
heat transfer Qpys. Equation 4.10 in turn evaluates Wyys. Equations 4.10
and 4.11, evaluated as described, provide the solution of all problems based
on the maximum work theorem.

The problem is further simplified if the reversible heat source is a
thermal reservoir. A thermal reservoir is defined as a reversible heat source
that is so large that any heat transfer of interest does not alter the tempera-
ture of the thermal reservoir. Equivalently, a thermal reservoir is a reversi-
ble heat source characterized by a fixed and definite temperature. For
such a system equation 4.11 reduces simply to

AS + QI'CS

total — subsystem
T

AS =0 (4.12)

and Q.. (= Qgus) can be eliminated between equations 4.10 and 4.12,
giving
Waws = T,AS,

res subsystem

- AU,

subsystem (4 13 )

Finally, it should be recognized that the specified final state of the
subsystem may have a larger energy than the initial state. In that case the
theorem remains formally true but the “delivered work” may be negative.
This work which must be supplied to the subsystem will then be least (the
delivered work remains algebraically maximum) for a reversible process.

Example 1
One mole of an ideal van der Waals fluid is to be taken by an unspecified process
from the state 7, v, to the state 7, v, A second system is constrained to have a
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fixed volume and its initial temperature is T,,; its heat capacity is linear in the
temperature

C,(T)=DT (D = constant)

What is the maximum work that can be delivered to a reversible work source?

Solution

The solution parallels those of the problems in Section 4.1 despite the slightly
different formulations. The second system is a reversible heat source; for it the
dependence of energy on temperature is

U,(T) = sz(T)dT—; 1DT? + constant
and the dependence of entropy on temperature is
G,(T)
Sz(T) =f

For the primary fluid system the dependence of energy and entropy on T and v
is given in equations 3.49 and 3.51 from which we find
a

AU, = cR(T, ~ To)-%+v—0

dT = DT + constant

A y=b ]
S;=RIn - +chn—770

The second system {the reversible heat source) changes temperature from T, to
some as yet unknown temperature Tzf, so that

AU, = 1D(T3 - TZ)
and

AS, = D(Tzf“ Tzo)

The value of 75, is determined by the reversibility condition

AS, + AS, = Rln| 2
1 2 nvo—b

T,
) + eRln— + D(Ty ~ Ty) =0

or

The conservation of energy then determmes the work W, delivered to the
reversible work source

y~b T,
Ty = Ty~ RD 'In| - — cRD™'In-~

W, + AU, + AU, = 0
whence

1 a a
W, = - [30(73 - 73)] é[cR(T,— T~y

where we recall that 7, is given, whereas T, has been found.
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An equivalent problem, but with a somewhat simpler system (a mon-
atomic ideal gas and a thermal reservoir) is formulated in Problem 4.5-1.
In each of these problems we do not commit ourselves to any specific
process by which the result might be realized, but such a specific process is
developed in Problem 4.5-2 (which, with 4.5-1, is strongly recommended
to the reader).

Example2 Isotope Separation

In the separation of U3 and U2 to produce enriched fuels for atomic power
plants the naturally occurring uranium is reacted with fluorine to form uranium
hexafluoride (UF). The uranium hexafluoride is a gas at room temperature and
atmospheric pressure. The naturally occurring mole fraction of U is 0.0072, or
0.72%. 1t is desired to process 10 moles of natural UF, to produce 1 mole of 2%
enriched material, leaving 9 moles of partially depleted material. The UF, gas can
be represented approximately as a polyatomic, multicomponent simple ideal gas
with ¢ = 7/2 (equation 3.40). Assuming the separation process to be carried out
at a temperature of 300 K and a pressure of 1 atm, and assuming the ambient
atmosphere (at 300 K) to act as a thermal reservoir, what is the minimum amount
of work required to carry out the enrichment process? Where does this work
(energy) ultimately reside?

Solution

The problem is an example of the maximum work theorem in which the minimum
work required corresponds to the maximum work “delivered.” The initial state of
the system is 10 moles of natural UF, at 7= 300 K and P = 1 atm. The final
state of the system i1s 1 mole of enriched gas and 9 moles of depleted gas at the
same temperature and pressure. The cold reservoir 1s also at the same tempera-
ture.

We find the changes of entropy and of energy of the system. From the
fundamental equation (3.40) we find the equations of state to be the familiar
forms

U=17/2NRT PV =NRT

These enable us to write the entropy as a function of 7 and P.

z 7 T P :
S = ZlN/sol +(5)NRln(—fo) - NRln(FO) - NR lellnxl
1= 1=

Ths last term— the “entropy of mixing” as defined following equation 3.40—is
the significant term in the isotope separation process.
We first calculate the mole fraction of U?*F, in the 9 moles of depleted
material; this 1s found to be 0.578%. Accordingly the change in entropy is
AS = —R[0.02In0.02 + 0.981n0.98] — 9R[0.00578 In 0.00578
+0.9941n 0.994] + 10R [0.0072 In 0.0072 + 0.9928 In 0.9928]
= — 0.0081R = — 0.067J/K

The gas ejects heat.
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There is no change in the energy of the gas, and all the energy supplied as work
is transferred to the ambient atmosphere as heat. That work, or heat, is

—~ Wiws = Q,.,= —TAS= 300x0.067 = 20

If there existed a semipermeable membrane, permeable to U*°F, but not to
U?8F,, the separation could be accomplished simply. Unfortunately no such
membrane exists. The methods employed in practice are all dynamic (non-quasi-
static) processes that exploit the small mass difference of the two isotopes—in
ultracentrifuges, in mass spectrometers, or in gaseous diffusion.

PROBLEMS

4.5-1. One mole of a monatomic ideal gas is contained in a cylinder of volume
1073 m? at a temperature of 400 K. The gas is to be brought to a final state of
volume 2 X 1073 m® and temperature 400 K. A thermal reservoir of temperature
300 K 1s available, as is a reversible work source. What is the maximum work that
can be delivered to the reversible work source?

Answer:
Weaws = 300 RIn2

4.5-2. Consider the following process for the system of Problem 4.5-1. The ideal
gas is first expanded adiabatically (and isentropically) until its temperature falls
to 300 K; the gas does work on the reversible work source in this expansion. The
gas is then expanded while in thermal contact with the thermal reservoir. And
finally the gas is compressed adiabatically until its volume and temperature reach
the specified values (2 X 1073 m® and 400 K).

a) Draw the three steps of this process on a T — V diagram, giving the equation
of each curve and labelling the numerical coordinates of the vertices.

b) To what volume must the gas be expanded in the second step so that the
third (adiabatic) compression leads to the desired final state?

¢) Calculate the work and heat transfers in each step of the process and show
that the overall results are identical to those obtained by the general approach of
Example 1.

4.5-3. Describe how the gas of the preceding two problems could be brought to
the desired final state by a free expansion. What are the work and heat transfers
in this case? Are these results consistent with the maximum work theorem?

4.5-4. The gaseous system of Problem 4.5-1 is to be restored to its initial state.
Both states have temperature 400 K, and the energies of the two states are equal
(U = 600 R). Need any work be supplied, and if so, what is the minimum
supplied work? Note that the thermal reservoir of temperature 300 K remains
accessible.
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4.5-5. If the thermal reservoir of Problem 4.5-1 were to be replaced by a
reversible heat source having a heat capacity of the form

Cc(T) = (2 + %)R

and an initial temperature of Tgys, = 300 K, again calculate the maximum
delivered work.

Before doing the calculation, would you expect the delivered work to be greater,
equal to, or smaller than that calculated in Prob. 4.5-1? Why?

4.5-6. A system can be taken from state A to state B (where Sy = S,) either (a)
directly along the adiabat S = constant, or (b) along the isochore AC and the
isobar CB. The difference in the work done by the system is the area enclosed
between the two paths in a P-V diagram. Does this contravene the statement that
the work delivered to a reversible work source is the same for every reversible
process? Explain!
4.5-7. Consider the maximum work theorem in the case in which the specified
final state of the subsystem has lower energy than the initial state. Then the
essential logic of the theorem can be summarized as follows: “Extraction of heat
from the subsystem decreases its entropy. Consequently a portion of the extracted
heat must be sacrificed to a reversible heat source to effect a net increase in
entropy; otherwise the process will not proceed. The remainder of the extracted
heat 1s available as work.”

Similarly summarize the essential logic of the theorem in the case in which the

final state of the subsystem has larger energy and larger entropy than the initial
state.

45-8. If S;< S, and Uy > U, does this imply that the delivered work is
negative? Prove your assertion assuming the reversible heat source to be a thermal
I€Servoir.

Does postulate III, which states that S is a monotonically increasing function
of U, disbar the conditions assumed here? Explain.

4.5-9. Two identical bodies each have constant and equal heat capacities (C, =
C, = C, a constant). In addition a reversible work source is available. The initial
temperatures of the two bodies are T}, and T,,. What is the maximum work that
can be delivered to the reversible work source, leaving the two bodies in thermal
equilibrium? What is the corresponding equilibrium temperature? Is this the
minimum attainable equilibrium temperature, and if so, why? What is the
maximum attainable equilibrium temperature?

For C = 8 J/K, T\, = 100°C and T, = 0°C calculate the maximum delivered
work and the possible range of final equilibrium temperature.

Answer:
T/ml.n = 46°C T/max = SOOC
W= = C[|Ty, — [T I’ = 62.2]
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4.5-10. Two identical bodies each have heat capacities (at constant volume) of
C(T)=a/T
The initial temperatures are T, and T, with T,q > Ty,. The two bodies are to be
brought to thermal equilibrium with each other (maintaining both volumes
constant) while delivering as much work as possible to a reversible work source.
What is the final equilibrium temperature and what is the maximum work
delivered to the reversible work source?
Evaluate your answer for T,; = T;, and for T, = 2T ,.

Answer:
W=aln®/8)if T,y = 2Ty,

4.5-11. Two bodies have heat capacities (at constant volume) of
C, =aT
, = 2bT

The initial temperatures are T}, and T, with T, > To. The two bodies are to be
brought to thermal equilibrium (maintaining both volumes constant) while de-
livering as much work as possible to a reversible work source. What is the final
equilibrium temperature and what is the (maximum) work delivered to the
reversible work source?

4.5-12. One mole of an ideal van der Waals fluid is contained in a cylinder fitted
with a piston. The initial temperature of the gas is 7, and the initial volume is v,.
A reversible heat source with a constant heat capacity C and with an initial
temperature T, is available. The gas is to be compressed to a volume of v, and
brought into thermal equilibrium with the reversible heat source. What is the
maximum work that can be delivered to the reversible work source and what is
the final temperature?

Answer:

R 1/(cR+C)
— U' - b cRT
U v — b 7T,

4.5-13. A system has a temperature-independent heat capacity C. The system is
initially at temperature 7, and a heat reservoir is available, at temperature 7T,

(with T, < T;). Find the maximum work recoverable as the system is cooled to the
temperature of the reservoir.

4.5-14. If the temperature of the atmosphere is 5°C on a winter day and if 1 kg of
water at 90°C is available, how much work can be obtained as the water is cooled
to the ambient temperature? Assume that the volume of the water is constant, and
assume that the molar heat capacity at constant volume is 75 J/mole K and is
independent of temperature.

Answer:
45 x 10%)
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4.5-15. A rigid cylinder contains an internal adiabatic piston separating it into
two chambers, of volumes V}, and V,,. The first chamber contains one mole of a
monatomic ideal gas at temperature T;. The second chamber contains one mole
of a simple diatomic ideal gas (¢ = 5/2) at temperature T}, In addition a thermal
reservoir at temperature 7T, is available. What is the maximum work that can be
delivered to a reversible work source, and what are the corresponding volumes
and temperatures of the two subsystems?

4.5-16. Each of three identical bodies has a temperature-independent heat capac-
ity C. The three bodies have initial temperatures 7, > 7, > 7,. What is the
maximum amount of work that can be extracted leaving the three bodies at a
common final temperature?

4.5-17. Each of two bodies has a heat capacity given by

C=A+2BT

where A =8 J/K and B=2x 1072 J/K2 If the bodies are initially at
temperatures of 200 K and 400 K, and if a reversible work source is available,
what is the minimum final common temperature to which the two bodies can be
brought? If no work can be extracted from the reversible work source what is the
maximum final common temperature to which the two bodies can be brought?

What is the maximum amount of work that can be transferred to the reversible
work source?

Answer:
T.n= 293K

4.5-18. A particular system has the equations of state
T=As/v"? and P=T*/440'/?

where A is a constant. One mole of this system is initially at a temperature 7, and
volume V. It is desired to cool the system to a temperature 7, while compressing
it to volume V, (T, < Ty; V, < W}). A second system is available. It is initially at a
temperature 7, (7_ < T,). Its volume is kept constant throughout, and its heat
capacity is

C, = BTY? (B = constant)
What is the minimum amount of work that must be supplied by an external agent
to accomplish this goal?
4.5-19. A particular type of system obeys the equations

u

T= 3 and P=awT
where @ and b are constants. Two such systems, each of 1 mole, are initially at
temperatures 7, and 7, (with 7, > T}) and each has a volume ¢,. The systems are
to be brought to a common temperature T, with each at the same final volume vy
The process is 10 be such as to deliver maximum work to a reversible work source.
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a) What is the final temperature 7,7
b) How much work can be delivered? Express the result in terms of 7', T, vy, v,
and the constants @ and b.
4.5-20. Suppose that we have a system in some initial state (we may think of a
tank of hot, compressed gas as an example) and we wish to use it as a source of
work. Practical considerations require that the system be left finally at atmo-
spheric temperature and pressure, in equilibrium with the ambient atmosphere.
Show, first, that the system does work on the atmosphere, and that the work
actually available for useful purposes is therefore less than that calculated by a
straightforward application of the maximum work theorem. In engineering
parlance this net available work is called the “availability”.
a) Show that the availability is given by

Availability = (Uy + PoVy = TyeSo) = (U + PoeV; = TareS))
where the subscript f denotes the final state, in which the pressure is P,
temperature is T, ..
b) If the original system were to undergo an internal chemical reaction during the
process considered, would that invalidate this formula for the availability?
4.5-21. An antarctic meteorological station suddenly loses all of its fuel. It has N
moles of an inert “ideal van der Waals fluid” at a high temperature 7, and a high
pressure P,. The (constant) temperature of the environment 1s 7; and the
atmospheric pressure is P,. If operation of the station requires a continuous
power 9, what is the longest conceivable time, 1., that the station can operate?
Calculate ¢, in terms of T,, Ty, P,, Py, , N and the van der Waals constants a,
b, and c.

Note that this is a problem in availability, as defined and discussed in Problem

4.5-20. In giving the solution it is not required that the molar volume v,, be solved
explicitly in terms of 7, and P,; it is sufficient simply to designate it as v,(T}, P,)
and similarly for vy (T, Pp).
4.5-22. A “geothermal” power source is available to drive an oxygen production
plant. The geothermal source is simply a well containing 10* m® of water, initially
at 100°C; nearby there is a huge (“infinite”) lake at 5°C. The oxygen is to be
separated from air, the separation being carried out at 1 atm of pressure and at
20°C. Assume air to be 1 oxygen and % nitrogen (in mole fractions), and assume
that it can be treated as a mixture of ideal gases. How many moles of O, can be
produced in principle (i.e., assuming perfect thermodynamic efficiency) before
exhausting the power source?

and the

4-6 COEFFICIENTS OF ENGINE,
REFRIGERATOR, AND HEAT PUMP PERFORMANCE

As we saw in equations 4.6 and 4.7, in an infinitestmal reversible
process involving a “hot” subsystem, a “cold” reversible heat source, and a
reversible work source

(dQ, + aW,) + dQ .+ dWxws = 0 (4.14)
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and

=0 (4.15)

where we now indicate the “hot” system by the subscript 4 and th,
“cold” reversible heat source by the subScrlpt ¢. In such a process thg
delivered work dWpyys is algebraically maximum. This fact leads
criteria for the operation of various types of useful devices.

The most immediately evident system of interest is a thermodynami,
engine. Here the “hot subsystem” may be a furnace or a steam boiler,
whereas the “cold” reversible heat source may be the ambient atmosphere
or, for a large power plant, a river or lake. The measure of performance s
the fraction of the heat (—dQ,) withdrawn® from the hot system tha
is converted to work dWp,,. Taking dW,, =0 in equation 4.14 (it i
simply additive to the delivered work in equation 4.9) we find the
thermodynamic engine efficiency «,.

~

- dWRWS — _ Tc
Tla0) T, 41

3

The relationship of the various energy exchanges is indicated in Fig. 4.6¢,

For a subsystem of given temperature 7, the thermodynamic engine
efficiency increases as 7, decreases. That is, the lower the temperature of
the cold system (to which heat is delivered), the higher the engine
efficiency. The maximum possible efficiency, €, = 1, occurs if the tempera-
ture of the cold heat source is equal to zero. If a reservoir at zero
temperature were available as a heat repository, heat could be freely and
fully 3Corwerted into work (and the world “energy shortage” would not
exist!?).

A refrigerator is simply a thermodynamic engine operated in reverse
(Fig. 4.7b). The purpose of the device i1s to extract heat from the cold
system and, with the input of the minimum amount of work, to eject that
heat into the comparatively hot ambient atmosphere. Equations 4.14 and

2The problem of signs may be confusing. Throughout this book the symbols W and Q, or dW and
dQ, indicate work and heat inputs. Heat withdrawn from a system is (— Q) or (—dQ). Thusif 5 J are
withdrawn from the hot subsystem we would write that the heat withdrawn is (— Q,) = 5 J, whereas
0,, the heat input, would be — 5 J. For clarity in this chapter we use the parentheses to serve asa
reminder that (—Q,) is to be considered as a positive quantity in the particular example being
discussed.

3The energy shortage is, in any case, a misnomer. Energy is conserved! The shortage is one of
“entropy sinks”—of systems of low entropy. Given such systems we could bargain with nature,
offering to allow the entropy of such a system to increase (as by allowing a hydrocarbon to oxidize, of
heat to flow to a low temperature sink, or a gas to expand) if useful tasks were simultaneousty done.
There is only a “neg-entropy” shortage!
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Energy Source
(Furnace, Boiler, ...)
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<
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FIGURE 4.6
Engine, refrigerator, and heat pump. In this diagram d W=d Wy,

4.15 remain true, but the coefficient of refrigerator performance represents
the appropriate criterion for this device—the ratio of the heat removed
from the refrigerator (the cold system) to the work that must be purchased
from the power company. That is

Lo (c40) _ T,
" (—dWRWS) Th—Tc

(4.17)

If the temperatures 7, and T, are equal, the coefficient of refrigerator
performance becomes infinite: no work is then required to transfer heat
from one system to the other. The coefficient of performance becomes
progressively smaller as the temperature T, decreases relative to 7,. And if
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the temperature 7, approaches zero, the coefficient of performance also
approaches zero (assuming 7, fixed). It therefore requires huge amounts
of work to extract even trivially small quantities of heat from a system
near T, = Q.

We now turn our attention to the heat pump. In this case we are
interested in heating a warm system, extracting some heat from a cold
system, and extractmg some work from a reversible work source. In a
practical case the warm system may be the interior of a home in winter,
the cold system is the outdoors, and the reversible work source 1s again the
power company. In effect, we heat the home by removing the door of a
refrigerator and pushing it up to an open window. The inside of the
refrigerator is exposed to the outdoors, and the refrigerator attempts (with
negligible success) further to cool the outdoors. The heat extracted from
this huge reservoir, together with the energy purchased from the power
company, is ejected directly into the room from the cooling coils in the
back of the refrigerator.

The coefficient of heat pump performance e, is the ratio of the heat
delivered to the hot system to the work extracted from the reversible work
source.

a0 T,
== = 4.18
e (—dWRWS) Th - Tc ( )

PROBLEMS

4.6-1. A temperature of 0.001 K is accessible in low temperature laboratories with
moderate eflort. If the price of energy purchased from the electric utility company
is 15¢/kW h what would be the minimum cost of extraction of one watt-hour of
heat from a system at 0.001 K? The “ warm reservoir” is the ambient atmosphere
at 300 K.

Answer:

345

4.6-2. A home is to be maintained at 70°F, and the external temperature is 50°F.
One method of heating the home is to purchase work from the power company
and to convert it directly into heat: This is the method used in common electric
room heaters. Alternatively, the purchased work can be used to operate a heat
pump. What is the ratio of the costs if the heat pump attains the ideal thermody-
namic coefficient of performance?

4.6-3. A household refrigerator is maintained at a temperature of 35°F. Every
time the door is opened, warm material is placed inside, introducing an average of
50 kcal, but making only a small change in the temperature of the refrigerator.
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The door 1s opened 15 times a day, and the refrigerator operates at 15% of the
ideal coefficient of performance. The cost of work is 15¢/kW h. What is the
monthly bill for operating this refrigerator?

4.6-4. Heat is extracted from a bath of liquid helium at a temperature of 4.2 K.
The high-temperature reservoir is a bath of liquid nitrogen at a temperature of
77.3 K. How many Joules of heat are introduced into the nitrogen bath for each
Joule extracted from the helium bath?

4.6-5. Assume that a particular body has the equation of state U = NCT with
NC =10 J/K and assume that this equation of state is valid throughout the
temperature range from 0.5 K to room temperature. How much work must be
expended to cool this body from room temperature (300 K) to 0.5 K, using the
ambient atmosphere as the hot reservoir?

Answer:
16.2 kl.

4.6-6. One mole of a monatomic ideal gas is allowed to expand isothermally from
an initial volume of 10 liters to a final volume of 15 liters, the temperature being
maintained at 400 K. The work delivered is used to drive a thermodynamic
refrigerator operating between reservoirs of temperatures 200 and 300 K. What is
the maximum amount of heat withdrawn from the low-temperature reservoir?

4.6-7. Give a “constructive solution™ of Example 2 of Section 4.1. Your solution
may be based on the following procedure for achieving maximum temperature of
the hot body. A thermodynamic engine is operated between the two cooler
bodies, extracting work unti! the two cooler bodies reach a common temperature.
This work is then used as the input to a heat pump, extracting heat from the
cooler pair and heating the hot body. Show that this procedure leads to the same
result as was obtained in the example.

4.6-8. Assume that 1 mole of an ideal van der Waals fluid is expanded isother-
mally, at temperature 7, from an initial volume ¥, to a final volume V,. A
thermal reservoir at temperature 7, is available. Apply equation 4.9 to a differen-
tial process and integrate to calculate the work delivered to a reversible work
source. Corroborate by overall energy and entropy conservation.

Hint: Remember to add the direct work transfer PdV to obtain the total work
delivered to the reversible work source (as in equation 4.9).

4.6-9. Two moles of a monatomic ideal gas are to be taken from an initial state
(P,,V,) 1o a final state (P, = B’P,, ¥, = V,/B), where B is a constant. A reversible
work source and a thermal reservoir of temperature 7, are available. Find the
maximum work that can be delivered to the reversible work source.

Given values of B, P, and T,, for what values of V, is the maximum delivered
work positive?

4.6-10. Assume the process in Problem 4.6-9 to occur along the locus P = B/V?,
where B = P,V?2. Apply the thermodynamic engine efficiency to a differential
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process and integrate to corroborate the result obtained in Problem 4.6-9. Recall
the hint given in Problem 4.6-8.

4.6-11. Assume the process in Problem 4.6-9 to occur along a straight-line locus
in the 7-V plane. Integrate along this locus and again corroborate the results of
Problems 4.6-9 and 4.6-10.

4-7 THE CARNOT CYCLE

Throughout this chapter we have given little attention to specific
processes, purposefully stressing that the delivery of maximum work is a
general attribute of all reversible processes. It is useful nevertheless to
consider briefly one particular type of process—the “Carnot cycle”—both
because it elucidates certain general features and because this process has
played a critically important role in the historical development of thermo-
dynamic theory.

A system is to be taken from a particular initial state to a given final
state while exchanging heat and work with reversible heat and work
sources. To describe a particular process it is not sufficient merely to
describe the path of the system in its thermodynamic configuration
space. The critical features of the process concern the manner in which the
extracted heat and work are conveyed to the reversible heat and work
sources. For that purpose auxiliary systems may be employed. The aux-
iliary systems are the “tool” or “devices” used to accomplish the task at
hand, or, in a common terminology, they constitute the physical engines
by which the process is eflected.

Any thermodynamic system—a gas in a cylinder and piston, a magnetic
substance in a controllable magnetic field, or certain chemical
systems—can be employed as the auxiliary system. 1t is only required that
the auxiliary system be restored, at the end of the process, to its initial
state; the auxiliary system must not enter into the overall energy or entropy
accounting. It is this cyclic nature of the process within the auxihiary
system that is reflected in the name of the Carnot “cycle.”

For clarity we temporarily assume that the primary system and the
reversible heat source are each thermal reservoirs, the primary system
being a “hot reservoir” and the reversible heat source being a ‘“‘cold
reservoir”; this restriction merely permits us to consider finite heat and
work transfers rather than infinitesimal transfers.

The Carnot cycle is accomplished in four steps, and the changes of the
temperature and the entropy of the auxiliary system are plotted for each
of these steps in Fig. 4.7.

1. The auxiliary system, originally at the same temperature as the
primary system (the hot reservoir), is placed in contact with that reservoir
and with the reversible work source. The auxiliary system is then caused
to undergo an isothermal process by changing some convenient extensive
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FIGURE 4.7
The 7-S and P-V diagrams for the auxiliary system in the Camot cycle.

parameter; if the auxiliary system is a gas it may be caused to expand
isothermally, if it is a magnetic system its magnetic moment may be
decreased isothermally, and so forth. In this process a flux of heat occurs
from the hot reservoir to the auxiliary system, and a transfer of work
(/ PdV or its magnetic or other analogue) occurs from the auxiliary
system to the reversible work source. This is the isothermal step 4 — B in
Fig. 4.7.

2. The auxiliary system, now in contact only with the reversible work.
source, is adiabatically expanded (or adiabatically demagnetized, etc.)
until its temperature falls to that of the cold reservoir. A further transfer
of work occurs from the auxiliary system to the reversible work source.
The quasi-static adiabatic process occurs at constant entropy of the
auxiliary system, as in B — C of Fig. 4.7.

3. The auxiliary system is isothermally compressed while in contact with
the cold reservoir and the reversible work source. This compression is
continued until the entropy of the auxiliary system attains its initial value.
During this process there is a transfer of work from the reversible work
source to the auxiliary system, and a transfer of heat from the auxiliary
system to the cold reservoir. This is the step C — D in Fig. 4.7.

4. The auxiliary system is adiabatically compressed and receives work
from the reversible work source. The compression brings the auxiliary
system to its initial state and completes the cycle. Again the entropy of the
auxiliary system is constant, from D to A4 in Fig. 4.7.

The heat withdrawn from the primary system (the hot reservoir) in
process 1 1s T, AS, and the heat transferred to the cold reservoir in process
3 is T_AS. The difference (T, — T,) AS is the net work transferred to the
reversible work source in the complete cycle. On the T-§ diagram of Fig.
4.7 the heat 7, AS withdrawn from the primary system is represented by
the area bounded by the four points labeled ABS;S,, the heat ejected to
the cold reservoir is represented by the area CDS,S,, and the net work
delivered is represented by the area ABCD. The coefficient of perfor-
mance is the ratio of the area ABCD to the area ABS,S, or (T, — T)/T,.
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The Carnot cycle can be represented on any of a number of other
diagrams, such as a P~V diagram or a T-V diagram. The representation
on a P—V diagram is indicated in Fig. 4.7. The precise form of the curve
BC, representing the dependence of P on V in an adiabatic (isentropic)
process, would follow from the equation of state P = P(S,V,N) of the
auxiliary system.

If the hot and cold systems are merely reversible heat sources, rather
than reservoirs, the Carnot cycle must be carried out in infinitesimal steps.
The heat withdrawn from the primary (hot) system in process 1 is then
T, dS rather than T, AS, and similarly for the other steps. There is clearly
no difference in the essential results, although 7, and 7, are continually
changing variables and the net evaluation of the process requires an
integration over the differential steps.

It should be noted that real engines never attain ideal thermodynamic
efficiency. Because of mechanical friction, and because they cannot be
operated so slowly as to be truly quasi-static, they seldom attain more
than 30 or 40% thermodynamic efficiency. Nevertheless, the upper limit on
the efficiency, set by basic thermodynamic principles, is an important
factor in engineering design. There are other factors as well, to which we
shall return in Section 4.9.

Example

N moles of a monatomic ideal gas are to be employed as the auxiliary system in a
Carnot cycle. The ideal gas is initially in contact with the hot reservoir, and in the
first stage of the cycle it is expanded from volume V, to volume V,.* Calculate
the work and heat transfers in each of the four steps of the cycle, in terms of 7},
T, V, Vg and N. Directly corroborate that the efficiency of the cycle is the
Carnot efficiency.

Solution
The data are given in terms of T and V; we therefore express the entropy and
energy as functions of 7, V, and N.

§= Nsy+ NRln

T3?VN,
763/2V0N
and

U= 3INRT

Then in the isothermal expansion at temperature 7,

V,
ASAB= SB— S, =NRIH(VB) and AU, =0
A

“Note that in this example quantities such as U, S, V, Q refer to the auxiliary system rather than to
the “primary system” (the hot reservoir).
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whence

V,
QAB = ThASABz NRThln(—B)
VA

and

Ve
W,, = — NRT,In| -2
VA

In the second step of the cycle the gas is expanded adiabatically until the
temperature falls to 7,, the volume meanwhile increasing to V.. From the equation
for S, we see that TV = constant, and

T, 3/2
Ve=Vp T

and
Qpc=0 Wge = AU = iNR(T, - T})

In the third step the gas is isothermally compressed to a volume V. This
volume must be such that it lies on the same adiabat as V, (see Fig. 4.7), so that

T, 3/2
Vo=Vl 7

c

Then, as in step 1,

Vb Va
Qcp = NRTcln( Vc) = NRTLln( VB)

and
V.
Wep= —NRTcln(—A)
VB

Finally, in the adiabatic compression

Qpa=0
and

Wpa=Upy = %NR(Th - Tc)

From these results we obtain
Ve
W=W,p+ Wse+ Wep+ W= —NR(T, ~ T )In A
A

and
-W/Q,5= (Th - Tc)/Th

which is the expected Carnot efficiency.
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PROBLEMS

4.7-1. Repeat the calculation of Example 5 assuming the “working substance” of
the auxiliary system to be 1 mole of an ideal van der Waals fluid rather than of a
monatomic ideal gas (recall Section 3.5).

4.7-2. Calculate the work and heat transfers in each stage of the Carnot cycle for
the auxiliary system being an “empty” cylinder (containing only electromagnetic
radiation). The first step of the cycle is again specified to be an expansion from V,
to V. All results are to be expressed in terms of V,, V;, T, and T.. Show that the
ratio of the total work transfer to the first-stage heat transfer agrees with the
Carnot efficiency.

4.7-3. A “primary subsystem” in the initial state A is to be brought reversibly to
a specified final state B. A reversible work source and a thermal reservoir at
temperature 7, are available, but no “auxiliary system” is to be employed. Is it
possible to devise such a process? Prove your answer. Discuss Problem 4.5-2 in
this context.

4.7-4. The fundamental equation of a particular fluid is UN:Vi = A(S — R)?
where 4 =2 % 1072 (K3mi/J3). Two moles of this fluid are used as the
auxiliary system in a Carnot cycle, operating between two thermal reservoirs at
temperature 100°C and 0°C. In the first isothermal expansion 10% J is extracted
from the high-temperature reservoir. Find the heat transfer and the work transfer
for each of the four processes in the Carnot cycle.

Calculate the efficiency of the cycle directly from the work and heat transfers
just computed. Does this efficiency agree with the theoretical Carnot efficiency?
Hint: Carnot cycle problems generally are best discussed in terms of a 7-§
diagram for the auxihary system.

4.7-5. One mole of the “simple paramagnetic model system” of equation 3.66 is
to be used as the auxiliary system of a Carnot cycle operating between reservoirs
of temperature 7, and 7. The auxiliary system initially has a magnetic moment I,
and is at temperature 7,. By decreasing the external field while the system is in
contact with the high temperature reservoir, a quantity of heat Q, is absorbed
from the reservoir; the system meanwhile does work (— W)) on the reversible
work source (i.e., on the external system that creates the magnetic field and
thereby induces the magnetic moment). Describe each step in the Carnot cycle
and calculate the work and heat transfer in each step, expressing each in terms of
7,, T., O,. and the parameters T, and I, appearing in the fundamental equation.

4.7-6. Repeat Problem 4.7-4 using the “rubber band” model of Section 3.7 as the
auxiliary system.
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4-8 MEASURABILITY OF THE
TEMPERATURE AND OF THE ENTROPY

The Carnot cycle not only illustrates the general principle of reversible
processes as maximum work processes, but it provides us with an oper-
ational method for measurements of temperature. We recall that the
entropy was introduced merely as an abstract function, the maxima of
which determine the equilibrium states. The temperature was then defined
in terms of a partial derivative of this function. It is clear that such a
definition does not provide a direct recipe for an operational measurement
of the temperature and that it is necessary therefore for such a procedure
to be formulated explicitly.

In our discussion of the efficiency of thermodynamic engines we have
seen that the efficiency of an engine working by reversible processes
between two systems, of temperatures 7, and T, is

e,=1-T/T, (4.19)

The thermodynamic engine efficiency is defined in terms of fluxes of heat
and work and is consequently operationally measurable. Thus a Carnot
cycle provides us with an operational method of measuring the ratio of
two temperatures.

Unfortunately, real processes are never truly quasi-static, so that real
engines never quite exhibit the theoretical engine efficiency. Therefore, the
ratio of two given temperatures must actually be determined in terms of
the limiting maximum efficiency of all real engines, but this is a difficulty
of practice rather than of principle.

The statement that the ratio of temperatures is a measurable quantity is
tantamount to the statement that the scale of temperature is determined
within an arbitrary multiplicative constant. The temperature of some
arbitrarily chosen standard system may be assigned at will, and the
temperatures of all other systems are then uniquely determined, with
values directly proportional to the chosen temperature of the fiducial
system.

The choice of a standard system, and the arbitrary assignment of some
definite temperature to it, has been discussed in Section 2.6. We recall that
the assignment of the number 273.16 to a system of ice, water, and vapor
in mutual equilibrium leads to the absolute Kelvin scale of temperature. A
Carnot cycle operating between this system and another system de-
termines the ratio of the second temperature to 273.16 K and conse-
quently determines the second temperature on the absolute Kelvin scale.

Having demonstrated that the temperature is operationally measurable
we are able almost trivially to corroborate that the entropy too is measur-
able. The ability to measure the entropy underlies the utility of the entire
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thermodynamic formalism. It is also of particular interest because of the
somewhat abstract nature of the entropy concept.

The method of measurement to be described yields only entropy
differences, or relative entropies—these differences are then converted to
absolute entropies by Postulate IV—the “Nernst postulate” (Section
1.10).

Consider a reversible process in a composite system, of which the
system of interest is a subsystem. The subsystem is taken from some
reference state (7, P,) to the state of interest (7}, P,) by some path in the
T-P plane. The change in entropy is

(T1.P)| [ JS as

S, — S, = f(TO’PO) [(ﬁ)PdT+(8—P~)TdP] (4.20)
(Tl,m( BS) [ (aP) ]

= N | (L) ar+dp 421

(To. P \ O aT | s (4.21)
T,
( P‘( V)[ (g-) dT+dP] (4.2,
(To Po) aT

Equation 4.21 follows from the elementary identity A.22 of Appendix A.
Equation 4.22 is less obvious, though the general methods to be developed
in Chapter 7 will reduce such transformations to a straightforward proce-
dure; an elementary but relatively cumbersome procedure is suggested in
Problem 4.8-1.

Now each of the factors in the integrand is directly measurable; the
factor (dP /3T )¢ requires only a measurement of pressure and tempera-
ture changes for a system enclosed by an adiabatic wall. Thus, the entropy
difference of the two arbitrary states (T, F,) and (T,, P,) is obtainable by
numerical integration of measurable data.

PROBLEMS

4.8-1. To corroborate equation 4.22 show that

(%)~ =[5,

First consider the right-hand side, and write generally that
dT = u,ds + u, dv

(8] el o
v Ys\Gu)» -

so that
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S8 U su

Similarly show that (%—I:)T =u,,u,,/u,, — u,, establishing the required iden-
tity.

4-9 OTHER CRITERIA OF ENGINE PERFORMANCE;
POWER OUTPUT AND “ENDOREVERSIBLE ENGINES”

As we have remarked earlier, maximum efficiency is not necessarily the
primary concern in design of a real engine. Power output, simplicity, low
initial cost, and various other considerations are also of importance, and,
of course, these are generally in conflict. An informative perspective on
the criteria of real engine performance is afforded by the “endoreversible
engine problem.”?

Let us suppose once again that two thermal reservoirs exist, at tempera-
tures 7, and T, and that we wish to remove heat from the high
temperature reservoir, delivering work to a reversible work source. We
now know that the maximum possible efficiency is obtained by any
reversible engine. However, considerations of the operation of such an
engine immediately reveals that its power output (work delivered per unit
time) is atrocious. Consider the very first stage of the process, in which
heat is transferred to the system from the hot reservoir. If the working
fluid of the engine is at the same temperature as the reservoir no heat will
flow; whereas if it is at a lower temperature the heat flow process (and
hence the entire cycle) becomes irreversible. In the Carnot engine the
temperature difference is made “infinitely small,” resulting in an “in-
finitely slow” process and an “infinitely small” power output.

To obtain a nonzero power output the extraction of heat from the high
temperature reservoir and the insertion of heat into the low temperature
reservoir must each be done irreversibly.

An endoreversible engine is defined as one in which the two processes of
heat transfer (from and to the heat reservoirs) are the only irreversible
processes in the cycle.

To analyze such an engine we assume, as usual, a high temperature
thermal reservoir at temperature 7,, a low temperature thermal reservoir
at temperature T, and a reversible work source. We assume the isothermal
strokes of the engine cycle to be at T, (w designating “warm”) and 7, (¢
designating “tepid”), with T, > T, > T, > T,. Thus heat flows from the
high temperature reservoir to the working fluid across a temperature
difference of T, — T, as indicated schematically in Fig. 4.8. Similarly, in
the heat rejection stroke of the cycle the heat flows across the temperature
difference 7, — T..

3F. L. Curzon and B. Ahlbom, Amer. J. Phys 43, 22 (1975). See also M. H Rubin, Phys Rev
A19, 1272 and 1279 (1979) (and references therein) for a sophisticated analysis and for further
generalization of the theorem.
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FIGURE 4.8

The endoreversible engine cycle.

Let us now suppose that the rate of heat flow from the high temperature
reservoir to the system is proportional to the temperature difference
T,— T,. If t, is the time required to transfer an amount Q, of energy,
then

(-0
t,

o, (T,— T,) (4.23)

where o, is the conductance (the product of the thermal conductivity
times the area divided by the thickness of the wall between the hot
reservoir and the working fluid). A similar law holds for the rate of heat
flow to the cold reservoir. Therefore the time required for the two
isothermal strokes of the engine is

_1_ (~Qh)
Gy Th - Tw

t=1,+1, = + - (4.24)
0(.‘ t
We assume the time required for the two adiabatic strokes of the engine to
be negligible relative to (7, + ¢_), as these times are limited by relatively
rapid relaxation times within the working fluid itself. Furthermore the
relaxation times within the working fluid can be shortened by appropriate
design of the piston and cylinder dimensions, internal baffles, and the like.
Now Q,, Q. and the delivered work W are related by the Carnot
efficiency of an engine working between the temperatures 7, and T,, so
that equation 4.24 becomes

t_[l 1 T, 1 1 T,

Zn—nn—r*&z—nn—AW (4.25)
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The power output of the engine is W/¢, and this quantity is to be
maximized with respect to the two as yet undetermined temperatures T,
and 7,. The optimum intermediate temperatures are then found to be

T,=c(T,)”* T,=c(1)” (4.26)
where

[(0,1)'” +(o.T.)"]

c= 4.27
(7 + 07] 2
and the optimum power delivered by the engine is
W Thl/Z _ Tc1/2 2
power = (_t_)max = 0,0, W (428)

Let e, denote the efficiency of such an “endoreversible engine maxi-
mized for power”; for which we find
by =1 —(T,/T,)"” (4.29)
Remarkably, the engine efficiency is not dependent on the conductances
o, and o !
Large power plants are evidently operated close to the criterion for

maximum power output, as Curzon and Ahlborn demonstrate by data on
three power plants, as shown in Table 4.1.

TABLE 4.1
Efficiencies of Power Plants as Compared with the Carnot Efficiency and with
the Efficiency of an Endoreversible Engine Maximized for Power Output (e,,,)."

Power Plant (°C) (°C) (Carnot) &, (observed)
West Thurrock (U.K.) coal fired steam plant ~ 25 565 0.64 0.40 036
CANDU (Canada) PHW nuclear reactor ~25 300 0.48 0.28 0.30
Larderello (Italy) geothermal steam plant 80 250 0.32 0.175 0.16

¢ From Curzon and Ahlborn.

PROBLEMS

4.9-1. Show that the efficiency of an endoreversible engine, maximized for power
output, is always less than &, Plot the former efficiency as a function of the
Carnot efficiency.
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4.9-2. Suppose the conductance o, (= o,) to be such that 1 kW is transferred to
the system (as heat flux) if its temperature is 50 K below that of the high
temperature reservoir. Assuming 7, = 800 K and T, = 300 K, calculate the
maximum power obtainable from an endoreversible engine, and find the tempera-
tures 7,, and 7, for which such an engine should be designed.

4.9-3. Consider an endoreversible engine for which the high temperature reservoir
is boiling water (100°C) and the cold reservoir is at room temperature (taken as
20°C). Assuming the engine is operated at maximum power, what is the ratio of
the amount of heat withdrawn from the high temperature reservoir (per kilowatt
hour of delivered work) to that withdrawn by a Carnot engine? How much heat is
withdrawn by each engine per kilowatt hour of delivered work?

Answer:
Ratio = 1.9

4.9-4. Assume that one cycle of the engine of Problem 4.9-3 takes 20 s and that
the conductance o, = 6, = 100 W/K. How much work is delivered per cycle?
Assuming the “control volume” (i.e., the auxiliary system) is a gas, driven through
a Carnot cycle, plot a T-S diagram of the gas during the cycle. Indicate
numerical values for each vertex of the diagram (note that one value of the
entropy can be assigned arbitrarily).

4-10 OTHER CYCLIC PROCESSES

In addition to Carnot and endoreversible engines, various other engines
are of interest as they conform more or less closely to the actual operation
of commonplace practical engines.

The Otto cycle (or, more precisely, the “air-standard Otto cycle”) is a
rough approximation to the operation of a gasoline engine. The cycle is
shown in Fig. 4.9 in a V-S diagram. The working fluid (a mixture of air
and gasoline vapor in the gasoline engine) is first compressed adiabatically

0 —
|

A V, FIGURE 4.9
V— The Otto cycle.
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(A — B). It 1s then heated at constant volume (B — C); this step crudely
describes the combustion of the gasoline in the gasoline engine. In the
third step of the cycle the working fluid is expanded adiabatically in the
“power stroke” (C — D). Finally the working fluid is cooled isochorically
to its initial state A4.

In a real gasoline engine the working fluid chemically reacts (“burns”)
during the process B — C; so that its mole number changes—an effect
not represented in the Otto cycle. Furthermore the initial adiabatic
compression i1s not quasi-static and therefore is certainly not isentropic.
Nevertheless the idealized air-standard Otto cycle does provide a rough
perspective for the analysis of gasoline engines.

In contrast to the Carnot cycle, the absorption of heat in step B — C of
the idealized Otto cycle does not occur at constant temperature. Therefore
the ideal engine efficiency is different for each infinitesimal step, and the
over-all efficiency of the cycle must be computed by integration of
the Carnot efficiency over the changing temperature. It follows that the
efficiency of the Otto cycle depends upon the particular properties of the
working fluid. It is left to the reader to corroborate that for an ideal gas
with temperature independent heat capacities, the Otto cycle efficiency is

(epmc)

V, <,
€omno = 1- ( 7:;) (4.30)

The ratio V, / V5 1s called the compression ratio of the engine.

The Brayton or Joule cycle consists of two isentropic and two isobaric
steps. It is shown on a P-S diagram in Fig. 4.10. In a working engine air
(and fuel) is compressed adiabatically (4 — B), heated by fuel combus-
tion at constant pressure (B — C), expanded (C — D), and rejected to
the atmosphere. The process D — A occurs outside the engine, and a
fresh charge of air is taken in to repeat the cycle. If the working gas 1s an
ideal gas, with temperature independent heat capacities, the efficiency of a

D C
S
A B
| IE FIGURE 410
Pa p— B The Brayton or Joule cycle.
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Brayton cycle is

P\ o
e, =1~ —”) 431
B o

The air-standard diesel cycle consists of two isentropic processes, alter-
nating with isochoric and isobaric steps. The cycle is represented in Fig.
4.11. After compression of the air and fuel mixture (4 — B), the fuel
combustion occurs at constant pressure ( B — C). The gas is adiabatically
expanded (C — D) and then cooled at constant volume (D — A).

FIGURE 4 11
The air-standard diesel cycle.

PROBLEMS

4.10-1. Assuming that the working gas s a monatomic ideal gas, plot a T-S
diagram for the Otto cycle.

4.10-2. Assuming that the working gas is a simple 1deal gas (with temperature
independent heat capacities), show that the engine efficiency of the Otto cycle is
given by equation 4.30.

4.10-3. Assuming that the working gas is a simple ideal gas (with temperature
independent heat capacities), show that the engine efficiency of the Brayton cycle
is given by equation 4.31.

4.10-4. Assuming that the working gas is a monatomuc ideal gas, plot a 7 S
diagram of the Brayton cycle.

4.10-5. Assuming that the working gas is a monatomuc ideal gas, plot a 7-S
diagram of the air-standard diesel cycle.
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ALTERNATIVE FORMULATIONS
AND

LEGENDRE TRANSFORMATIONS

5-1 THE ENERGY MINIMUM PRINCIPLE

In the preceding chapters we have inferred some of the most evident
and immediate consequences of the principle of maximum entropy. Fur-
ther consequences will lead to a wide range of other useful and fundamen-
tal results. But to facilitate those developments it proves to be useful now
to reconsider the formal aspects of the theory and to note that the same
content can be reformulated in several equivalent mathematical forms.
Each of these alternative formulations is particularly convenient in par-
ticular types of problems, and the art of thermodynamic calculations lies
largely in the selection of the particular theoretical formulation that most
incisively “fits” the given problem. In the appropriate formulation ther-
modynamic problems tend to be remarkably simple; the converse is that
they tend to be remarkably complicated in an inappropriate formalism!

Multiple equivalent formulations also appear in mechanics—Newto-
nian, Lagrangian, and Hamiltonian formalisms are tautologically equiv-
alent. Again certain problems are much more tractable in a Lagrangian
formalism than in a Newtonian formalism, or vice versa. But the dif-
ference in convenience of different formalisms is enormously greater in
thermodynamics. It is for this reason that the general theory of transforma-
tion among equivalent representations is here incorporated as a fundamental
aspect of thermostatistical theory.

In fact we have already considered two equivalent representations— the
energy representation and the entropy representation. But the basic ex-
tremum principle has been formulated only in the entropy representation.
If these two representations are to play parallel roles in the theory we
must find an extremum principle in the energy representation, analogous
to the entropy maximum principle. There is, indeed, such an extremum
principle; the principle of maximum entropy is equivalent to, and can be

131
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The plane
U= U, ™
U—
x
™~
FIGURE 51

The equilibrium state A4 as a point of maximum S for constant U.

replaced by, a principle of minimum energy. Whereas the entropy maxi-
mum principle characterizes the equilibrium state as having maximum
entropy for given total energy, the energy minimum principle char-
acterizes the equilibrium state as having minimum energy for given total
entropy.

Figure 5.1 shows a section of the thermodynamic configuration space
for a composite system, as discussed in Section 4.1. The axes labeled S
and U correspond to the total entropy and energy of the composite
system, and the axis labeled XV corresponds to a particular extensive
parameter of the first subsystem. Other axes, not shown explicitly in the
figure, are U", X , and other pairs X, X,.

The total energy of the composite system is a constant determined by
the closure condition. The geometrical representation of this closure
condition is the requirement that the state of the system lie on the plane
U= U, in Fig. 5.1. The fundamental equation of the system is repre-
sented by the surface shown, and the representative point of the system
therefore must be on the curve of intersection of the plane and the surface.
If the parameter X" is unconstrained, the equilibrium state is the
particular state that maximizes the entropy along the permitted curve; the
state labeled A in Fig. 5.1.

The alternative representation of the equilibrium state A as a state of
minimum energy for given entropy is illustrated in Fig. 5.2. Through the
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S=5,

FIGURE 5 2
The equilibrium state 4 as a point of minimum U for constant §.

equilibrium point A is passed the plane S = S, which determines a curve
of intersection with the fundamental surface. This curve consists of a
family of states of constant entropy, and the equilibrium state A is the state
that minimizes the energy along this curve.

The equivalence of the entropy maximum and the energy minimum
principles clearly depends upon the fact that the geometrical form of the
fundamental surface is generally as shown in Fig. 5.1 and 5.2. As dis-
cussed in Section 4.1, the form of the surface shown in the figures is
determined by the postulates that dS/dU > 0 and that U 1s a single-val-
ued continuous function of S; these analytic postulates accordingly are
the underlying conditions for the equivalence of the two principles.

To recapitulate, we have made plausible, though we have not yet
proved, that the following two principles are equivalent:

Entropy Maximum Principle. The equilibrium value of any unconstrained
internal parameter is such as to maximize the entropy for the given value of
the total internal energy.

Energy Minimum Principle. The equilibrium value of any unconstrained
internal parameter is such as to minimize the energy for the given value of
the total entropy.
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The proof of the equivalence of the two extremum criteria can be
formulated either as a physical argument or as a mathematical exercise.
We turn first to the physical argument, to demonstrate that if the energy
were nof minimum the entropy could not be maximum in equilibrium,
and inversely.

Assume, then, that the system is in equilibrium but that the energy does
not have its smallest possible value consistent with the given entropy. We
could then withdraw energy from the systea (in the form of work)
maintaining the entropy constant, and we could thereafter return this
energy to the system in the form of heat. The entropy of the system would
increase (dQ = T'dS), and the system would be restored to its original
energy but with an increased entropy. This is inconsistent with the
principle that the initial equilibrium state is the state of maximum
entropy! Hence we are forced to conclude that the original equilibrium
state must have had minimum energy consistent with the prescribed
entropy.

The inverse argument, that minimum energy implies maximum entropy,
is similarly constructed (see Problem 5.1-1).

In a more formal demonstration we assume the entropy maximum

principle
A EAY
-] =0 d <0 51
(GX)L an (8X2)U (1)

where, for clarity, we have written X for X, and where it is implicit that
all other X’s are held constant throughout. Also, for clarity, we tempo-
rarily denote the first derivative (dU/d X) ¢ by P. Then (by equation A.22
of Appendix A)

(%]
oU Xy ( dS
P=|-5) = - =-Tl5<| = .
( )s (iSl) TGX)U 0 (5-2)
oU | x
We conclude that U has an extremum. To classify that extremum as a
maximum, a minimum, or a point of inflection we must study the sign of

the second derivative (92U/dX?)s = (dP/3X). But considering P as a
function of U and X we have

(o)~ (5] (56) 55, +(57). - () 7 + (5.

(5.3)

-)U at P =0 (5.4)
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so that U is a minimum. The inverse argument is identical in form.

As already indicated, the fact that precisely the same situation is
described by the two extremal criteria is analogous to the isoperimetric
problem in geometry. Thus a circle may be characterized either as the two
dimensional figure of maximum area for given perimeter or, alternatively,
as the two dimensional figure of minimum perimeter for given area.

The two alternative extremal criteria that characterize a circle are
completely equivalent, and each applies to every circle. Yet they suggest
two different ways of generating a circle. Suppose we are given a square
and we wish to distort it continuously to generate a circle. We may keep
its area constant and allow its bounding curve to contract as if it were a
rubber band. We thereby generate a circle as the figure of minimum
perimeter for the given area. Alternatively we might keep the perimeter of
the given square constant and allow the area to increase, thereby obtain-
ing a (different) circle, as the figure of maximum area for the given
perimeter. However, after each of these circles is obtained each satisfies
both extremal conditions for its final values of area and perimeter.

The physical situation pertaining to a thermodynamic system is very
closely analogous to the geometrical situation described. Again, any
equilibrium state can be characterized either as a state of maximum
entropy for given energy or as a state of minimum energy for given
entropy. But these two criteria nevertheless suggest two different ways of
attaining equilibrium. As a specific illustration of these two approaches to
equilibrium, consider a piston originally fixed at some point in a closed
cylinder. We are interested in bringing the system to equilibrium without
the constraint on the position of the piston. We can simply remove the
constraint and allow the equilibrium to establish itself spontaneously; the
entropy increases and the energy is maintained constant by the closure
condition. This is the process suggested by the entropy maximum princi-
ple. Alternaiively, we can permit the piston to move very slowly, reversi-
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bly doing work on an external agent until it has moved to the position
that equalizes the pressure on the two sides. During this process energy is
withdrawn from the system, but its entropy remains constant (the process
is reversible and no heat flows). This is the process suggested by the
energy minimum principle. The vital fact we wish to stress, however, is
that independent of whether the equilibrium is brought about by either of
these two processes, or by any other process, the final equilibrium state in
each case satisfies both extremal conditions.

Finally, we illustrate the energy minimum principle by using it in place
of the entropy maximum principle to solve the problem of thermal
equilibrium, as treated in Section 2.4. We consider a closed composite
system with an internal wall that 1s rigid, impermeable, and diathermal.
Heat is free to flow between the two subsystems, and we wish to find the
equilibrium state. The fundamental equation in the energy representation
is

U= U(l)(S(l), yo, Nl(l)’ ) + U(Z)(S(z), V(Z),Nl(z), ) (5.8)

All volume and mole number parameters are constant and known. The
variables that must be computed are S and S®. Now, despite the fact
that the system is actually closed and that the total energy is fixed, the
equilibrium state can be characterized as the state that would minimize
the energy if energy changes were permitted. The virtual change in total
energy associated with virtual heat fluxes in the two systems is

dU = TVdS™ + TOgs® (5.9)

The energy minimum condition states that dU = 0, subject to the condi-
tion of fixed total entropy:

S® + §® = constant (5.10)
whence
dU = (T — TP)dsM =0 (5.11)
and we conclude that
T®O =T® (5.12)

The energy minimum principle thus provides us with the same condi-
tion of thermal equilibrium as we previously found by using the entropy
maximum principle.

Equation 5.12 is one equation in S and S®. The second equation is
most conveniently taken as equation 5.8, in which the total energy U is
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known and which consequently involves only the two unknown quantities
S™M and S®. Equations 5.8 and 5.12, in principle, permit a fully explicit
solution of the problem.

In a precisely analogous fashion the equilibrium condition for a closed
composite system with an internal moveable adiabatic wall is found to be
equality of the pressure. This conclusion is straightforward in the energy
representation but, as was observed in the last paragraph of Section 2.7, it
is relatively delicate in the entropy representation.

PROBLEMS

5.1-1. Formulate a proof that the energy minimum principle implies the entropy
maximum principle—the “inverse argument” referred to after equation 5.7. That
is, show that if the entropy were not maximum at constant energy then the energy
could not be minimum at constant entropy.

Hint: First show that the permissible increase in entropy in the system can be
exploited to extract heat from a reversible heat source (initially at the same
temperature as the system) and to deposit it in a reversible work source. The
reversible heat source is thereby cooled. Continue the argument.

5.1-2. An adiabatic, impermeable and fixed piston separates a cylinder into two
chambers of volumes V,/4 and 3V /4. Each chamber contains 1 mole of a
monatomic ideal gas. The temperatures are 7, and 7,, the subscripts s and /
referring to the small and large chambers, respectively.

a) The piston is made thermally conductive and moveable, and the system
relaxes to a new equilibrium state, maximizing its entropy while conserving its total
energy. Find this new equilibrium state.

b) Consider a small virtual change in the energy of the system, maintaining the
entropy at the value attained in part (a). To accomplish this physically we can
reimpose the adiabatic constraint and quasistatically displace the piston by
imposition of an external force. Show that the external source of this force must
do work on the system in order to displace the piston in either direction. Hence
the state attained in part (a) is a state of minimum energy at constant entropy.

¢) Reconsider the initial state and specify how equilibrium can be established by
decreasing the energy at constant entropy. Find this equilibrium state.

d) Describe an operation that demonstrates that the equilibrium state attained in
(¢) is a state of maximum entropy at constant energy.

5-2 LEGENDRE TRANSFORMATIONS

In both the energy and entropy representations the extensive parame-
ters play the roles of mathematically independent variables, whereas the
intensive parameters arise as derived concepts. This situation is in direct
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contrast to the practical situation dictated by convenience in the labora-
tory. The experimenter frequently finds that the intensive parameters are
the more easily measured and controlled and therefore is likely to think of
the intensive parameters as operationally independent variables and of the
extensive parameters as operationally derived quantities. The extreme
instance of this situation is provided by the conjugate variables entropy
and temperature. No practical instruments exist for the measurement and
control of entropy, whereas thermometers and thermostats, for the mea-
surement and control of the temperature, are common laboratory
equipment. The question therefore arises as to the possibility of recasting
the mathematical formalism in such a way that intensive parameters will
replace extensive parameters as mathematically independent variables. We
shall see that such a reformulation is, in fact, possible and that it leads to
various other thermodynamic representations.

It is, perhaps, superfluous at this point to stress again that thermody-
namics is logically complete and self-contained within either the entropy
or the energy representations and that the introduction of the transformed
representations is purely a matter of convenience. This is, admittedly, a
convenience without which thermodynamics would be almost unusably
awkward, but in principle it is still only a luxury rather than a logical
necessity.

The purely formal aspects of the problem are as follows. We are given
an equation (the fundamental relation) of the form

Y=Y(X,X,....X) (5.13)
and it is desired to find a method whereby the derivatives

_ay
P= 33 (5.14)

can be considered as independent variables without sacrificing any of the
informational content of the given fundamental relation(5.13). This formal
problem has its counterpart in geometry and in several other fields of
physics. The solution of the problem, employing the mathematical tech-
nique of Legendre transformations, is most intuitive when given its
geometrical interpretation; and it is this geometrical interpretation that we
shall develop in this Section.

For simplicity, we first consider the mathematical case in which the
fundamental relation is a function of only a single independent vari-
able X.

Y = Y(X) (5.15)

Geometrically, the fundamental relation is represented by a curve in a
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X FIGURE 5.3

space (Fig. 5.3) with cartesian coordinates X and Y, and the derivative

)4
P=Zs (5.16)

is the slope of this curve. Now, if we desire to consider P as an
independent variable in place of X, our first impulse might be simply to
eliminate X between equations 5.15 and 5.16, thereby obtaining Y as a
function of P

Y = Y(P) (5.17)

A moment’s reflection indicates, however, that we would sacrifice some of
the mathematical content of the given fundamental relation (5.15) for,
from the geometrical point of view, it is clear that knowledge of Y as a
function of the slope dY/dX would not permit us to reconstruct the curve
Y = Y(X). In fact, each of the displaced curves shown in Fig. 5.4
corresponds equally well to the relation ¥ = Y(P). From the analytical
point of view the relation ¥ = Y(P) is a first-order differential equation,
and its integration gives Y = Y(X) only to within an undetermined
integration constant. Therefore we see that acceptance of Y = Y(P) as a
basic equation in place of Y = Y( X) would involve the sacrifice of some
information originally contained in the fundamental relation. Despite the

X FIGURE 5.4
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FIGURE 5.5

desirability of having P as a mathematically independent variable, this
sacrifice of the informational content of the formalism would be com-
pletely unacceptable.

The practicable solution to the problem is supplied by the duality
between conventional point geometry and the Pluecker line geometry. The
essential concept in line geometry is that a given curve can be represented
equally well either (a) as the envelope of a family of tangent lines (Fig.
5.5), or (b) as the locus of points satisfying the relation Y = Y( X). Any
equation that enables us to construct the family of tangent lines therefore
determines the curve equally as well as the relation Y = Y( X).

Just as every point in the plane is described by the two numbers X and
Y, so every straight line in the plane can be described by the two numbers
P and v, where P is the slope of the line and ¥ is its intercept along the
Y-axis. Then just as a relation Y = Y( X) selects a subset of all possible
points (X, Y), a relation ¢ = {/(P) selects a subset of all possible lines
(P.¥). A knowledge of the intercepts ¢ of the tangent lines as a function
of the slopes P enables us to construct the family of tangent lines and
thence the curve of which they are the envelope. Thus the relation

v=v(P) (5.18)

is completely equivalent to the fundamental relation Y = Y( X). In this
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relation the independent variable is P, so that equation 5.18 provides a
complete and satisfactory solution to the problem. As the relation ¢ =
Y (P) is mathematically equivalent to the relation Y = Y( X), it can also
be considered a fundamental relation; ¥ = Y(X) is a fundamental rela-
tion in the “Y-representation”; whereas ¢ = ¢(P) is a fundamental
relation in the “y-representation.”

The reader is urged at this point actually to draw a reasonable number
of straight lines, of various slopes P and of various Y-intercepts y = — P2,
The relation y = — P2 thereby will be seen to characterize a parabola
(which is more conventionally described as Y = } X?). In y-representation
the fundamental equation of the parabola is Y = — P2, whereas in Y-rep-
resentation the fundamental equation of this same parabola is ¥ = 1 X2

The question now arises as to how we can compute the relation
Y = ¢(P) if we are given the relation Y = Y(X). The appropriate
mathematical operation is known as a Legendre transformation. We
consider a tangent line that goes through the point ( X, Y) and has a slope
P. If the intercept is ¥, we have (see Fig. 5.6)

_Y-y
P-—= (5.19)
or
Y=Y - PX (5.20)

Let us now suppose that we are given the equation

Y = Y(X) (5.21)

(X,Y)

0,

X — FIGURE 5 6
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and by differentiation we find
P = P(X) (5.22)

Then by elimination' of X and Y among equations 5.20, 5.21, and 5.22 we
obtain the desired relation between ¢ and P. The basic identity of the
Legendre transformation is equation 5.20, and this equation can be taken
as the analytic definition of the function . The function ¢ is referred to
as a Legendre transform of Y.

The inverse problem is that of recovering the relation Y = Y( X) if the
relation ¢ = Y (P) is given. We shall see here that the relationship
between ( X, Y) and (P, ¢) is symmetrical with its inverse, except for a
sign in the equation of the Legendre transformation. Taking the differen-
tial of equation 5.20 and recalling that dY = PdX, we find

dy = dY — PdX — XdP

=~ —XdP (5.23)
or
-4
X=" (5.24)

If the two variables  and P are eliminated’ from the given equation
¢ = ¢(P) and from equations 5.24 and 5.20, we recover the relation
Y = Y(X). The symmetry between the Legendre transformation and its
inverse is indicated by the following schematic comparison:

Y =Y(X) ¥ =y(P)
p_ dY Y
dX dp
y=—-PX+Y Y=XP+4y
Elimination of X and Y yields Elimination of P and ¢ yields
¥ ={Y(P) Y = Y(X)

The generahlization of the Legendre transformation to functions of more
than a single independent variable is simple and straightforward. In three
dimensions Y is a function of X, and X, and the fundamental equation
represents a surface. This surface can be considered as the locus of points

'This ehmmauon 1s possible 1f P 1s not independent of X, that 1s, if d2Y/dx? # 0 In the
thermodynamic apphcation this entenon will turn out to be 1dentical to the entenon of stability The
cntenon fails only at the “cntical points.” which are discussed in detail in Chapter 10

2The condition that this be possible 1s that d2¢/dP? + 0, which will, 1in the thermodynamic
application, be guaranteed by the stability of the system under consideration
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satisfying the fundamental equation Y = Y( X,, X;), or it can be consid-
ered as the envelope of tangent planes. A plane can be characterized by its
intercept ¥ on the Y-axis and by the slopes P, and P, of its traces on the
Y — X, and Y — X planes. The fundamental equation then selects from
all possible planes a subset described by ¢ = ¢/( P, P,).

In general the given fundamental relation

= Y(X,, X15.--, X)) (5.25)
represents a hypersurface in a (¢ + 2)-dimensional space with cartesian
coordinates Y, X,, X,,..., X,. The derivative

aY
P = -5}: (526)

is the partial slope of this hypersurface. The hypersurface may be equally
well represented as the locus of points satisfying equation 5.25 or as the
envelope of the tangent hyperplanes. The family of tangent hyperplanes
can be characterized by giving the intercept of a hyperplane, ¢, as a
function of the slopes Py, P;,..., P.. Then

y=Y- Y PX, (5.27)
k

Taking the differential of this equation, we find

dy= -3 X,dP, (5.28)
k
whence
_ 99
~X= 35, (5.29)

A Legendre transformation is effected by eliminating Y and the X, from
Y = Y(X,, Xj,..-, X,), the set of equations 5.26, and equation 5.27. The
inverse transformation is effected by eliminating ¢ and the P, from
Y = y(P, P,,..., P), the set of equations 5.29, and equation 5.27.
Finally, a Legendre transformation may be made only in some (n + 2)-
dimensional subspace of the full (¢t + 2)-dimensional space of the relation
Y = Y(X,, X,,..., X,). Of course the subspace must contain the Y-coor-
dinate but may involve any choice of n + 1 coordinates from the set
Xy, Xp»..., X,. For convenience of notation, we order the coordinates so
that the Legendre transformation is made in the subspace of the first
n + 1 coordinates (and of Y'); the coordinates X, ;, X, .»..--- X are left
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untransformed. Such a partial Legendre transformation is effected merely
by considering the variables X, ,, X, ,,,..., X, as constants in the trans-
formation. The resulting Legendre transform must be denoted by some
explicit notation that indicates which of the independent variables
have participated in the transformation. We employ the notation
Y[P,y, P;,..., P,] to denote the function obtained by making a Leg-
endre transformation with respect to X, X;,..., X, on the function
Y( Xy, Xy ..., X,). Thus Y[ Py, P,,..., P,]is a function of the independent
variables Py, Py,..., P, X,,1,..., X,. The various relations involved in a
partial Legendre transformation and its inverse are indicated in the

following table.

Y=Y(X, X,,..., X))

ay

Pe=7%%,

The partial differentiation denotes
constancy of all the natural varia-
bles of Y other than X, (i.e., of all
X, with j # k)

t
dy =Y P dX,
0

Y{Py,...,Pl=Y - Y P X,
0

Elimination of Y and X,
Xy, ..., X, from equations 5.30,
5.33, and the first » + 1 equations
of 531 yields the transformed
fundamental relation.

Y[F,, P, ..., P,] = function of
Py, Py .. )P X, 15 X, (5.30
aY[P,,...,P,]
(5.31)
3Y[Py,.... P,

The partial differentiation denotes
constancy of all the natural varia-
bles of Y(F,,...,P,) other than
that with respect to which the
differentiation is being carried out.

dY[P,,...,P,]

14
L Pdx,

= —-Y X.dP, +
0 n+ 1
(5.32)

"

Y=Y[P,...,P]+ Y. XP,
0

(5.33)
Elimination of Y{[P,,...,P,] and
Py, P,..., P, from equations
5.30, 5.33, and the first n + 1
equations of 5.31 yields the origi-

nal fundamental relation.

In this section we have divorced the mathematical aspects of Legendre
transformations from the physical applications. Before proceeding to the
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thermodynamic applications in the succeeding sections of this chapter, it
may be of interest to indicate very briefly the application of the formalism
to Lagrangian and Hamiltonian mechanics, which perhaps may be a more
familiar field of physics than thermodynamics. The Lagrangian principle
guarantees that a particular function, the Lagrangian, completely char-
acterizes the dynamics of a mechanical system. The Lagrangian is a
function of 2r variables, r of which are generalized coordinates and r of
which are generalized velocities. Thus the equation

L:L(Ul’UZ""’”r’ql’qZ""7qf') (534)

plays the role of a fundamental relation. The generalized momenta are
defined as derivatives of the Lagrangian function

oL
dv,,

If it is desired to replace the velocities by the momenta as independent
variables, we must make a partial Legendre transformation with respect to
the velocities. We thereby introduce a new function, called the Hamilto-
nian, defined by?

P, (5.35)

(-H)=L - X’QP,(U,( (5.36)

A complete dynamical formalism can then be based on the new funda-
mental relation

H=H(P,P),....,P,q1,45,---,4,) (5.37)

r

Furthermore, by equation 5.31 the derivative of H with respect to P, is
the velocity v,, which is one of the Hamiltonian dynamical equations.
Thus, if an equation of the form 5.34 is considered as a dynamical
fundamental equation in the Lagrangian representation, the Hamiltonian
equation (5.37) is the equivalent fundamental equation expressed in the
Hamiltonian representation.

PROBLEMS

5.2-1. The equation y = x2/10 describes a parabola.

a) Find the equation of this parabola in the “line geometry representation”
¥ = ¢(P).

b) On a sheet of graph paper (covering the range roughly from x = —15 to
x = +15 and from y = —25 to y = +25) draw straight lines with slopes P = (,

3In our usage the Legendre transform of the Lagrangian 1s the negutve Hamiltoman Actually, the
accepted mathematical convention agrees with the usage in mechanics, and the function —¢ would be
called the Legendre transform of ¥
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+0.5, £1, +£2, +3 and with intercepts iy satisfying the relationship ¢ = {/(P) as
found in part (a). (Drawing each straight line is facilitated by calculating its
intercepts on the x-axis and on the y-axis.)

5.2-2. Let y = de®~

a) Find ¢(P).

b) Calculate the inverse Legendre transform of (P) and corroborate that this
result is y(x).

¢) Taking 4 = 2 and B = 0.5, draw a family of tangent lines in accordance with
the result found in (@), and check that the tangent curve goes through the
expected points at x = 0, 1, and 2.

5-3 THERMODYNAMIC POTENTIALS

The application of the preceding formalism to thermodynamics is
self-evident. The fundamental relation Y = Y( X, X,, ...) can be inter-
preted as the energy-language fundamental relation U = U(S,
Xy Xy, ooy X)) or U= U(S,V, N, N,, ...). The derivatives Py, P, ...
correspond to the intensive parameters 7, — P, p;, pt,, ... . The Legendre
transformed functions are called thermodynamic potentials, and we now
specifically define several of the most common of them. In Chapter 6 we
continue the discussion of these functions by deriving extremum princi-
ples for each potential, indicating the intuitive significance of each, and
discussing its particular role in thermodynamic theory. But for the mo-
ment we concern ourselves merely with the formal aspects of the defini-
tions of the several particular functions.

The Helmholtz potential or the Helmholtz free energy, is the partial
Legendre transform of U that replaces the entropy by the temperature as
the independent vanable. The internationally adopted symbol for the
Helmbholtz potential is F. The natural variables of the Helmholtz potential
are T,V, N, N,, ... . That is, the functional relation F =
F(T,V, N, N,, ...) constitutes a fundamental relation. In the systematic
notation introduced in Section 5.2

F=U[T] (5.38)

The full relationship between the energy representation and the
Helmbholtz representation, is summarized in the following schematic com-
parison:

U= US,V,N, N, ...) F=FT,V,N,N,, ...) (5.39)
T = dU/dS —-S = 9F/dT (5.40)
F=U-TS U=F+TS (5.41)

Elimination of U and § yields| Elimination of F and T yields
F=FKT,V,N,N,, ...) U= U(S,V,N,, N,, ...)
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The complete differential dF is
dF = —SdT — PdV + p, dN, + p,dN, + --- (5.42)

The enthalpy is that partial Legendre transform of U that replaces the
volume by the pressure as an independent variable. Following the recom-
mendations of the International Unions of Physics and of Chemistry, and
in agreement with almost universal usage, we adopt the symbol H for the
enthalpy. The natural variables of this potential are S, P, N;, N,, ... and

H=U|[P] (5.43)

The schematic representation of the relationship of the energy and en-
thalpy representations is as follows:

U=U(S,V,N, N,, ...) H = H(S,P,N,N,, ...) (5.44)
—P=9U/dV V=d0dH/IP (5.45)
H=U+PV U=H-PV (5.46)
Elimination of U and ¥V yields | Elimination of H and P yields
H = H(S,P,N,N,, ...) U= US,V,N, N, ...)

Particular attention is called to the inversion of the signs in equations
5.45 and 5.46, resulting from the fact that — P is the intensive parameter
associated with V. The complete differential dH is

dH = TdS + VdP + p, dN, + p,dN, + - -- (5.47)

The third of the common Legendre transforms of the energy is the
Gibbs potential, or Gibbs free energy. This potential is the Legendre
transform that simultaneously replaces the entropy by the temperature
and the volume by the pressure as independent variables. The standard

notation is G, and the natural variables are T, P, N, N,, ... . We thus
have
G=U|T, P] (5.48)
and
U=U(S7VaNlaN2a”') G=G(T,P,N1,N2,...) (5'49)
T=209dU/dS -8 =9dG/oT (5.50)
—~P=09U/aV V=4aG/dP (5.51)
G=U-TS+ PV U=G+ TS - PV (5.52)
Elimination of U, S, and V yields | Elimination of G, T, and P yields
G =G(T,P,N,N,, ...) U=US,V,N,N,, ...)
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The complete diflerential dG is
dG = —8SdT + VdP + p;dN; + p,dN, + --- (5.53)

A thermodynamic potential which arises naturally in statistical me-
chanics is the grand canonical potential, U[T, p]. For this potential we
have

U=U(S,V,N) U[T, p] = function of 7, V, and p (5.54)
T=09U/dS —8 = JU|[T, pl/oT (5.55)
p=0dU/IN —N = JUI[T, p]/dn (5.56)
UlT,pl=U—- TS — pN U=U[T,p]+ TS+ pN (557
Elimination of Elimination of
U, S, and N yields U[T, p], T, and p yields
U[T, p] as a functionof T, V, p U= U(S,V,N)
and
dU|[T,p] = —SdT — PdV — Ndp (5.58)

Other possible transforms of the energy for a simple system, which are
used only infrequently and which consequently are unnamed, are U[y,],
UlLP, ], UIT, p,, p,], and so forth. The complete Legendre transform is
UIT, P, py, by, - .., 12, ). The fact that U(S,V, N, N,,..., N)) is a homoge-
neous first-order function of its arguments causes this latter function to
vanish identically. For

U[Ta Pal"‘l,'--,“r] =U—-TS + PV—P‘INI _p‘ZNZ_ RIS —“rN

r

(5.59)
which, by the Euler relation (3.6), is identically zero

U[T,P,Pq,—--,“r] EO (5'60)

PROBLEMS

5.3-1. Find the fundamental equation of a monatomic ideal gas in the Helmholtz
representation, in the enthalpy representation, and in the Gibbs representation.
Assume the fundamental equation computed in Section 3.4. In each case find the
equations of state by differentiation of the fundamental equation.

5.3-2. Find the fundamental equation of the ideal van der Waals fluid (Section
3.5) in the Helmholtz representation.

Perform an inverse Legendre transform on the Helmholtz potential and show
that the fundamental equation in the energy representation is recovered.
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5.3-3. Find the fundamental equation of electromagnetic radiation in the Helm-
holtz representation. Calculate the “thermal” and “mechanical” equations of
state and corroborate that they agree with those given in Section 3.6.

5.3-4%. Justify the following recipe for obtaining a plot of F(V') from a plot of
G (P) (the common dependent variables T and N being notationally suppressed
for convenience).

P \ 4

(1) At a chosen value of P draw the tangent line A.
(2) Draw horizontal lines B and C through the intersections of A with P = 1 and
P=0.
(3) Draw the 45° line D as shown and project the intersection of B and D onto
the line C to obtain the point F(V).
Hint: ldentify the magnitude of the two vertical distances indicated in the G
versus P diagram, and also the vertical separation of lines B and C.
Note that the units of F and V are determined by the chosen units of G and P.
Explain.
Give the analogous construction for at least one other pair of potentials.
Note that G(P) is drawn as a concave function (i.e., negative curvature) and
show that this is equivalent to the statement that x> 0.

5.3-5. From the first acceptable fundamental equation in Problem 1.10-1 calcu-
late the fundamental equation in Gibbs representation. Calculate «(T7, P),
k+(T, P), and ¢, (T, P) by differentiation of G.

5.3-6. From the second acceptable fundamental equation in Problem 1.10-1
calculate the fundamental equation in enthalpy representation. Calculate
V(S, P, N) by differentiation.

5.3-7. The enthalpy of a particular system is

P
= 21 —_—
H=AS°N ln( Po)

“Adapted from H E Stanley, Introduction to Phuse Trunsitions and Criticul Phernomena (Oxford
University Press, 1971)
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where A is a positive constant. Calculate the molar heat capacity at constant
volume ¢, as a function of 7 and P.

5.3-8. In Chapter 15 it is shown by a statistical mechanical calculation that the
fundamental equation of a system of N “atoms” each of which can exist in an
atomic state with energy &, or in an atomic state with energy ¢, (and in no other
state) is

= — NkgT"(e P + ¢ Bea)

Here kj is Boltzmann’s constant and 8 = 1/k ;7. Show that the fundamental
equation of this system, in entropy representation, is

£4/ €,
S = NRln(le_)
YY
where
U- Nsu
Y= ——
Ned_U

Hint: Introduce B = (kpT)"', and show first that U= F + BIF/df =
HBF)/3B. Also, for definiteness, assume g, < g, and note that Nk, = NR where N
is the number of atoms and N is the number of moles.

5.3-9. Show, for the two-level system of Problem 5.3-8, that as the temperature
increases from zero to infinity the energy increases from Nsu to N(su + &,)/2.
Thus, at zero temperature all atoms are in their “ground state” (with energy ¢,),
and at infinite temperature the atoms are equally likely to be in either state.
Energies higher than N(¢, + £4)/2 are inaccessible in thermal equilibrium! (This
upper bound on the energy is a consequence of the unphysical oversimplification
of the model; it will be discussed again in Section 15.3.)

Show that the Helmholtz potential of a mixture of simple ideal gases is the sum of
the Helmholtz potentials of each individual gas:

5.3-10.
a) Show that the Helmholtz potential of a mixture of simple ideal gases is the
sum of the Helmholtz potentials of each individual gas:

F(T,V,N,,...,N)= F(T,V,N,) + --- +F(T,V,N,)

Recall the fundamental equation of the mixture, as given in equation 3.40.
An analogous additivity does not hold for any other potential expressed in terms of
its natural variables.

5.3-11. A mixture of two monatomic ideal gases is contained in a volume V at
temperature 7. The mole numbers are N; and N,. Calculate the chemical
potentials u; and p,. Recall Problems 5.3-1 and 5.3-10.

Assuming the system to be in contact with a reservoir of given 7 and p,,
through a diathermal wall permeable to the first component but not to the second,
calculate the pressure in the system.
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5.3-12. A system obeys the fundamental relation
(s — 50)° = Avu?

Calculate the Gibbs potential G(T, P, N).
5.3-13. For a particular system 1t is found that
u=(3)Pv
and
P = AvT*

Find a fundamental equation, the molar Gibbs potential, and the Helmholtz
potential for this system.

§.3-14. For a particular system (of 1 mole) the quantity (v + a)f is known to be
a function of the temperature only (= Y(T)). Here v is the molar volume, f is
the molar Helmholtz potential, a is a constant, and Y(T') denotes an unspecified
function of temperature. It is also known that the molar heat capacity ¢, is

¢, = b(v)T?

where b(v) is an unspecified function of v.

a) Evaluate Y(T) and b(v).

b) The system is to be taken from an initial state (Tg, vy) to a final state (7}, v/).
A thermal reservoir of temperature 7, is available, as is a reversible work source.
What is the maximum work that can be delivered to the reversible work source?
(Note that the answer may involve constants unevaluated by the stated condi-
tions, but that the answer should be fully explicit otherwise.)

5-4 GENERALIZED MASSIEU FUNCTIONS

Whereas the most common functions definable in terms of Legendre
transformations are those mentioned in Section 5.3, another set can be
defined by performing the Legendre transformation on the entropy rather
than on the energy. That is, the fundamental relation in the form § =
S(U,V, N,, N,, ...) can be taken as the relation on which the transforma-
tion is performed. Such Legendre transforms of the entropy were invented
by Massieu in 1869 and actually predated the transforms of the energy
introduced by Gibbs in 1875. We refer to the transforms of the entropy as
Massieu functions, as distinguished from the thermodynamic potentials
transformed from the energy. The Massieu functions will turn out to be
particularly useful in the theory of irreversible thermodynamics, and they
also arise naturally in statistical mechanics and in the theory of thermal
fluctuations. Three representative Massieu functions are S[1/7], in which
the internal energy is replaced by the reciprocal temperature as indepen-
dent variable; S{P/T], in which the volume is replaced by P/T as
independent variable; and S{1/T, P/T], in which both replacements are
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made simultaneously. Clearly

1 1, F
s[—T_=s— U= ~7 (s.61)
P1_ P
S[T‘ =S-T1v (5.62)
and
1 P 1 P G
S[T’?_‘S_TU—?'V__? (5.63)

Thus, of the three, only S[P/T] is not trivially related to one of the
previously introduced thermodynamic potentials. For this function

S =8S(U,V,N,N,, ...) |S[P/T] = function of
U P/T,N, N,,...,(5.64)
P/T = dS/dV -V =209S[P/T)/A(P/T) (5.65)
S[P/T]=S—-(P/THV S=S[P/T]+ (P/T)V (5.66)
Elimination of Elimination of
S and V yields S[P/T] S[P/T]and P/T yields
as a function of U, P/T, N, N,, ... S=8(U,V,N, N,, ...)

and
dS[P/T] = (1/T)dU - Vd(P/T) —(p,/T) dN, — “—7% dn, ...

(5.67)

Other Massieu functions may be invented and analyzed by the reader as a
particular need for them arises.

PROBLEMS

5.4-1. Find the fundamental equation of a monatomic ideal gas in the representa-

tion
P p]

S[ T'T
Find the equations of state by differentiation of this fundamental equation.
5.4-2. Find the fundamental equation of electromagnetic radiation (Section 3.6)
a) in the representation S[1/7T]
b) in the representation S[P/T]
5.4-3. Find the fundamental equation of the ideal van der Waals fluid in the

representation S[1/T). Show that S[1/T] is equal to — F/T (recall that F was
computed in Problem 5.3-2).
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THE EXTREMUM PRINCIPLE

IN THE LEGENDRE

TRANSFORMED REPRESENTATIONS

6-1 THE MINIMUM PRINCIPLES FOR THE POTENTIALS

We have seen that the Legendre transformation permits expression of
the fundamental equation in terms of a set of independent variables
chosen to be particularly convenient for a given problem. Clearly, how-
ever, the advantage of being able to write the fundamental equation in
various representations would be lost if the extremum principle were not
itself expressible in those representations. We are concerned, therefore,
with the reformulation of the basic extremum principle in forms ap-
propriate to the Legendre transformed representations.

For definiteness consider a composite system in contact with a thermal
reservoir. Suppose further that some internal constraint has been removed.
We seek the mathematical condition that will permit us to predict the
equilibrium state. For this purpose we first review the solution of the
problem by the energy minimum principle.

In the equilibrium state the total energy of the composite system-plus-
reservolr is minimum:

diU+U)=0 (6.1)
and

d*(U+ U")=d*U>0 (6.2)
subject to the isentropic condition

d(S+S)=0 (6.3)

18
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The quantity d?U” has been put equal to zero in equation 6.2 because
d2U" is a sum of products of the form

d*U" R
X oX; ax;dX;
which vanish for a reservoir (the coefficient varying as the reciprocal of the
mole number of the reservoir).

The other closure conditions depend upon the particular form of the
internal constraints in the composite system. If the internal wall is
movable and impermeable, we have

ANV =dNP =d(V®P + V?) =0  (forall j) (6.4)

whereas, if the internal wall is rigid and permeable to the & th component,
we have

d(Nk(l) + Nk(Z)) = de(l) = dN}(Z) =dV O =4qdr®d =9 (j + k)
(6.5)

These equations suffice to determine the equilibrium state.

The differential dU in equation 6.1 involves the terms TVdS‘V +
T@dS® which arise from heat flux among the subsystems and the
reservoir, and terms such as —PMdV® — pAgy® and pldND +
p? dN®, which arise from processes within the composite system. The
terms TMdS® + T@4S™ combine with the term dU’ = T'dS" in equa-
tion 6.1 to yield

TOLESD 4 TAOGSD 4 Trds™ = THGSH + T@Gs@ — T’d(S“’ + §@)
=0 (6.6)

whence
TO=T®=T7" (6.7)

Thus one evident aspect of the final equilibrium state is the fact that the
reservoir maintains a constancy of temperature throughout the system.
The remaining conditions of equilibrium naturally depend upon the
specific form of the internal constraints in the composite system.

To this point we have merely reviewed the application of the energy
minimum principle to the composite system (the subsystem plus the
reservoir). We are finally ready to recast equations 6.1 and 6.2 into the
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language of another representation. We rewrite equation 6.1
d(U+ U")=dU+ T'dS"=0 (6.8)
or, by equation 6.3
dU—-T'dS =0 (6.9)
or, further, since 7’ is a constant
d(U-T'S)=0 (6.10)

Similarly, since 7’ is a constant and S is an independent variable,
equation 6.2 implies’

dU=d*(U—-T'S)>0 (6.11)

Thus the quantity (U — 7'S) is minimum in the equilibrium state. Now
the quantity U — T'S is suggestive by its form of the Helmholtz potential
U — TS. We are therefore led to examine further the extremum properties
of the quantity (U — T'S) and to ask how these may be related to the
extremum properties of the Helmholtz potential. We have seen that an
evident feature of the equilibrium is that the temperature of the composite
system (i.e., of each of its subsystems) is equal to 7". If we accept that
part of the solution, we can immediately restrict our search for the
equilibrium state among the manifold of states for which T = 7’. But
over this manifold of states U — TS is identical to U — T'S. Then we can
write equation 6.10 as

dF =d(U—-TS)=0 (6.12)
subject to the auxiliary condition that
T=T" (6.13)

That 1s, the equilibrium state minimizes the Helmholtz potential, not
absolutely, but over the manifold of states for which 7= T'". We thus
arrive at the equilibrium condition in the Helmholtz potential representa-
tion.

Helmholtz Potential Minimum Principle. The equilibrium value of any
unconstrained nternal parameter 1n a system in diathermal contact with a
heat reservoir minimizes the Helmholtz potential over the manifold of states
for which T = T".

142U represents the second-order terms in the expansion of {7 in powers of dS, the linear term
—T’S in equation 611 contnbutes to the expansion only in first order (see equation A9 of
Appendix A)
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The intuitive significance of this principle is clearly evident in equations
6.8 through 6.10. The energy of the system plus the reservoir is, of course,
mimmum. But the statement that the Helmholtz potential of the system
alone is minimum is just another way of saying this, for dF = d(U — TS),
and the term d(—T7S) actually represents the change in energy of the
reservoir (since 7= 7" and —dS = dS"). It is now a simple matter to
extend the foregoing considerations to the other common representations.

Consider a composite system in which all subsystems are in contact
with a common pressure reservoir through walls nonrestrictive with re-
spect to volume. We further assume that some internal constraint within
the composite system has been removed. The first condition of equi-
librium can be written

d(U+ U)=dU—-PdV'=dU+ P'dV =0 (6.14)
or
d(U+PV)=0 (6.15)
Accepting the evident condition that P = P’, we can write
dH=d(U+ PV)=20 (6.16)
subject to the auxiliary restriction
P=P (6.17)
Furthermore, since P’ is a constant and V' is an independent variable
d*H=d U+ PV)=d*U>0 (6.18)
so that the extremum is a minimum.

Enthalpy Minimum Principle. The equilibrium value of any unconstrained
internal parameter in a system in contact with a pressure reservoir minimizes
the enthalpy over the manifold of states of constant pressure (equal to that of
the pressure reservoir).

Finally, consider a system in simultaneous contact with a thermal and a
pressure reservoir. Again

dU+U)=dU—-TdS +PdV=20 (6.19)
Accepting the evident conditions that 7 = T' and P = P’, we can write

dG =d(U—= TS + PV) =0 (6.20)
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subject to the auxiliary restrictions
T=T" P=P' (6.21)
Again
d*G=d* (U-T'S+PV)=d*’U>0 (6.22)
We thus obtain the equilibrium condition in the Gibbs representation.

Gibbs Potential Minimum Principle. The equilibrium value of any uncon-
strained internal parameter in a system in contact with a thermal and a
pressure reservoir minimizes the Gibbs potential at constant temperature and
pressure (equal to those of the respective reservoirs).

If the system is characterized by other extensive parameters in addition
to the volume and the mole numbers the analysis is identical in form and
the general result is now clear:

The General Minimum Principle for Legendre Transforms of the Energy.
The equilibrium value of any unconstrained internal parameter in a system in
contact with a set of reservoirs (with intensive parameters P, P],...)
minimizes the thermodynamic potential U[ P, P,,...] at constant P, P,, ...
(equal tg P{, Pj,...).

6-2 THE HELMHOLTZ POTENTIAL

For a composite system in thermal contact with a thermal reservoir the
equilibrium state minimizes the Helmholtz potential over the manifold of
states of constant temperature (equal to that of the reservoir). In practice
many processes are carried out in rigid vessels with diathermal walls, so
that the ambient atmosphere acts as a thermal reservoir; for these the
Helmholtz potential representation is admirably suited.

The Helmholtz potential is a natural function of the variables
T,V, N, N,,....The condition that T is constant reduces the number of
variables in the problem, and F effectively becomes a function only of the
variables V and N, N,,... . This is in marked contrast to the manner in
which constancy of T would have to be handled in the energy representa-
tion: there U would be a function of S,V, N;, N,,... but the auxiliary
condition 7 = 7" would imply a relation among these variables. Particu-
larly in the absence of explicit knowledge of the equation of state
T = T(S,V, N) this auxiliary restriction would lead to considerable awk-
wardness in the analytic procedures in the energy representation.

As an illustration of the use of the Helmholtz potential we first consider
a composite system composed of two simple systems separated by a
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Piston

“Hotplate”, 7"

FIGURE 6.1

movable, adiabatic, impermeable wall (such as a solid insulating piston).
The subsystems are each in thermal contact with a thermal reservoir of
temperature 7" (Fig. 6.1). The problem, then, is to predict the volumes V'V
and V® of the two subsystems. We write

PO(T VO NO NO, )= POT VO, NO NP,...) (6.23)

This is one equation involving the two variables V¥ and V®; all other
arguments are constant. The closure condition

Vv + V@ = ¥, aconstant (6.24)

provides the other required equation, permitting explicit solution for ¥
and VO,

In the energy representation we would also have found equality of the
pressures, as in equation 6.23, but the pressures would be functions of the
entropies, volumes, and mole numbers. We would then require the equa-
tions of state to relate the entropies to the temperature and the volumes;
the two simultaneous equations, 6.23 and 6.24, would be replaced by four.

Although this reduction of four equations to two may seem to be a
modest achievement, such a reduction is a very great convenience in more
complex situations. Perhaps of even greater conceptual value is the fact
that the Helmholtz representation permits us to focus our thought
processes exclusively on the subsystem of interest, relegating the reservoir
only to an implicit role. And finally, for technical mathematical reasons to
be elaborated in Chapter 16, statistical mechanical calculations are enor-
mously simpler in Helmholtz representations, permitting calculations that
would otherwise be totally intractable.

For a system in contact with a thermal reservoir the Helmholtz poten-
tial can be interpreted as the available work at constant temperature.
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Consider a system that interacts with a reversible work source while being
in thermal contact with a thermal reservoir. In a reversible process the
work input to the reversible work source is equal to the decrease in energy
of the system and the reservoir

dWews = —dU — dU" = —dU — T"dS" (6.25)
= —dU + T'dS = —d(U - T'S) (6.26)
= —dF (6.27)

Thus the work delivered in a reversible process, by a system in contact with a
thermal reservoir, is equal to the decrease in the Helmholtz potential of the
systepr. The Helmholtz potential is often referred to as the Helmholtz
“free energy,” though the term available work at constant temperature
would be less subject to misinterpretation.

Example 1

A cylinder contains an internal piston on each side of which is one mole of a
monatomic ideal gas. The walls of the cylinder are diathermal, and the system is
immersed in a large bath of liquid (a heat reservoir) at temperature 0°C. The
initial volumes of the two gaseous subsystems (on either side of the piston) are 10
liters and 1 liter, respectively. The piston is now moved reversibly, so that the
final volumes are 6 liters and 5 liters, respectively. How much work is delivered?

Solution
As the reader has shown in Problem 5.3-1, the fundamental equation of a
monatomic ideal gas in the Helmholtz potential representation is

F, TV?v({nN)!
= ””{ NoRT, 1"[( 5 %l%)

At constant T and N this is simply
F = constant — NRT InV
The change in Helmholtz potential is
AF= —NRT[In6 +In5 —In10 — In1}= —NRTIn3 = —2.5kJ

Thus 2.5 kJ of work are delivered in this process.

It is interesting to note that all of the energy comes from the thermal reservoir.
The energy of a monatomic ideal gas is simply 3 NRT and therefore it is constant
at constant temperature. The fact that we withdraw heat from the temperature
reservoir and deliver it entirely as work to the reversible work source does not,
however, violate the Carmot efficiency principle because the gaseous subsystems
are not left in their initial state. Despite the fact that the energy of these
subsystems remains constant, their entropy increases.
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PROBLEMS

6.2-1. Calculate the pressure on each side of the internal piston in Example 1, for
arbitrary position of the piston. By integration then calculate the work done in
Example 1 and corroborate the result there obtained.
6.2-2. Two ideal van der Waals fluids are contained in a cylinder, separated by an
internal moveable piston. There is one mole of each fluid, and the two fluids have
the same values of the van der Waals constants b and c; the respective values of
the van der Waals constant “a” are a; and a,. The entire system is in contact
with a thermal reservoir of temperature T. Calculate the Helmholtz potential of
the composite system as a function of T and of the total volume V. If the total
volume is doubled (while allowing the internal piston to adjust), what is the work
done by the system? Recall Problem 5.3-2.
6.2-3. Two subsystems are contained within a cylinder and are separated by an
internal piston. Each subsystem is a mixture of one mole of helium gas and one
mole of neon gas (each to be considered as a monatomic ideal gas). The piston is
in the center of the cylinder, each subsystem occupying a volume of 10 liters. The
walls of the cylinder are diathermal, and the system is in contact with a thermal
reservoir at a temperature of 100°C. The piston is permeable to helium but
impermeable to neon.

Recalling (from Problem 5.3-10) that the Helmholtz potential of a mixture of
simple ideal gases is the sum of the individual Helmholtz potentials (each
expressed as a function of temperature and volume), show that in the present case

T 3 T A

F= NTOfO ~ >NRTIn T~ NlRTln( A
VN, VN,
~NORTIn——2=2 — NPRT In .
VONZ(I) VONZ(Z)

where Ty, f,, Vi, and N, are attributes of a standard state (recall Problem 5.3-1),
N is the total mole number, NS is the mole number of neon (component 2) in
subsystem 1, and ¥ and ¥® are the volumes of subsystems 1 and 2, respec-
tively.

How much work is required to push the piston to such a position that the
volumes of the subsystems are § liters and 15 liters? Carry out the calculation

both by calculating the change in F and by a direct integration (as in Problem
6.2-1).

Answer:
work = RT In(3) = 893 )

6-3 THE ENTHALPY: THE
JOULE-THOMSON OR “THROTTLING” PROCESS

F‘oF a composite system in interaction with a pressure reservoir the
equilibrium state minimizes the enthalpy over the manifold of states of
constant pressure. The enthalpy representation would be appropriate to



The Enthalpy: The Joule—Thomson or “Throttiing™ Process 161

processes carried out in adiabatically insulated cylinders fitted with adia-
batically insulated pistons subject externally to atmospheric pressure, but
this 1s not a very common experimental design. In processes carried out in
open vessels, such as in the exercises commonly performed in an elemen-
tary chemistry laboratory, the ambient atmosphere acts as a pressure
reservoir, but it also acts as a thermal reservoir: for the analysis of such
processes only the Gibbs representation invokes the full power of Legendre
transformations. Nevertheless, there are particular situations uniquely
adapted to the enthalpy representation, as we shall see shortly.

More immediately evident is the interpretation of the enthalpy as a
“potential for heat.” From the differedtial form

dH = TdS + VdP + p,dN, + p,dN, + - -- (6.28)

it is evident that for a system in contact with a pressure reservoir and
enclosed by impermeable walls

dH = dQ (where P, N,, N,, ... are constant) (6.29)

That is, heat added to a system at constant pressure and at constant values of
all the remaining extensive parameters (other than S and V') appears as an
increase in the enthalpy.

This statement may be compared to an analogous relation for the
energy

dU=dQ  (where V, N, N,,... are constant) (6.30)

and similar results for any Legendre transform in which the entropy is not
among the transformed variables.

Because heating of a system is so frequently done while the system is
maintained at constant pressure by the ambient atmosphere, the enthalpy
is generally useful in discussion of heat transfers. The enthalpy accord-
ingly is sometimes referred to as the “heat content” of the system (but it
should be stressed again that “heat” refers to a mode of energy flux
rather than to an attribute of a state of a thermodynamic system).

To illustrate the significance of the enthalpy as a “potential for heat,”
suppose that a system is to be maintained at constant pressure and its
volume is to be changed from V, to V,. We desire to compute the heat
absorbed by the system. As the pressure is constant, the heat flux is equal
to the change in the enthalpy

Q,.,=[do=H-H, (6.31)

If we were to know the fundamental equation

H = H(S,P,N) (6.32)
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then, by differentiation

dH
V= 2P - V(S, P,N) (6.33)
and we could eliminate the entropy to find H as a function of V, P, and
N. Then

Q,. ;= H(V,,P,N)— H(V,,P,N) (6.34)

A process of great practical importance, for which an enthalpy repre-
sentation is extremely convenient, is the Joule-Thomson or “throttling”
process. This process 1s commonly used to cool and liquify gases and as a
second-stage refrigerator in “cryogenic” (low-temperature) laboratories.

In the Joule-Thomson process or “Joule-Kelvin” process (William
Thomson was only later granted peerage as Lord Kelvin) a gas 1s allowed
to seep through a porous barrier from a region of high pressure to a region
of low pressure (Fig. 6.2). The porous barrier or “throttling valve” was
originally a wad of cotton tamped into a pipe; in a laboratory demonstra-
tion it is now more apt to be glass fibers, and in industrial practice it is
generally a porous ceramic termination to a pipe (Fig. 6.3). The process
can be made continuous by using a mechanical pump to return the gas
from the region of low pressure to the region of high pressure. Depending
on certain conditions, to be developed in a moment, the gas is either
heated or cooled in passing through the throttling valve.

Piston Piston
maintaining maintaining
high Porous fow

pressure pressure

b
. == Sa0te% e 5
J/WMWWWMMW/WII//////MW///M//MMM/II/////////I/I////I//////I///////////////////////I//II////II/// s

FIGURE 6.2
Schematig representation of the Joule-Thomson process.
i

For real gases and for given initial and final pressures, the change in
temperature is generally positive down to a particular temperature, and it
is negative below that temperature. The temperature at which the process
changes from a heating to a cooling process is called the inversion
temperature; it depends upon the particular gas and upon both the initial
and final pressures. In order that the throttling process operate as an
effective cooling process the gas must first be precooled below its inversion
temperature.

To show that the Joule-Thomson process occurs at constant enthalpy
consider one mole of the gas undergoing a throttling process. The piston
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Pump

FIGURE 6.3

Schematic apparatus for liquefaction of a gas by throttling process. The pump maintains
the pressure difference ( Py, — Py, )- The spherical termination of the high pressure pipe
is a porous ceramic shell through which the gas expands in the throttling process.

(Fig. 6.2) that pushes this quantity of gas through the plug does an
amount of work P, in which v, is the molar volume of the gas on the
high pressure side of the plug. As the gas emerges from the plug, it does
work on the piston that maintains the low pressure P, and this amount of
work is P,v,. Thus the conservation of energy determines the final molar
energy of the gas; it is the initial molar energy, plus the work P,v, done on
the gas, minus the work P,uv, done by the gas.

u,=u, + Pv, — Py (6.35)
or

up+ P, =u, + P, (6.36)
which can be written in terms of the molar enthalpy 4 as

(6.37)

Although, on the basis of equation 6.37, we say that the Joule—
Thomson process occurs at constant enthalpy, we stress that this simply
implies that the final enthalpy is equal to the initial enthalpy. We do not
imply anything about the enthalpy during the process; the intermediate
states of the gas are nonequilibrium states for which the enthalpy is not
defined.

The isenthalpic curves (“isenthalps”) of nitrogen are shown in Fig. 6.4
The initial temperature and pressure in a throttling process determine a
particular isenthalp. The final pressure then determines a point on this
same isenthalp, thereby determining the final temperature.
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Isenthalps (solid), inversion temperature (dark), and coexistence curve for nitrogen;

semiquantitative.

The isenthalps in Fig. 6.4 are concave, with maxima. If the initial
temperature and pressure lie to the left of the maximum the throttling
process necessarily cools the gas. If the initial temperature lies to the right
of the maximum a small pressure drop heats the gas (though a large
pressure drop may cross the maximum and can either heat or cool the
gas). The maximum of the isenthalp therefore determines the inversion
temperature, at which a small pressure change neither heats nor cools the
gas.

The dark curve in Fig. 6.4 is a plot of inversion temperature as a
function of pressure, obtained by connecting the maxima of the isenthalpic
curves. Also shown on the figure is the curve of liquid-gas equilibrium.
Points below the curve are in the liquid phase and those above are in the
gaseous phase. This coexistence curve terminates in the “critical point.” In
the region of this point the “gas” and the “liquid” phases lose their
distinguishability, as we shall study in some detail in Chapter 9.

If the change in pressure in a throttling process is sufficiently small we
can employ the usual differential analysis.

- (31
OP | . N N,
The derivative can be expressed in terms of standard measurable quanti-
ties (c,. a, k) by a procedure that may appear somewhat complicated on

dP (6.38)
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first reading, but that will be shown in Chapter 7 to follow a routine and
straightforward recipe. By a now familiar mathematical identity (A.22),

o C N P

where we suppress the subscripts N,, N,, ... for simplicity, noting that the
mole numbers remain constant throughout. However, dH = TdS + VdP
at constant mole numbers, so that

T(3S)3P)r+ V

dq=~"Fss/eT),

dpP (6.40)

The denominator is Nc,. The derivative (dS/dP) is equal to —(dV/dT),
by one of the class of “Maxwell relations,” analogous to equations 3.62 or
3.65 (in the present case the two derivatives can be corroborated to be the
two mixed second derivatives of the Gibbs potential). Identifying
(dS/dP)= —(dV/dT)p = — Va (equation 3.67) we finally find

dT = }”—(Ta ~1)dpP (6.41)
P

This is a fundamental equation of the Joule-Thomson effect. As the
change in pressure dP is negative, the sign of dT is opposite that of the
quantity in parentheses. Thus if Ta > 1, a small decrease in pressure (in
transiting the “throttling valve) cools the gas. The inversion temperature
is determined by
aﬂnversxon = 1 (6'42)
For an ideal gas the coefficient of thermal expansion a is equal to 1/7,
so that there is no change in temperature in a Joule-Thomson expansion.
All gases approach ideal behavior at high temperature and low or mod-
erate pressure, and the isenthalps correspondingly become “flat,” as seen
in Fig. 6.4. It is left to Example 2 to show that for real gases the
temperature change is negative below the inversion temperature and
positive above, and to evaluate the inversion temperature.

Example 2
Compute the inversion temperature of common gases, assuming them to be
described by the van der Waals equation of state (3.41).

Solution
We must first evaluate the coefficient of expansion «. Differentiating the van der
Waals equation of state (3.41) with respect to 7, at constant P
_ l(gg) ] 2a(v-0) 7!
«=o\er P v—b Ruv?
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To express the right-hand side as a function of 7 and P is analytically difficult.
An approximate solution follows from the recognition that molar volumes are on
the order of 0.02 m*,' whence b/vis on the order of 107> and a/RTvis on the order
of 107% — 107* (see Table 3.1). Hence a series expansion in b/v and a/RTvcan
reasonably be terminated at the lowest order term. Let
ezl o= 4

17w ? RTv

Then

a=[ r —%(v—b)ez]-l

1 _
=7.,[1 & —2(1 - 81)82] !

Returning to equation 6.41

dT = ;y—(Ta - 1)dP
from which we recall that b

T, a=1
It then follows that at the inversion temperature
M- +26+---]1=1
or
£, = 2g,

The inversion temperature is now determined by
2a

’rmv - bR
with cooling of the gas for temperature below T, ,, and heating above. From
Table€ 3.1, we compute the inversion temperature of several gases: T, (H,) = 224
K, T,,(Ne) =302 K, T, (N,) =850 K, T,,(0,)=1020 K, T, . (CO,)= 2260
K. In fact the inversion temperature empirically depends strongly on the pressure
—a dependence lost in our calculation by the neglect of higher-order terms. The
observed inversion temperature at zero pressure for H, is 204 K, and for neon it
is 228 K—in fair agreement with our crude calculation. For polyatomic gases the
agreement is less satisfactory; the observed value for CO, is 1275 K whereas we
have computed 2260 K.

PROBLEMS

6.3-1. A hole is opened in the wall separating two chemically identical single-
component subsystems. Each of the subsystems is also in interaction with a
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pressure reservoir of pressure P’. Use the enthalpy minimum principle to show
that the conditions of equilibrium are 7® = T and p® = p®,

6.3-2. A gas has the following equations of state

211/3

- T =3B~
vV NV

where B is a positive constant. The system obeys the Nernst postulate (S — 0 as

T — 0). The gas, at an initial teperature 7, and initial pressure P, is passed

through a “porous plug” in a Joulg-Thomson process. The final pressure is P,.
Caiculate the final temperature 7.

6.3-3. Show that for an ideal van der Waals fluid
h= 28 +RT(c+ —”—)
v v-b

where h is the molar enthalpy. Assuming such a fluid to be passed through a
porous plug and thereby expanded from v, to v, (with v, > v,), find the final
temperature 7, in terms of the initial temperature 7, and the given data.

Evaluate the temperature change if the gas is CO,, the mean temperature is
0°C, the mean pressure is 107 Pa, and the change in pressure is 10 Pa. The molar
heat capacity c, of CO, at the relevant temperature and pressure is 29.5
J/mole-K. Carry calculation only to first order in b/vand a/RTv.

6.3-4. One mole of a monatomic ideal gas is in a cylinder with a movable piston
on the other side of which is a pressure reservoir with P, =1 atm. How much
heat must be added to the gas to increase its volume from 20 to 50 liters?

6.3-5. Assume that the gas of Problem 6.3-4 is an ideal van der Waals fluid with
the van der Waals constants of argon (Table 3-1), and again calculate the heat
required. Recall Problem 6.3-3.

6-4 THE GIBBS POTENTIAL; CHEMICAL REACTIONS

For a composite system in interaction with both thermal and pressure
reservoirs the equilibrium state minimizes the Gibbs potential over the
manifold of states of constant temperature and pressure (equal to those of
the reservoirs).

The Gibbs potential is a natural function of the variables
T,P,N,, N,,..., and it is particularly convenient to use in the analysis of
problems involving constant T and P. Innumerable processes of common
experience occur in systems exposed to the atmosphere, and thereby
maintained at constant temperature and pressure. And frequently a pro-
cess of interest occurs in a small subsystem of a larger system that acts as
both a thermal and a pressure reservoir (as in the fermentation of a grape
in a large wine vat).

The Gibbs potential of a multicomponent system is related to the
chemical potentials of the individual components, for G = U — TS + PV,
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and inserting the Euler relation U =TS — PV + u;N; + p,N, + --- we
find

G =Ny + p, Ny, + - - (6.43)

Thus, for a single component system the molar Gibbs potential is identi-
cal with p

(6.44)

Z|Q
i
=

but for a multicomponent system

N X toppxy, o px, (6.45)
where x is the mole fraction (N,/N) of the jth component. Accordingly,
the chemical potential is often referred to as the molar Gibbs potential in
single component systems or as the partial molar Gibbs potential in
multicomponent systems.

The thermodynamics of chemical reactions is a particularly important
application of the Gibbs potential.

Consider the chemical reaction

(= ZV_[A_[ (646)
1

where the v, are the stoichiometric coefficients defined in Section 2.9. The
change in Gibbs potential associated with virtual changes dN, in the mole
numbers is

dG = —SdT + VdP + } p dN, (6.47)
J
However the changes in the mole numbers must be in proportion to the
stoichiometric coefficients, so that

av, _ dn,

i
=)

(6.48)

41 @)
or, equivalently,

dN, = v dN (6.49)

where dN is simply a proportionality factor defined by equation 6.48. If
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the chemical reaction is carried out at constant temperature and pressure
(as 1n an open vessel) the condition of equilibrium then implies

dG=dNY) vp =0 (6.50)
J

or

Yvp,=0 (6.51)
J

If the initial quantities of each of the chemical components is N, Y the
chemical reaction proceeds to some extent and the mole numbers assume
the new values

N,=N'+ [dN,=N°+yAN (6.52)

where AN is the factor of proportionality. The chemical potentials in
equation 6.51 are functions of T, P, and the mole numbers, and hence of
the single unknown parameter AN. Solution of equation 6.51 for AN
determines the equilibrium composition of the system.

The solution described is appropriate only providing that there is a
sufficient quantity of each component present so that none is depleted
before equilibrium is reached. That is, none of the quantities N, in
equation 6.52 can become negative. This consideration is most conveni-
ently expressed in terms of the degree of reaction.

The maximum value of AN for which all N, remain positive (in
equation 6.52) defines the maximum permissible extent of the reaction.
Similarly the minimum value of AN for which all N, remain positive
defines the maximum permissible extent of the reverse reaction. The
actual value of AN in equilibrium may be anywhere between these two
extremes. The degree of reaction & is defined as

AN — AN,
A]Vma.x - A]me

(6.53)

™
Ii

It is possible that a straightforward solution of the equation of chemlcal
equilibrium (6.51) may yield a value of AN that is larger than AN,
smaller than AN, . In such a case the process is terminated by the
depletion of one of its components. The physically relevant value of AN is
then AN, ,, (or AN_ ). Although 2, v 1, does not attain the value zero, it
does attain the smallest absolute value accessxble to the system.

Whereas the partial molar Gibbs potentials characterize the equilibrium
condition, the enthalpy finds its expression in the hear of reaction. This
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fact follows from the general significance of the enthalpy as a *‘potential
for heat flux” at constant pressure (equation 6.29). That is, the flux of heat
from the surroundings to the system, during the chemical reaction, is
equal to the change in the enthalpy. This change in enthalpy, in turn, can
be related to the chemical potentials, for

H:G+TS=G~T(3—G

) o, (654

If an infinitesimal chemical reaction dN occurs, both H and G change and

dH = g% dN = g% dN — T%(%)P‘N“NP dN  (6.55)
But the change in Gibbs function is
dG = ipdej = (i%) dN (6.56)
1 1
whence
X Yo, (6.57)

1

At equilibrium dG/dN vanishes (but the temperature derivative of dG/dN
does not) so that in the vicinity of the equilibrium state equation 6.55
becomes

dH

8 r
- —Tﬁ(zl:vjp.j) (6.58)

PN N,

The quantity dH/dN is known as the heat of reaction; it is the heat
absorbed per unit reaction in the vicinity of the equilibrium state. It is
positive for endothermic reactions and negative for exothermic reactions.

We have assumed that the reaction considered is not one that goes to
completion. If the reaction does go to completion, the summation in
equation 6.57 does not vanish in the equilibrium state, and this summa-
tion appears as an additional term in equation 6.58.

As the summation in equation 6.58 vanishes at the equilibrium com-
position, it is intuitively evident that the temperature derivative of this
quantity is related to the temperature dependence of the equilibrium
concentrations. We shall find it convenient to develop this connection
explicitly only in the special case of ideal gases, in Section 13.4. However,
it is of interest here to note the plausibility of the relationship and to
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recognize that such a relationship permits the heat of reaction to be
measured by determinations of equilibrium compositions at various tem-
peratures rather than by relatively difficult calorimetric experiments.

The general methodology for the analysis of chemical reactions becomes
specific and definite when applied to particular systems. To anchor the
foregoing treatment in a fully explicit (and practicaﬁly important) special
case, the reader may well wish here to interpolate Chapter 13—and
particularly Section 13.2 on chemical reactions in ideal gases.

Example 3

Five moles of H,, 1 mole of CO,, 1 mole of CH,, and 3 moles of H,O are
allowed to react in a vessel maintained at a temperature 7; and pressure P,. The
relevant reaction is

4H, + CO, = CH, + 2H,0
Solution of the equilibrium condition gives the nominal solution AN = — }.
What are the mole numbers of each of the components? If the pressure is then
increased to P, (P, > P,) and the temperature is maintained constant (= T,) the

equilibrium condition gives a new nominal solution of AN = 1, 2. What are the
mole numbers of each of the components?

Solution

We first write the analogue of equation 6.52 for each component: Ny, =

5 — 4AN, Neo,=1-— AN, Ny, =1+ AN, Ny,o=3+ 2 AN. Settmgeachof
these mole numbers equal to zero successively we find four roots for AN: 1,1,
—1, and — 2. The positive and negative roots of smallest absolute values are,
respectively,

AN, =1 AN, = -1

These two bounds on AN correspond to depletion of CO, if the reaction proceeds
too far in the “forward” direction, and to depletion of CH, if the reaction
proceeds too far in the “reverse” direction.

The degree of reaction is now, by equation 6.53

AN+1 1., =
=537 " 2(AN+1)
If the nominal solution of the equilibrium condition gives AN = — 1 then e = §

and Ny =3, Noo, = 3, N, = § and Ny o= 2.

If the increase in pressure shifts the nominal solution for AN to + 1, 2 we reject
this value as outside the acceptable range of AN (i.e., greater than AN,,); it
would lead to the nonphysical value of € = 1.1 whereas ¢ must be between zero and
unity. Hence the reaction is terminated at AN = AN, = 4 (or at e = 1) by the
depletion of CO,. The final mole numbers are Ny, = 1, N¢o, = i Ney, = 2, and
Nuzo = 5.
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PROBLEMS

6.4-1. One half mole of H,S, 3 mole of H,0, 2 moles of H,, and 1 mole of SO,
are allowed to react in a vessel maintained at a temperature of 300 K and a
pressure of 10* Pa. The components can react by the chemical reaction
3H, + SO, = H,S§ + 2H,0

a) Write the condition of equilibrium in terms of the partial molar Gibbs
potentials.
b) Show that _

Ny, =2~ 3AN
and similarly for the other components. For what value of AN does each N,
vanish?
¢) Show that AN, = % and AN__ = — 2. Which components are depleted in
each of these cases?
d) Assume that the nominal solution of the equilibrium condition gives AN = .
What is the degree of reaction €7 What are the mole fractions of each of the
components in the equilibrium mixture?
e) Assume that the pressure is raised and that the nominal solution of the
equilibrium condition now yields the value AN = 0.8. What is the degree of
reaction? What are the mole fractions of cach of the components in the final
state?

Answers:
¢} H,and H;O depleted

d) £ = %» tzO = '152
e) AN =2, Xy,0 = .59

6-S OTHER POTENTIALS

Varjous other potentials may occasionally become useful in particular
applications. One such application will suffice to illustrate the general
method.

Example 4

A bottle, of volume V, contains N, moles of sugar, and it is filled with water and
capped by a rigid lid. The lid though rigid is permeable to water but not to sugar.
The bottle is immersed in a large vat of water. The pressure in the vat, at the
position of the bottle, is P, and the temperature is 7. We seek the pressure P and
the mole number N, of water in the bottle,

Solution
We suppose that we are given the fundamental equation of a two-component
mixture of sugar and water. Most conveniently, this fundamental equation will be
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cast in the representation U[T, ¥, u,,, N,]; that is, in the representation in which S
and N, are replaced by their corresponding intensive parameters, but the volume
V and the mole number of sugar N, remain untransformed. The diathermal wall
ensures that 7 has the value established by the vat (a thermal reservoir), and the
semipermeable lid ensures that y,, has the value established by the vat (a “water
reservoir”). No problem remains! We know all the independent variables of the
generalized potential U[T, V, u,, N,]. To find the pressure in the bottle we
merely differentiate the potential:

oUIT, V, u,, NJ|

1%

P=—

(6.59)

It is left to the reader to compare this approach to the soiution of the
same problem in energy or entropy representations. Various unsought for
variables enter into the analysis—such as the entropy of the contents of
the bottle, or the entropy, energy, and mole number of the contents of the
vat. And for each such extraneous variable, an additional equation is
needed for its elimination. The choice of the appropriate representation
clearly is the key to simplicity, and indeed to practicality, in thermody-
namic calculations.

6-6 COMPILATIONS OF EMPIRICAL DATA;
THE ENTHALPY OF FORMATION

In principle, thermodynamic data on specific systems would be most
succinctly and conveniently given by a tabulation of the Gibbs potential
as a function of temperature, pressure, and composition (mole fractions of
the individual components). Such a tabulation would provide a fundamen-
tal equation in the representation most convenient to the experimentalist.

In practice it is customary to compile data on h(T, P), s(T, P), and
v(T, P), from which the molar Gibbs potential can be obtained (g = h —
Ts). The tabulation of h, s, and v is redundant but convenient. For
multicomponent systems analogous compilations must be made for each
composition of interest.

Differences in the molar enthalpies of two states of a system can be
evaluated experimentally by numerical integration of dh = 4Q/N+v dP,
for dQ as well as P and vcan be measured along the path of integration.

The absolute scale of the enthalpy 4, like that of the energy or of any
other thermodynamic potential, is arbitrary, undetermined within an
additive constant. For purposes of compilation of data, the scale of
enthalpy is made definite by assigning the value zero to the molar
enthalpy of each chemical element in its most stable form at a standard
temperature and pressure, generally taken as

T, = 298.15K = 25°C =~ P, = 0.1 MPa = 1 atm
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The enthalpy defined by this choice of scale is called the enthalpy of
formation.

The reference to the “most stable state” in the definition of the
enthalpy of formation implies, for instance, that the value zero is assigned
to the molecular form of oxygen (O,) rather than to the atomic form (O);
the molecular form is the most stable form at standard temperature and
pressure.

If 1 mole of carbon and 1 mole of O, are chemically reacted to form 1
mole of CO,, the reaction being carried out at standard temperature and
pressure, it is observed that 393.52 X 10° J of heat are emitted. Hence the
enthalpy of formation of CO, is taken as —393.52 X 10° J/mole in the
standard state. This is the standard enthalpy of formation of CO,. The
enthalpy of formation of CO, at any other temperature and pressure is
obtained by integration of dh = dQ/N + vdP.

The standard molar enthalpy of formation, the corresponding standard
molar Gibbs potential, and the molar entropy in the standard state are
tabulated for a wide range of compounds in the JANAF Thermochemical
Tables (Dow Chemical Company, Midland, Michigan) and in various
other similar compilations.

Tables of thermodynamic properties of a particular material can be-
come very voluminous indeed if several properties (such as 4, s, and v),
or even a single property, are to be tabulated over wide ranges of the-
independent variables T and P. Nevertheless, for common materials such
as water very extensive tabulations are readily available. In the case of
water the tabulations are referred to as “Steam Tables.” One form of
steam table, referred to as a “superheated steam table,” gives values of the
molar volume v, energy u, enthalpy #, and entropy s as a function of
temperature, for various values of pressure. An excerpt from such a table
(by Sonntag and van Wilen), for a few values of the pressure, is given in
Table 6.1. Another form, referred to as a “saturated steam table,” gives
values of the properties of the liquid and of the gaseous phases of water
for values of P and T which lie on the gas-liquid coexistence curve. Such
a “saturated steam table” will be given in Table 9.1.

Another very common technique for representation of thermodynamic
data consists of “thermodynamic charts,” or graphs. Such charts neces-
sarily sacrifice precision, but they allow a large amount of data to be
summarized succinctly and compactly. Conceptually, the simplest such
chart would label the two coordinate axes by T and P. Then, for a
single-component system one would draw families of curves of constant
molar Gibbs potential . In principle that would permit evaluation of all
desired data. Determination of the molar volume, for instance, would
require reading the values of p for two nearby pressures at the tempera-
ture of interest; this would permit numerical evaluation of the derivative
(Ap/AP) 4, and thence of the molar volume. Instead, a family of iso-
chores is overlaid on the graph, with each isochore labeled by v. Similarly,
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families of constant molar entropy s, of constant molar enthalpy k, of
constant coefficient of thermal expansion a, of constant k., and the like
are also overlaid. The limit is set by readability of the chart.

It will be recognized that there is nothing unique about the variables
assigned to the cartesian axes. Each family of curves serves as a (curvilinear)
coordinate system. Thus a point of given v and s can be located as the
intersection of the corresponding isochore and adiabat, and the value of
any other plotted variable can then be read.

In practice there are many variants of thermodynamic charts in use. A
popular type of chart is known as a Mollier chart —it assigns the molar
enthalpy 4 and the molar entropy s to the cartesian axes; whereas the
isochores and isobars appear as families of curves overlaid on the di-
agram. Another frequently used form of chart (a “temperature-entropy
chart”) assigns the temperature and the entropy to the coordinate axes,
and overlays the molar enthalpy % and various other thermodynamic
functions, the number again being limited mainly by readability (Figure
6.5).

Such full thermodynamic data is available for only a few systems, of
relatively simple composition. For most systems only partial thermody-
namic data are available. A very large scale international program on data
compilation exists. The International Journal of Thermophysics (Plenum
Press, New York and London) provides current reports of thermophysical
measurements. The Center for Information and Numerical Data Analysis
and Synthesis (“CINDAS”), located at Purdue University, publishes
several series of data collections; of particular note is the Thermophysical
Properties Research Literature Retrieval Guide: 1900-1980, (seven volumes)
edited by J. F. Chancy and V. Ramdas (Plenum Publishing Corp., New
York, 1982).

Finally, we briefly recall the procedure by which a fundamental equa-
tion for a single-component system can be constructed from minimal
tabulated or measured data. The minimal information required is a(7, P),
¢,(T, P), and k. (T, P), plus the values of vy, s, in one reference state
(and perhaps the enthalpy of formation). Given these data the molar
Gibbs potential can be obtained by numerical integration of the
Gibbs—Duhem relation d(G/N)= —sdT + vdP—but only after pre-
liminary evaluations of s(7, P) and v(T, P) by numerical integration of
the equations

_(9s s _ %
ds—(aT)PdT+(aP)TdP— 2 dT - vadP

and

dv = vadT — vk, dP
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Each of these integrations must be carried out over a network of paths
covering the entire 7- P plane—often a gigantic numerical undertaking,

6-7 THE MAXIMUM PRINCIPLES FOR
THE MASSIEU FUNCTIONS

In the energy representation the energy is minimum for constant
entropy, and from this it follows that each Legendre transform of the
energy is minimum for constant values of the transformed (intensive)
variables. Similarly, in the entropy representation the entropy is maximum
for constant energy, and from this it follows that each Legendre transform
of the entropy is maximum for constant values of the transformed
(intensive) variables.

For two of the three common Massieu functions the maximum princi-
ples can be very easily obtained, for these functions are directly related to
potentials (i.e., to transforms of the energy). By equation 5.61, we have

S[H = —g_ (6.60)

and, as F is minimum at constant temperature, S[1/7] is clearly maxi-
mum. Again, by equation 5.63,

slngi] - - (6.61)

and, as G is minimum at constant pressure and temperature, S[1/7, P/T]
is clearly maximum.

For the remaining common Massieu function S[P/T] we can repeat
the logic of Section 6.1. We are concerned with a system in contact with a
reservoir that maintains P/T constant, but permits 1/7 to vary. It is
readily recognized that such a reservoir 1s more of a mathematical fiction
than a physically practical device, and the extremum principle for the
function S[P/T}]is correspondingly artificial. Nevertheless. the derivation
of this principle along the lines of Section 6.1 is an interesting exercise
that I leave to the curious reader.






MAXWELL RELATIONS

7-1 THE MAXWELL RELATIONS

In Section 3.6 we observed that quantities such as the isothermal
compressibility, the coefficient of thermal expansion, and the molar heat
capacities describe properties of physical interest. Each of these is
essentially a derivative (dX/dY), ,  in which the variables are either
extensive or intensive thermodynamic parameters. With a wide range of
extensive and intensive parameters from which to choose, in general
systems, the number of such possible derivatives is immense. But there are
relations among such derivatives, so that a relatively small number of
them can be considered as independent; all others can be expressed in
terms of these few. Needless to say such relationships enormously simplify
thermodynamic analyses. Nevertheless the relationships need not be mem-
orized. There is a simple, straightforward procedure for producing the
appropriate relationships as needed in the course of a thermodynamic
calculation. That procedure is the subject of this chapter.

As an illustration of the existence of such relationships we recall
equations 3.70 to 3.71

0*U 9*U

aSaV ~ avas (7.1)
or
op T
u(ﬁ)v.w,,m. - (8__V)S,N1.N2. (72)

This relation is the prototype of a whole class of similar equalities known
as the Maxwell relations. These relations arise from the equality of the
mixed partial derivatives of the fundamental relation expressed in any of
the various possible alternative representations.

To
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Given a particular thermodynamic potential, expressed in terms of its
(¢t + 1) natural variables, there are t(z + 1)/2 separate pairs of mixed
second derivatives. Thus each potential yields 7(¢t + 1) /2 Maxwell rela-
tions.

For a single-component simple system the internal energy is a function
of three variables (t = 2), and the three [= (2 - 3)/2] pairs of mixed
second derivatives are 9*U/dS dV = 9*U/dV 8S, 9°U/dS ON =
d*U/dN 8S,and 3*U/dVaN = 3*U/dN V. The complete set of Maxwell
relations for a single-component simple system is given in the following
listing, in which the first column states the potential from which the
relation derives, the second column states the pair of independent varia-
bles with respect to which the mixed partial derivatives are taken, and the
last column states the Maxwell relations themselves. A mnemonic diagram
to be described in Section 7.2 provides a mental device for recalling
relations of this form. In Section 7.3 we present a procedure for utilizing
these relations in the solution of thermodynamic problems.

v S’V (_g_g)SN= _(%g)l’ N (73)
dU = TdS - PdV + pdN S,N (g%)&f (%)M (1.4)
oy (G () 09
U[T] =F T,V (%‘S;)T\N - (%;)V.N (76)
dF = —SdT — PdV + pdN  T,N —(g]%)”= (g-;)w 1
v (), (), ow
dH = TdS + VdP + pdN S, N (%)5_; (%)M (710)
o () (B, o
dU[p}=TdS — PdV — Ndu  S,p (%E)SV=—(%/)” (113)
(L (2 o
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4G = —SdT + VdP + pdN TN ~(§—f—,)”= (g‘T)F‘N (7.16)
UIT, 1) T,V (%S,)T‘f (%’)w (718)
dU(T,p]= —SdT — PdV Ton (%%)rf (‘Z,—'}’)w (7.19)
— Ny

o () (3, o
ULP, 1] S, P (zl;)sp= (%)P.“ @21
dUP,u] = TdS + VdP + Ndp S, (Z—Z)”=~(‘;—'§)“ (7.22)

(2 (B o

7-2 A THERMODYNAMIC MNEMONIC DIAGRAM

A number of the most useful Maxwell relations can be remembered
conveniently in terms of a simple mnemonic diagram.! This diagram,
given in Fig. 7.1, consists of a square with arrows pointing upward along
the two diagonals. The sides are labeled with the four common thermody-
namic potentials, F, G, H, and U, in alphabetical order clockwise around
the diagram, the Helmholtz potential F at the top. The two corners at the
left are labeled with the extensive parameters V' and S, and the two
corners at the right are labeled with the intensive parameters 7 and P.
(“Valid Facts and Theoretical Understanding Generate Solutions to Hard
Problems” suggests the sequence of the labels.)

Each of the four thermodynamic potentials appearing on the square is
flanked by its natural independent variables. Thus U is a natural function
of V and S; F is a natural function of V and T, and G is a natural
function of T and P. Each of the potentials also depends on the mole
numbers, which are not indicated explicitly on the diagram.

This diagram was presented by Professor Max Born in 1929 in a lecture heard by Professor Tisza
It appeared in the literature in a paper by F. O Koenig, J. Chem. Phys 3, 29 (1935), and 56, 4556
(1972) See also L T. Klauder, Am. Journ. Phys. 36, 556 (1968), and a number of other vanants
presented by a succession of authors in this journal
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v F T
U G
FIGURE 71
S H P The thermodynamic square.

In the differential expression for each of the potentials, in terms of the
differentials of its natural (flanking) vanables, the associated algebraic
sign is indicated by the diagonal arrow. An arrow pointing away from a
natural variable implies a positive coefficient, whereas an arrow pointing
toward a natural variable implies a negative coefficient. This scheme
becomes evident by inspection of the diagram and of each of the following
equations:

dU = TdS — PdV + Y _p,dN, (7.24)
k
dF = —SdT — PdV + Y _p, dN, (7.25)
k
dG = —SdT + VdP + Y p,dN, (7.26)
k
dH = TdS + VdP + )_u,dN, (7.27)
k

Finally the Maxwell relations can be read from the diagram. We then
deal only with the corners of the diagram. The labeling of the four corners
of the square can easily be seen to be suggestive of the relationship

V:H—__} r‘**‘zT
7 N

SL=--dp  SL-—-dp

By mentally rotating the square on its side, we find, by exactly the same
construction

( ) (ZV) (constant Ny, N,,...) (7.29)
—
|
Lo~

o
N
—d

~ Yi'u



Problems 185

The minus sign in this equation is to be inferred from the unsymmetrical
placement of the arrows in this case. The two remaining rotations of the
square give the two additional Maxwell relations

JP EAY
(ﬁ)y= (W)T (constant N, N,,...) (7.30)

and

T P
(W)S= “(ﬁ)y (constant N, N,,...) (7.31)

These are the four most useful Maxwell relations in the conventional
applications of thermodynamics.

The mnemonic diagram can be adapted to pairs of variables other than
S and V. If we are interested in Legendre transformations dealing with S
and N, the diagram takes the form shown in Fig. 7.2a4. The arrow
connecting N, and p, has been reversed in relation to that which previ-
ously connected V' and P to ake into account the fact that g, is analogous
to — P. Equations 7.4, 7.7, 7.13, and 7.19 can be read directly from this
diagram. Other diagrams can be constructed in a similar fashion, as
indicated in the general case in Fig. 7.2b.

= U[P.
N, F=U[T] T X, [P, ,
U UIT,u,] U ULP,. P,]
s Tl ] , X utPy d
(a) fb)
FIGURE 72
PROBLEMS

7.2-1. In the immediate vicinity of the state T, v, the volume of a particular
system of 1 mole is observed to vary according to the relationship

=v,+a(T - Ty) + b(P - Py)
Calculate the transfer of heat dQ to the system if the molar volume is changed by
a small increment dv = v — v, at constant temperature T;.

Answer:
as JapP aT
dag = T(W)TdV_ T(ﬁ)VdV— - TdV
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7.2-2. For a particular system of 1 mole, in the vicinity of a particular state, a
change of pressure dP at constant T is observed to be accompanied by a heat flux
dQ = AdP. What 1s the value of the coefficient of thermal expansion of this
system, in the same state?

7.2-3. Show that the relation

1
T
implies that ¢, 1s independent of the pressure

ac,,
(—37),—0

7-3 A PROCEDURE FOR THE REDUCTION OF
DERIVATIVES IN SINGLE-COMPONENT SYSTEMS

o =

In the practical applications of thermodynamics the experimental situa-
tion to be analyzed frequently dictates a partial derivative to be evaluated.
For instance, we may be concerned with the analysis of the temperature
change that is required to maintain the volume of a single-component
system constant if the pressure is increased slightly. This temperature
change is evidently

aT
dT = (ﬁ) , P (7.32)

and consequently we are interested in an evaluation of the derivative
(dT/9dP), y. A number of similar problems will be considered in Section
7.4. A general feature of the derivatives that arise in this way is that they
are likely to involve constant mole numbers and that they generally
involve both intensive and extensive parameters. Of all such derivatives,
only three can be independent, and any given derivative can be expressed in
terms of an arbitrarily chosen set of three basic derivatives. This set is
conventionally chosen as ¢p, a, and k4.

The choice of ¢,, a, and k4 is an implicit transformation to the Gibbs
representation, for the three second derivatives in this representation are
d%*g/dT?, d%/IT AP, and d%g/IP?; these derivatives are equal, respec-
tively, to ~¢ b /T, ve, and —vk4. For constant mole numbers these are the
only independent second derivatives.

All first derivatives (involving both extensive and intensive parameters)
can be written in terms of second derivatives of the Gibbs potential, of which
we have now seen that c,, a, and ky constitute a complete independent set
(at constant mole numbers).

The procedure to be followed in this “reduction of derivatives” is
straightforward in principle; the entropy S need only be replaced by
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—dG/3T and V must be replaced by dG/dP, thereby expressing the
original derivative in terms of second derivatives of G with respect to T
and P. In practice this procedure can become somewhat involved.

It is essential that the student of thermodynamics become thoroughly
proficient in the “reduction of derivatives.” To that purpose we present a
procedure, based upon the “mnemonic square” and organized in a step by
step recipe that accomplishes the reduction of any given derivative.
Students are urged to do enough exercises of this type so that the
procedure becomes automatic.

Consider a partial derivative involving constant mole numbers. It is
desired to express this derivative in terms of ¢p, a, and k. We first recall
the following identities which are to be employed in the mathematical
manipulations (see Appendix A).

(%)z: 1/(%)2 (7.33)

(%)zz(%)z/(%)z (7.34)

(). (5L, 29

The following steps are then to be taken in order:

1. If the derivative contains any potentials, bring them one by one to the
numerator and eliminate by the thermodynamic square (equations 7.24 to
7.27).

and

Example
Reduce the derivative (dP/dU )¢ -
(g_II;)G,N= :(g%)c,zvrl (by 7.33)
(5 (5)]” (ov 729
|5 M) A5 NG

(by 7.35)

LT—s(aT/aP)s_wL V., P—S(HT/HP)V,N+ v]!
~S(3T/3S)p.n —S(aT/3V ) p n

(by 7.26)
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The remaining expression does not contain any potentials but may
involve a number of derivatives. Choose these one by one and treat each
according to the following procedure.

2. If the derivative contains the chemical potential, bring it to the
numerator and eliminate by means of the Gibbs—Duhem relation, dy =
—sdT + vdP.

Example
Reduce (du/dV ) y-

3. A2
Wisn \aV)sw \aV/sw

3. If the derivative contains the entropy, bring it to the numerator. If one
of the four Maxwell relations of the thermodynamic square now eliminates
the entropy, invoke it. If the Maxwell relations do not eliminate the entropy
put a 7 under 3S (employ equation 7.34 with w = T'). The numerator will
then be expressible as one of the specific heats (either c, or cp).

Example
Consider the derivative (dT/dP) , appearing in the example of step 1:
ar as as
()= ~(5) (). (by7.39)
v N
= (ﬁ)PN ~TCP (by 7.29)
Example

Consider the derivative (3S/dV)p 5. The Maxwell relation would give
(3S/3V)p y = (8P/IT)s 5 (equation 7.28), which would not eliminate the
entropy. We therefore do not invoke the Maxwell relation but write

(i@) _ (3S/0T ) p. n _ (N/T)cp
Ve nwn (BV/BT),,‘N (aV/aT)P‘N

(by 7.34)

The derivative now contains neither any potential nor the entropy. It
consequently contains only V, P, T (and N).

4. Bring the volume to the numerator. The remaining derivative will be
expressible in terms of o and .

Example
Given (dT/dP), y

(55),.--0r), JGr), -2 ey
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5. The originally given derivative has now been expressed in terms of the
four quantities c,, cp, a, and k. The specific heat at constant volume is
eliminated by the equation

¢, = cp — Tva’/ky (7.36)

This useful relation, which should be committed to memory, was alluded
to in equation 3.75. The reader should be able to derive it as an exercise
(see Problem 7.3-2).

This method of reduction of derivatives can be applied to multicompo-
nent systems as well as to single-component systems, provided that the
chemical potentials g, do not appear in the derivative (for the
Gibbs—Duhem relation, which eliminates the chemical potential for
single-component systems, merely introduces the chemical potentials of
other components in multicomponent systems).

PROBLEMS

7.3-1. Thermodynamicists sometimes refer to the “first TdS equation” and the
“second TdS equation”;

TdS = Nc,dT +(Ta/xk;)dV (N constant)
TdS = NcpdT — TVadP (N constant)

Derive these equations.
7.3-2. Show that the second equation in the preceding problem leads directly to

the relation
Js JaP
1\ 37), = - el 7).

and so validates equation 7.36.

7.3-3. Calculate (dH/dV)yinterms of the standard quantities cp, a, k4, T,
and P.

s Answer:
H

(W)T.N_ (Ta — 1) /k+
7.3-4. Reduce the derivative (dv/3ds) p.

7.3-5. Reduce the derivative (ds/df),.

7.3-6. Reduce the derivative (ds/df)p.

7.3-7. Reduce the derivative (ds/dv) ;-
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7-4 SOME SIMPLE APPLICATIONS

In this section we indicate several representative applications of the
manipulations described in Section 7.3. In each case to be considered we
first pose a problem. Typically, we are asked to find the change in one
parameter when some other parameter is changed. Thus, in the simplest
case, we might be asked to find the increase in the pressure of a system if
its temperature is increased by AT, its volume being kept constant.

In the examples to be given we consider two types of solutions. First,
the straightforward solution that assumes complete knowledge of the
fundamental equation, and, second, the solution that can be obtained if
¢p, @, and K, are assumed known and if the changes in parameters are
small.

Adiabatic Compression

Consider a single-component system of some definite quantity of matter
(characterized by the mole number N) enclosed within an adiabatic wall.
The initial temperature and pressure of the system are known. The system
is compressed quasi-statically so that the pressure increases from its initial
value P, to some definite final value P,. We attempt to predict the changes
in the various thermodynamic parameters (e.g., in the volume, tempera-
ture, internal energy, and chemical potential) of the system.

The essential key to the analysis of the problem is the fact that for a
quasi-static process the adiabatic constraint implies constancy of the
entropy. This fact follows, of course, from the quasi-static correspondence
dQ = TdsS.

We consider in particular the change in temperature. First, we assume
the fundamental equation to be known. By differentiation, we can find the
two equations of state 7 = T(S,V, N) and P = P(S,V, N). By knowing
the initial temperature and pressure, we can thereby find the initial
volume and entropy. Elimination of }" between the two equations of state
gives the temperature as a function of S, P, and N. Then, obviously,

AT = T(S,P,,N)—T(S,P,N) (7.37)

If the fundamental equation is not known, but ¢p, a, and k- are given,
and if the pressure change is small, we have

aT
dT = (ﬁ)s,NdP (7.38)
By the method of Section 7.3, we then obtain
ar = 12 4p (7.39)

Cp
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The change in chemical potential can be found similarly. Thus, for a
small pressure change

_ (9
= (35), 4" (740
_ (v _ sTva)dP (7.41)
Cp

The fractional change in volume associated with an (infinitesimal)
adiabatic compression is characterized by the adiabatic compressibility «,
previously defined in equation 3.73. It was there stated that kg can be
related to kr, ¢,, and « (equation 3.76, and (see also Problem 3.9-5), an
exercise that is now left to the reader in Problem 7.4-8.

Isothermal Compression

We now consider a system maintained at constant temperature and mole
number and quasi-statically compressed from an initial pressure P, to a
final pressure P,. We may be interested in the prediction of the changes in
the values of U, S, V, and p. By appropriate elimination of variables
among the fundamental equation and the equations of state, any such
parameter can be expressed in terms of 7, P, and N, and the change in
that parameter can then be computed directly.
For small changes in pressure we find

EAY
das = (ﬁ)r,wdp (7.42)
= —aldP (7.43)
also
U
w- (%), 129
= (~TaV + PVk;)dP (7.45)

and similar equations exist for the other parameters.

One may inquire about the total quantity of heat that must be extracted
from the system by the heat reservoir in order to keep the system at
constant temperature during the isothermal compression. First, assume
that the fundamental equation is known. Then

AQ = TAS = TS(T, P,,N) — TS(T, P,, N) (7.46)
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where S(U, V, N) is reexpressed as a function of 7, P, and N in standard
fashion.

If the fundamental equation is not known we consider an infinitesimal
1sothermal compression, for which we have, from equation 7.43

dQ = —TaV dP (7.47)

Finally, suppose that the pressure change is large, but that the fundamen-
tal equation is not known (so that the solution 7.46 is not available). Then,
if a and V are known as functions of 7" and P, we integrate equation 7.47
at constant temperature

s0--7f v ap (7.48)
F,

This solution must be equivalent to that given in equation 7.46.

Free Expansion

The third process we shall consider is a free expansion (recall Problems
3.4-8 and 4.2-3). The constraints that require the system to have a volume
V, are suddenly relaxed, allowing the system to expand to a volume V,. If
the system is a gas (which, of course, does not have to be the case), the
expansion may be accomplished conveniently by confining the gas in one
section of a rigid container, the other section of which is evacuated. If the
septum separating the sections is suddenly fractured the gas sponta-
neously expands to the volume of the whole container. We seek to predict
the change in the temperature and in the various other parameters of the
System.

The total internal energy of the system remains constant during the free
expansion. Neither heat nor work are transferred to the system by any
external agency.

If the temperature is expressed in terms of U, V, and N, we find

7,- T,= T(U,V,,N)— T(U,V,,N) (7.49)

If the volume change is small

oT
dT = (W)U‘NdV (7.50)
P Ta
= (N—q — Ncl,xT)dV (7.51)
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This process, unlike the two previously treated, is essentially irreversible
and is not quasi-static (Problem 4.2-3).

Example

In practice the processes of interest rarely are so neatly defined as those just
considered. No single thermodynamic parameter is apt to be constant in the
process. More typically, measurements might be made of the temperature during
the expansion stroke in the cylinder of an engine. The expansion is neither
isothermal nor isentropic, for heat tends to flow uncontrolled through the cylinder
walls. Nevertheless, the temperature can be evaluated empirically as a function of
the volume, and this defines the process. Various other characterizations of real
processes will occur readily to the reader, but the general methodology is well
represented by the following particular example.

N moles of a material are expanded from V; to V, and the temperature is
observed to decrease from T, to T,, the temperature falling linearly with volume.
Calculate the work done on the system and the heat transfer, expressing each
result in terms of definite integrals of the tabulated functions c,, &, and ;.

Solution
We first note that the tabulated functions c,(7, P), «(T, P), «(T, P), and
v(T, P) are redundant. The first three functions imply the last, as has already
been shown in the example of Section 3.9.

Turning to the stated problem, the equation of the path in the T-V plane is

T=A+ BV; A=(T\V,— TLV)I(V, - V), B=(T, ~ TH)I(V, - V)
Furthermore, the pressure is known at each point on the path, for the known
function v(T, P) can be inverted to express P as a function of T and v, and
thence of v alone

P=P(T,V)=P(A+ BV,V)

The work done in the process is then

W= ["P(4+BV,V)aV
Vi

This integral must be performed numerically, but generally it is well within the
capabilities of even a modest programmable hand ecalculator.
The heat input is calculated by considering S as a function of T and V.

as A
ds = (ﬁ)ydT+(a—V)TdV
N daP
= ?CudT-f-(ﬁ)de

Nc 2
( r_ Y )dT+ & av
Kr

T kr
But on the path, dT = BdV, so that

c 2
ds=(NB—" _ BV, —“—)dV
T Kp Kr
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Thus the heat input is

0= f:[NBcp ~(4 + BV)(BVa~- 1)a/x;| dV

Again the factors in the integral must be evaluated at the appropriate values of P
and T corresponding to the point ¥ on the path, and the integral over ¥ must
then be carried out numerically.

It is often convenient to approximate the given data by polynomial expressions
in the region of interest; numerous packaged computer programs for such “fits”
are available. Then the integrals can be evaluated either numerically or analyti-
cally.

Example
In the P—v plane of a particular substance, two states, 4 and D, are defined by

P,=10°Pa v, =2Xx10"2 m’/mole
Pp,=10Pa v, =10"" m’/mole

and it is also ascertained that T, = 350.9 K. If 1 mole of this substance is initially
in the state A, and if a thermal reservoir at temperature 150 K is available, how
much work can be delivered to a reversible work source in a process that leaves
the system in the state D?

The following data are available. The adiabats of the system are of the form

Pv? = constant  (for s = constant)
Measurements of ¢, and a are known only at the pressure of 10° Pa.
c, = Bv*”? (for P = 10° Pa);
B =10%7 = 464.2 J/m’K
a=3/T (for P = 10° Pa)

and no measurements of k. are available.
The reader is strongly urged to analyze this problem independently before
reading the following solution.

Solution
In order to assess the maximum work that can be delivered in a reversible process
A — D it is necessary only to know u, — u, and s, — s,.

The adiabat that passes through the state D is described by Pv? = 10% Pa - mS;
it intersects the isobar P = 10° Pa at a point C for which

P.=10°Pa ¢y, =10"%>m’=316 x10 ? m’
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As a two-step quasi-static process joining 4 and D we choose the isobaric process
A — C followed by the isentropic process C — D. By considering these two
processes in turn we seek to evaluate first uc — u, and sc ~ s, and then u,,
and s — s, yielding finally u, — u, and s, — s,,.

We first consider the isobaric process 4 — C.

—uc

C
du=Tds ~ Pdv = (—” - P) dv = (lBu"/3T~ P,,) dv
va 3

We cannot integrate this directly for we do not yet know 7(v) along the isobar.
To calculate T(v) we write

oT 1 T
(%)P—E—:;—U (fOl‘P—PA)

o) = 50(3)

T = 350.9 x(500)'>  (on P = 10° Pa isobar)

Returning now to the calculation of u,- — u,

du = [1B x 350.9 x(50)'"/° ~ 10°] dv = 10% do

or integrating

and

or
Ue—uy =10 X(v-—v,) = 1.16 x 10%J
We now require the difference u, — u.. Along the adiabat we have
v Cp d)
up—uc=— [ Pdo=-102["Z =10*[u0;" — vc'| = =216 x 10° J
Ve ve U
Finally, then, we have the required energy difference
up—u,= —10%J
We now turn our attention to the entropy difference s, — s, = s~ — 5. Along
the isobar 4C

as

ds = (—-) do= = gy=Lp, 114
dv P

Tva 3
and
Sp—Sq=5c—5,=3B[¥? -] =611/K
Knowing Au and As for the process, we turn to the problem of delivering

maximum work. The increase in entropy of the system permits us to extract
energy from the thermal reservoir.

(-0..) = T..As =150 X 6.1 =916 J

The total energy that can then be delivered to the reversible work source is
(—Au) + (_ Qres)s or
work delivered = 1.92 x 103 J
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PROBLEMS

7.4-1. In the analysis of a Joule-Thomson experiment we may be given the initial
and final molar volumes of the gas, rather than the initial and final pressures.
Express the derivative (d7/dv), in terms of ¢,, a, and k7.

7.4-2. The adiabatic bulk modulus is defined by

oP oP
) A £ A

Express this quantity in terms of Cps Cp O, and k7 (do not eliminate ¢,). What is
the relation of your result to the identity k,/ky = c,/c, (recall Problem 3.9-5)?

7.4-3. Evaluate the change in temperature in an infinitesimal free expansion of a
simple ideal gas (equation 7.51). Does this result also hold if the change in volume
is comparable to the initial volume? Can you give a more general argument for a
simple 1deal gas, not based on equation 7.517

7.4-4. Show that equation 7.46 can be written as
Q=Ul[P,p] - U[P,p]

so that U[ P, p] can be interpreted as a “potential for heat at constant T and N.”

7.4-5. A 1% decrease in volume of a system is carried out adiabatically. Find the
change in the chemical potential in terms of ¢,, a, and k; (and the state
functions P, T, u, v, s, etc).

7.4-6. Two moles of an imperfect gas occupy a volume of 1 liter and are at a
temperature of 100 K and a pressure of 2 MPa. The gas is allowed to expand
freely into an additional volume, initially evacuated, of 10 cm®. Find the change
in enthalpy.

At the initial conditions ¢, = 0.8 J/mole - K, k7= 3 X 10° Pa™}, and a =
0.002 K 1.

Answer:
P —(cp — Pua)

AH =
" (CPKT— Tuaz)

Av =151

7.4-7. Show that (dc,/dv), = T(3°P/3T?), and evaluate this quantity for a
system obeying the van der Waals equation of state.

7.4-8. Show that
de da
_F - 2 atal
(3P)T Tu[a +(3T)P]

Evaluate this quantity for a system obeying the equation of state

P(U + —A-—) = RT
TZ
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7.4-9. One mole of the system of Problem 7.4-8 is expanded isothermally from an
initial pressure P, to a final pressure P,. Calculate the heat flux to the system in
this process.

Answer:

P, .
Q= ~RTIn| 3 |~ 24(F, - P)/T

7.4-10. A system obeys the van der Waals equation of state. One mole of this
system is expanded isothermally at temperature T from an initial volume v, to a
final volume v,. Find the heat transfer to the system in this expansion.

7.4-11. Two moles of O, are initially at a pressure of 10° Pa and a temperature of
0°C. An adiabatic compression is carried out to a final temperature of 300°C.
Find the final pressure by integration of equation 7.39. Assume that O, is a
simple ideal gas with a molar heat capacity ¢, which can be represented by

¢, =26.20 + 11.49 x 10 *T ~ 3.223 x 10" °T*?
where ¢, is in J/mole and T is in kelvins.

Answer:
P/ =15 x 10° Pa

7.4-12. A ball bearing of mass 10 g just fits in a vertical glass tube of cross-sec-
tional area 2 cm?®. The bottom of the tube is connected to a vessel of volume 5
liters, filled with oxygen at a temperature of 30°C. The top of the tube is open to
the atmosphere, which is at a pressure of 10° Pa and a temperature of 30°C.
What is the period of vertical oscillation of the ball? Assume that the compres-
sions and expansions of the oxygen are slow enough to be essentially quasi-static
but fast enough to be adiabatic. Assume that O, is a simple ideal gas with a molar
heat capacity as given in Problem 7.4-11.

7.4-13. Calculate the change in the molar internal energy in a throttling process
in which the pressure change is dP, expressing the result in terms of standard
parameters.

7.4-14. Assuming that a gas undergoes a free expansion and that the temperature
is found to change by dT, calculate the difference dP between the initial and final
pressure.

7.4-15. One mole of an ideal van der Waals fluid is contained in a vessel of
volume ¥, at temperature 7,. A valve is opened, permitting the fluid to expand
into an initially evacuated vessel, so that the final volume is V;. The walls of the
vessels are adiabatic. Find the final temperature T;.

Evaluate your result for ¥, =2 X 107 m’, ¥, = 5 X 10" * m’, N = 1, T, = 300
K, and the van der Waals constants are those of argon (Table 3.1). What was the
initial pressure of the gas?
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7.4-16. Assuming the expansion of the ideal van der Waals fluid of Problem
7.4-15 to be carried out quasi-statically and adiabatically, again find the final
temperature 7.

Evaluate your result with the numerical data specified in Problem 7.4-15.

7.4-17. 1t is observed that an adiabatic decrease in molar volume of 1% produces
a particular change in the chemical potential u. What percentage change in molar
volume, carried out 1sothermally, produces the same change in u?

7.4-18. A cylinder is fitted with a piston, and the cylinder contains helium gas.
The sides of the cylinder are adiabatic, impermeable, and rigid, but the bottom of
the cylinder is thermally conductive, permeable to helium, and rigid. Through this
permeable wall the system is in contact with a reservoir of constant 7 and p,
(the chemical potential of He). Calculate the compressibility of the system
[—(1/V)dV/dP)] in terms of the properties of helium (c,, v, «, ky, etc.) and
thereby demonstrate that this compressibility diverges. Discuss the physical
reason for this divergence.

7.4-19. The cylinder in Problem 7.4-18 is initially filled with & mole of Ne.
Assume both He and Ne to be monatomic ideal gases. The bottom of the cylinder
is again permeable to He, but not to Ne. Calculate the pressure in the cylinder
and the compressibility (—1/V)(dV /dP) as functions of T, V, and py..

Hint: Recall Problems 5.3-1, 5.3-10, and 6.2-3.

7.4-20. A system is composed of 1 mole of a particular substance. In the P-v
plane two states (4 and B) lie on the locus Pv? = constant, so that P,v} = Pyus.
The following properties of the system have been measured along this locus:
cp = Cv?, a = D/v, and ky = Ev, where C, D, and E are constants. Calculate
the temperature Ty in terms of 7, F,, v, vy, and the constants C, D, and E.

Answer:
Ty=T,+ (vy— vy)/D + 2EP,viD 'In(v,/v,)

7.4-21. A system is composed of 1 mole of a particular substance. Two thermody-
namic states, designated as 4 and B, lie on the locus Pv = constant. The
following properties of the system have been measured along this locus; c, = Cu,
«a = D/v*, and «,= Ev, where C, D, and E are constants. Calculate the
difference in molar energies (4 — u,) in terms of 7,, P,,v,, vy, and the con-
stants C, D, and E.

7.4-22. The constant-volume heat capacity of a particular simple system is
c,=AT? (A = constant)
In addition the equation of state is known to be of the form
(v —vo) P =B(T)

where B(T') is an unspecified function of 7. Evaluate the permissible functional
form of B(T).
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In terms of the undetermined constants appearing in your functional represen-
tation of B(T'), evaluate a, c,, and ky as functions of 7 and v.
Hint: Examine the derivative 9% /4T dv.

Answer:
¢, = AT? + (T?/DT + E), where D and E are constants.

7.4-23. A system is expanded along a straight line in the P-v plane, from the
initial state (P, vp) to the final state (F,, v;). Calculate the heat transfer per mole
to the system in this process. It is to be assumed that a, k7, and ¢, are known
only along the isochore v = v, and the isobar P = P;; in fact it is sufficient to
specify that the quantity (¢ k,/a) has the value AP on the isochore v = v,, and
the quantity (c,/va) has the value Bv on the isobar P = P,, where 4 and B are
known constants. That is

c":T =AP  (forv =1uv,)
c
P _ —
oo =By (forP=P)

Answer:
Q = JA(P} = P{) + 3B(v] — vd) + 5(Po — P)(y, — vp)

7.4-24. A nonideal gas undergoes a throttling process (i.e., a Joule-Thomson
expansion) from an initial pressure F; to a final pressure P,. The initial tempera-
ture is 7;, and the initial molar volume is v;. Calculate the final temperature 7, if
it is given that

Ky = —A3 along the T = T, isotherm (4 > 0)

v
a = a, along the T = T, isotherm
and
¢, = c; along the P = P, isobar
What is the condition on 7 in order that the temperature be lowered by the
expansion?

7-S GENERALIZATIONS: MAGNETIC SYSTEMS

For systems other than simple systems there exists a complete paralle-
lism to the formalism of Legendre transformation, of Maxwell relations,
and of reduction of derivatives by the mnemonic square.

The fundamental equation of a magnetic system is of the form (recall
Section 3.8 and Appendix B)

U= U(S,V,I,N) (7.52)

Legendre transformations with respect to S, ¥, and N simply retain the
magnetic moment I as a parameter. Thus the enthalpy is a function of S,
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P, I, and N.
H=U[P]=U+ PV=H(S,P,I,N) (7.53)

An analogous transformation can be made with respect to the magnetic
coordinate

U[B,]=U- B (7.54)

and this potential is a function of S, ¥, B,, and N. The condition of
equilibrium for a system at constant external field is that this potential be
minimum.

Various other potentials result from multiple Legendre transformations,
as depicted in the mnemonic squares of Fig. 7.3. Maxwell relations and
the relationships between potentials can be read from these squares in a
completely straightforward fashion.

v U[B,]
BP
v\ (8B,
(31)5.10_(31) S.1 v -
(&) (& ”
OP |s.s, 0B, s P
I G P
UIT. B,
v B,
(31),..= (3
Irp oP |1,
UrT) UIT. P, B,
(37),0 = (75
oP|r.s, 0B, ), »
d UIT, P] d
1 v T
(%)= (77
81 V’T— aT)y,
U UIT.B]
(37)...= (%
31 V_S— 3S V.l
3 UiE] B,

FIGURE 73
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The “magnetic enthalpy” U[P, B,] = U + PV — B,I 1s an interesting
and useful potential. It 1s minimum for systems maintained at constant
pressure and constant external field. Furthermore, as in equation 6.29 for
the enthalpy, dU[P, B,] = TdS = dQ at constant P, B,, and N. Thus
the magnetic enthalpy U[ P, B,] acts as a “ potential for heat” for systems
maintained at constant pressure and magnetic field.

Example

A particular material obeys the fundamental equation of the *paramagnetic
model” (equation 3.66), with 7, = 200 K and I/2R = 10 Tesla’? K/m’J. Two
moles of this material are maintained at constant pressure in an external field of
B, = 0.2 Tesla (or 2000 gauss), and the system is heated from an imtial tempera-
ture of 5 K to a final temperature of 10 K. What is the heat input to the system?

Solution

The heat input is the change in the “magnetic enthalpy” U[P, B,]. For a system
in which the fundamental relation is independent of volume, P = gU/dV = 0, so
that U[P, B,] degenerates to U — B,I = U[B,]. Furthermore for the para-
magnetic model (equation 3.66), U = NRT and I = (NI3/2RT)B,, so that
U[P,B,] = U|B.| = NRT — (NI}/2RT)B.. Thus

0= N[RAT— I‘Z'BA( )]

=2[8314 X 5 + 10 x 0.04 x 0.1]J = 83.15)

(Note that the magnetic contribution, arising from the second term, is small
compared to the nonmagnetic first-term contribution; in reality the nonmagnetic
contribution to the heat capacity of real solids falls rapidly at low temperatures
and would be comparably small. Recall Problem 3.9-6.)

PROBLEMS

;1-5-1. Calculate the “magnetic Gibbs potential” U[T, B,] for the paramagnetic
model of equation 3.66. Corroborate that the derivative of this potential with
respect to B, at constant T has its proper value.

7.5-2. Repeat Problem 7.5-1 for the system with the fundamental equation given
in Problem 3.8-2.

Answer:

ML NRT 1n(k,T/2€)

U[TB]—%

7.5-3. Calculate (91/3T), for the paramagnetic model of equation 3.66. Also
calculate (3S/dB,);. What s the relationship between these derivatives, as read
from the mnemonic square?
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7.5-4. Show that

X3 ar
and
Cp, _ Xz
G - Xs

where C, and C; are heat capacities and x; and x, are susceptibilities:
X7 = po(d1/dB,) .



L
STABILITY OF
THERMODYNAMIC SYSTEMS

8-1 INTRINSIC STABILITY OF THERMODYNAMIC SYSTEMS

The basic extremum principle of thermodynamics implies both that
dS = 0 and that d’S < 0, the first of these conditions stating that the
entropy 1s an extremum and the second stating that the extremum 1s, in
particular, a maximum. We have not yet fully exploited the second
condition, which determines the stability of predicted equilibrium states.
Similarly, in classical mechanics the stable equilibrium of a rigid pendu-
lum is at the position of minimum potential energy. A so-called “ unstable
equilibrium” exists at the inverted point where the potential energy is
maximum.

Considerations of stability lead to some of the most interesting and
significant predictions of thermodynamics. In this chapter we investigate
the conditions under which a system is stable. In Chapter 9 we consider
phase transitions, which are the consequences of instability.

Consider two identical subsystems, each with a fundamental equation
S = S(U,V, N), separated by a totally restrictive wall. Suppose the de-
pendence of S on U to be qualitatively as sketched in Fig. 8.1. If we were
to remove an amount of energy AU from the first subsystem and transfer
it to the second subsystem the total entropy would change from its initial
value of 2S(U,V, N) to S(U + AU,V,N) + S(U — AU, V, N). With the
shape of the curve shown in the figure the resultant entropy would be
larger than the initial entropy! If the adiabatic restraint were removed in
such a system energy would flow spontaneously across the wall; one
subsystem thereby would increase its energy (and its temperature) at the
expense of the other. Even within one subsystem the system would find it
advantageous to transfer energy from one region to another, developing
internal inhomogeneities. Such a loss of homogeneity is the halimark of a
phase transition.
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FIGURE 8.1

For a convex fundamental relation, as shown, the average entropy is increased by transfer
of energy between two subsystems; such a system is unstable.

It is evident from Fig. 8.1 that the condition of stability is the concavity
of the entropy.'

S(U+ AU, V,N}+S(U—- AU,V,N) <2S(U,V,N}  (forall A)
(8.1)

For AU — 0 this condition reduces to its differential form

a’s
<0 8.2
57,0, 2

However this differential form is less restrictive than the concavity condi-
tion (8.1), which must hold for all AU rather than for AU — 0 only.
It is evident that the same considerations apply to a transfer of volume

S(U,V+AV,N)+ S(U,V — AV,N) <2S(U,V,N)  (8.3)

or in differential form

%S
<0 8.4
). 54

A fundamental equation that does not satisfy the concavity conditions
might be obtained from a statistical mechanical calculation or from

'R. B. Griffiths, J. Math. Phys. 5, 1215 (1964). L. Galgani and A. Scott, Physica 40, 150 (1968);
42, 242 (1969); Pure and Appl Chem. 22, 229 (1970).
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X—

FIGURE § 2

The underlying fundamental relation ABCDEFG is unstable. The stable fundamental
relation is ABHFG. Points on the straight line BHF correspond to inhomogeneous
combinations of the two phases at B and F.

extrapolation of experimental data. The stable thermodynamic fundamen-
tal equation is then obtained from this “underlying fundamental equa-
tion” by the construction shown in Fig. 8.2. The family of tangent lines
that lie everywhere above the curve (the superior tangents) are drawn; the
thermodynamic fundamental equation is the envelope of these superior tan-
gent lines.

In Fig. 8.2 the portion BCDEF of the underlying fundamental relation
is unstable and is replaced by the straight line BHF. It should be noted
that only the portion CDE fails to satisfy the differential (or “local”) form
of the stability condition (8.2), whereas the entire portion BCDEF violates
the global form (8.1). The portions of the curve BC and EF are said to be
“locally stable” but “globally unstable.”

A point on a straight portion (BHF in Fig. 8.2) of the fundamental
relation corresponds to a phase separation in which part of the system is
in state B and part in state F, as we shall see in some detail in Chapter 5.

In the three-dimensional S-U-V subspace the global condition of
stability requires that the entropy surface S(U,V, ...) lie everywhere
below its tangent planes. That is, for arbitrary AU and AV

S(U+ AU,V + AV, N)+ S(U—- AU,V — AV,N) < 2S(U,V,N)
(8.5)

from which equations 8.2 and 8.4 again follow, as well as the additional
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requirement (see Problem 8.1-1) that

2 2 2 2
a°S as_( 3S)>O (8.6)
Ut av: \ UV

We shall soon obtain this equation by an alternative method, by applying
the analogue of the simple curvature condition 8.2 to the Legendre
transforms of the entropy.

To recapitulate, stability requires that the entropy surface lie every-
where below its family of tangent planes. The local conditions of stability
are weaker conditions. They require not only that (3%S/d9U 2),,' ~ and
(0’S/9V?*), yn be negative, but that [(3S/dU*)(9*S/IV?)] —
(9%S/3U 3V )*must be positive. The condition 9% / dU? < 0 ensures that
the curve of intersection of the entropy surface with the plane of constant
V' (passing through the equilibrium point) have negative curvature. The
condition 92S/9V'? < 0 similarly ensures that the curve of intersection of
the entropy surface with the plane of constant U have negative curvature.
These two “partial curvatures” are not sufficient to ensure concavity, for
the surface could be “fluted,” curving downward along the four directions
+ U and +V, but curving upward along the four diagonal directions
(between the U and V axes). It is this fluted structure that is forbidden by
the third differential stability criterion (8.6).

In physical terms the local stability conditions ensure that inhomogenei-
ties of either u or v separately do not increase the entropy, and also that a
coupled inhomogeneity of u and v together does not increase the entropy.

For magnetic systems analogous relatlons hold, with the magnetic
moment replacing the volume.?

Before turning to the full physical implications of these stability condi-
tions it is useful first (Section 8.2) to consider their analogues for other
thermodynamic potentials. We here take note only of the most easily
interpreted inequality (equation 8.3), which suggests the type of informa-
tion later to be inferred from all the stability conditions. Equation 8.2
requires that

GZS _ l 3T 3 1
(aUZ)V,N_ TZ(W)V'N _—‘NTzcysO (8.7)

whence the molar heat capacity must be positive in a stable system. The
remaining stability conditions will place analogous restrictions on other
physically significant observables.

Finally, and in summary, in an r + 2 dimensional thermodynamic
space (S, Xy, X,,..., X,) stability requires that the entropy hyper-surface lie
everywhere below its family of tangent hyper-planes.

2R B Gnffiths, J Math. Phys 5, 1212 (1964)
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PROBLEMS

8.1-1. To establish the inequality 8.6 expand the left-hand side of 8.5 in a Taylor
series to second order in AU and AV. Show that this leads to the condition

Sy (AUY + 28,,AUAV + S, (AV) <0
Recalling that S, = 32S/8U? < 0, show that this can be written in the form
(SucAU + Sy AV)® +(SyySyy — S3, )(AV)” =0

and that this condition in turn leads to equation 8.6.

8.1-2. Consider the fundamental equation of a monatomic ideal gas and show
that S is a concave function of U and V, and also of N.

8-2 STABILITY CONDITIONS FOR
THERMODYNAMIC POTENTIALS

The reformulation of the stability criteria in energy representation
requires only a straightforward transcription of language. Whereas the
entropy 1s maximum, the energy is minimum; thus the concavity of the
entropy surface is replaced by convexity of the energy surface.

The stable energy surface lies above its tangent planes

U(S + AS,V + AV, N) + U(S — AS,V — AV, N) > 2U(S,V, N)

(8.8)
The local conditions of convexity become
J*U _ aT R apP
F=-‘9—S_>_O 5?2‘:?—&20 (8.9)
and for cooperative variations of S and V
U U [ U\
38 av* —( 3S@V) =0 (8.10)

This result can be extended easily to the Legendre transforms of the
energy, or of the entropy. We first recall the properties of Legendre
transformations (equation 5.31)

=-‘?—q and Xz_gg.[ﬂ

P X P

(8.11)
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whence
X *U [ P] 1
o _ _ = 8.12
Jp opr? U (8.12)
ax?

Hence the sign of d*U[P]/dP? is the negative of the sign of d*U/d X2
If U is a convex function of X then U[P] is a concave function of P. It
follows that the Helmholtz potential is a concave function of the tempera-
ture and a convex function of the volume

2 2
(g—f) <0 (3_1_*;_) >0 (8.13)
aT?|v.n WV irn

The enthalpy is a convex function of the entropy and a concave function

of the pressure
2 2
(aH) >0 (aH) <0 (8.14)
aS* | p.n dP* | s.n

The Gibbs potential is a concave function of both temperature and

pressure
2 2
(Q—G) <0 (ﬂ) <0 (8.15)
aT? | p.n dP* 1. N

In summary, for constant N the thermodynamic potentials (the energy
and its Legendre transforms) are convex functions of their extensive varia-
bles and concave functions of their intensive variables. Similarly for constant
N the Massieu functions (the entropy and its Legendre transforms) are
concave functions of their extensive variables and convex functions of their
intensive variables.

PROBLEMS

8.2-1. g) Show that in the region X > 0 the function Y = X" is concave for
0 <n<1andconvex forn<Qorn>1.

The following four equations are asserted to be fundamental equations of
physical systems.

5 1
(b) F=A(NV3T)’ (¢) G= BT:P’N
CS?2P: 3y 2
@) H= = (e) U=D(§N—‘§)
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Which of these equations violate the criteria of stability? Assume 4, B, C, and D
to be positive constants. Recall the “fluting condition” (equation 8.10).

8.2-2. Prove that

PU U | U \?
(azp) 382 av'? asav
v U

48?

Hint: Note that (d?°F/dV?); = —(3P/dV),, and consider P formally to be a
function of S and V.

This identity casts an interesting perspective on the formalism. The quantity in
square brackets measures the curvature of the energy along a direction inter-
mediate between the S and V axes (recall the discussion of “fluting” after
equation 8.6). The primary curvature condition on F, along the V axis, is
redundant with the “fluting” condition on U. Only primary curvature conditions
need be invoked if all potentials are considered.

8.2-3. Show that stability requires equations 8.15 and

G\ %G\ _( 96 \*_
ar? J\ ap? aToP ) =

(Recall Problem 8.1-1.)

8-3 PHYSICAL CONSEQUENCES OF STABILITY

We turn finally to a direct interpretation of the local stability criteria in
terms of limitations on the signs of quantities such as ¢, ¢,, @, and K.
The first such inference was obtained in equations 8.2 or §7, where we
found that ¢, > 0. Similarly, the convexity of the Helmholtz potential

with respect to the volume gives

I*F aP 1
(W)T——(W)T——VTTZO (8.16)
or
k>0 (8.17)

The fact that both ¢, and k, are positive (equations 8.7 and 8.17) has
further implications which become evident when we recall the identities of
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Problem 3.9-5

Tva?
c,— ¢, = . (8.18)
and
K, ¢,
P . (8.19)
From these it follows that stability requires
c,2¢,20 (8.20)
and
Kp= k>0 (8.21)

Thus both heat capacities and both compressibilities must be positive in
a stable system. Addition of heat, either at constant pressure or at constant
volume, necessarily increases the temperature of a stable system—the more
so at constant volume than at constant pressure. And decreasing the volume,
either isothermally or isentropically, necessarily increases the pressure of a
stable system—the more so isothermally than isentropically.

PROBLEMS

8.3-1. Explain on intuitive grounds why ¢, > ¢, and why x; > xg.
Hint: Consider the energy input and the energy output during constant-pressure
and constant-volume heating processes.

8.3-2. Show that the fundamental equation of a monatomic ideal gas satisfies the
criteria of intrinsic stability.

8.3-3. Show that the van der Waals equation of state does not satisfy the criteria
of intrinsic stability for all values of the parameters. Sketch the curves of P versus
V for constant T (the isotherms of the gas) and show the region of local
instability.

8-4 LE CHATELIER’S PRINCIPLE; THE QUALITATIVE EFFECT
OF FLUCTUATIONS

The physical content of the stability criteria is known at Le Chatelier’s
Principle. According to this principle the criterion for stability is that any
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inhomogeneity that somehow develops in a system should induce a process
that tends 1o eradicate the inhomogeneity.

As an example, suppose that a container of fluid is in equilibrium and
an incident photon is suddently absorbed at some point within it, locally
heating the fluid slightly. Heat flows away from this heated region and, by
the stability condition (that the specific heat is positive), this flow of heat
tends to lower the local temperature toward the ambient value. The initial
homogeneity of the system thereby is restored.

Similarly, a longitudinal vibrational wave in a fluid system induces local
regions of alternately high and low density. The regions of increased
density, and hence of increased pressure, tend to expand, and the regions
of low density contract. The stability condition (that the compressibility is
positive) ensures that these responses tend to restore the local pressure
toward homogeneity.

In fact local inhomogeneities always occur in physical systems even in
the absence of incident photons or of externally induced vibrations. In a
gas, for instance, the individual molecules move at random, and by pure
chance this motion produces regions of high density and other regions of
low density.

From the perspective of statistical mechanics all systems undergo
continual local fluctuations. The equilibrium state, static from the view-
point of classical thermodynamics, 1s incessantly dynamic. Local inhomo-
geneities continually and spontaneously generate, only to be attenuated
and dissipated in accordance with the Le Chatelier principle.

An informative analogy exists between a thermodynamic system and a
model of a marble rolling within a “potential well.” The stable state is at
the minimwn of the surface. The criterion of stability is that the surface
be convex.

In a slightly more sophisticated viewpoint we can conceive of the
marble as being subject to Brownian motion—perhaps being buffeted by
some type of random collisions. These are the mechanical analogues of the
spontaneous fluctuations that occur in all real systems. The potential
minimum does not necessarily coincide with the instantaneous position of
the system, but rather with its “expected value”; it is this “expected
value” that enters thermodynamic descriptions. The curvature of the
potential well then plays a crucial and continual role, restoring the system
toward the “expected state” after each Brownian impact (fluctuation).
This “induced restoring force” is the content of the Le Chatelier principle.

We note in passing that in the atypical but important case in which the
potential well is both shallow and asymmetric, the time-averaged position
may deviate measurably from the “expected state” at the potential mini-
mum. In such a case classical thermodynamics makes spurious predic-
tions which deviate from observational data, for thermodynamic measure-
ments yield average values (recall Chapter 1). Such a pathological case
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arises at higher-order phase transitions—the correct theory of which was
developed in the 1970s. We shall explore that area in Chapter 11.

8-5 THE LE CHATELIER-BRAUN PRINCIPLE

Returning to the physical interpretation of the stability criteria, a more
subtle insight than that given by the Le Chatelier principle is formulated
in the Le Chatelier—Braun principle.

Consider a system that is taken out of equilibrium by some action or
fluctuation. According to the Le Chatelier principle the perturbation
directly induces a process that attenuates the perturbation. But various
other secondary processes are also induced, indirectly. The content of the
Le Chatelier-Braun principle is that these indirectly induced processes
also act to attenuate the initial perturbation.

A simple example may clarify the principle. Consider a subsystem
contained within a cylinder with diathermal walls and a loosely fitting
piston, all immersed within a “bath” (a thermal and pressure reservoir).
The piston is moved outward slightly, either by an external agent or by a
fluctuation. The primary effect is that the internal pressure 1is
decreased—the pressure difference across the piston then acts to push it
inward; this is the Le Chatelier principle. A second effect is that the initial
expansion dV alters the temperature of the subsystem; d7T =
(0T/dV)sdV = —(Ta/Nc k) dV. This change of temperature may have
either sign, depending on the sign of a. Consequently there is a flow of
heat through the cylinder walls, inward if « is positive and outward if «a is
negative (sign dQ = signa). This flow of heat, in turn, tends to change the
pressure of the system: dP = (1/T)dP/3S), dQ = (a/NT% k) dQ.
The pressure is increased for either sign of a. Thus a secondary induced
process (heat flow) also acts to diminish the initial perturbation. This is
the Le Chatelier-Braun principle.

To demonstrate both the Le Chatelier and the Le Chatelier-Braun
principles formally, let a spontaneous fluctuation dX{ occur in a com-
posite system. This fluctuation is accompanied by a change in the inten-
sive parameter P, of the subsystem

dP{ = ==L dx/ (8.22)

The fluctuation dX{ also alters the intensive parameter P,

aP.
dpP{ = 3 le dx{ (8.23)
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Now we can inquire as to the changes in X, and X, which are driven by
these two deviations dP/ and dPJ. We designate the driven change in dX .
by dX;, the superscript indicating “response.” The signs of dX] and dX;
are determined by the minimization of the total energy (at constant total
entropy)

d(U+ U™) = (P, — P[*)dX] +(P,— P,)dX; <0 (8.24)
= dP{dX] + dP{dX; < 0 (8.25)
Hence, since dX| and dXj are independent
dP/dX] <0 (8.26)
and
dP{dx; < 0 (8.27)
From the first of these and equation 8.22

dP,

=1 IP)'e

ax, dx{dxy <0 (8.28)
and similarly

dP.

Z)?f dx{dx{ <0 (8.29)

We examine these two results in turn. The first, equation 8.28, is the
formal statement of the Le Chatelier principle. For multiplying by
dP, /dX,, which is positive by virtue of the convexity criterion of stability,

dP, dP
A5 vt 80
% X g dxi <0 (8.30)
or
dP{dP;® < 0 (8.31)

That is, the response dX{ produces a change dP/® in the intensive
parameter P, that is opposite in sign to the change dP{ induced by the
initial fluctuation.
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The second inequality, (8.29), can be rewritten by the Maxwell relation

JP, P,
571 = X, (8.32)
in the form
dx! - 0P, <0 (8.33)
! ¢9X2 - ’
Then, multiplying by the positive quantity dP, /dX,
P, dP,
hall RS | hall Y
(BX dXij )(dX dX ) <0 (8.34)
or
(dp/)(dP{®) < 0 (8.35)

That is, the response dX, produces a change dP/® in the intensive
parameter P, which is opposite in sign to the change in P, directly
induced by the initial fluctuation. This 1s the Le Chatelier—Braun princi-
ple.

Finally, it is of some interest to note that equation 8.33 is subject to
another closely correlated interpretation. Multiplying by the positive
quantity dP,/dX,

P, P,
2 / 2
(ax dX| )(axz dXz) <0 (8.36)
or
(dP{)(dP;®) <0 (8.37)

That is, the response in X, produces a change in P, opposite in sign to
the change induced by the initial fluctuation in X;.

PROBLEMS

8.5-1. A system is in equilibrium with its environment at a common temperature
and a common pressure. The entropy of the system is increased slightly (by a
fluctuation in which heat flows into the system, or by the purposeful injection of
heat into the system). Explain the implications of both the Le Chatelier and the
Le Chatelier-Braun principles to the ensuing processes, proving your assertions
in detail.
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9-1 FIRST-ORDER PHASE TRANSITIONS
IN SINGLE COMPONENT SYSTEMS

Ordinary water is liquid at room temperature and atmospheric pressure,
but if cooled below 273.15 K it solidifies; and if heated above 373.15 K it
vaporizes. At each of these temperatures the material undergoes a pre-
cipitous change of properties—a “phase transition.” At high pressures
water undergoes several additional phase transitions from one solid form
to another. These distinguishable solid phases, designated as “ice 1,” “ice
IL” “ice I, ..., differ in crystal structure and in essentially all thermo-
dynamic properties (such as compressibility, molar heat capacity, and
various molar potentials such as u or f). The “phase diagram” of water is
shown in Fig. 9.1.

Each transition is associated with a linear region in the thermodynamic
fundamental relation (such as BHF in Fig. 8.2), and each can be viewed
as the result of failure of the stability criteria (convexity or concavity) in
the underlying fundamental relation.

In this section we shall consider systems for which the underlying
fundamental relation is unstable. By a qualitative consideration of fluctua-
tions in such systems we shall see that the fluctuations are profoundly
influenced by the details of the underlying fundamental relation. In contrast,
the average values of the extensive parameters reflect only the stable thermo-
dynamic fundamental relation.

Consideration of the manner in which the form of the underlying
fundamental relation influences the thermodynamic fluctuations will pro-
vide a physical interpretation of the stability considerations of Chapter 8
and of the construction of Fig. 8.2 (in which the thermodynamic funda-
mental relation is constructed as the envelope of tangent planes).

A simple mechanical model illustrates the considerations to follow by
an intuitively transparent analogy. Consider a semicircular section of pipe,
closed at both ends. The pipe stands vertically on a table, in the form of

21<
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FIGURE 91

Phase diagram of water. The region of gas-phase stabihity is represented by an indiscerni-
bly narrow horizontal strip above the positive temperature axis in the phase diagram
(small figure). The background graph is a magnification of the vertical scale to show the
gas phase and the gas-liquid coexistence curve.

an inverted U (Fig. 9.2). The pipe contains a freely-sliding internal piston
separating the pipe into two sections, each of which contains one mole of
a gas. The symmetry of the system will prove to have important conse-
quences, and to break this symmetry we consider that each section of the
pipe contains a small metallic “ball bearing” (1.e., a small metallic sphere).
The two ball bearings are of dissimilar metals, with different coefficients of
thermal expansion.

At some particular temperature, which we designate as T,, the two
spheres have equal radii; at temperatures above 7, the right-hand sphere
is the larger.

The piston, momentarily brought to the apex of the pipe, can fall into
either of the two legs, compressing the gas in that leg and expanding the
gas in the other leg. In either of these competing equilibrium states the
pressure difference exactly compensates the effect of the weight of the
piston.

In the absence of the two ball bearings the two competing equilibrium
states would be fully equivalent. But with the ball bearings present the



First—Order Phase Transitions in Single Component Systems 217
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FIGURE 9.2
A simple mechanical model.

more stable equilibrium position is that to the left if 7> T, and it is that
to the rightif 7 < T,.

From a thermodynamic viewpoint the Helmholtz potential of the sys-
tem is F = U — T8, and the energy U contains the gravitational potential
energy of the piston as well as the familiar thermodynamic energies of the
two gases (and, of course, the thermodynamic energies of the two ball
bearings, which we assume to be small and /or equal). Thus the Helmholtz
potential of the system has two local minima, the lower minimum corre-
sponding to the piston being on the side of the smaller sphere.

As the temperature is lowered through 7 the two minima of the
Helmholtz potential shift, the absolute minimum changing from the
left-hand to the right-hand side.

A similar shift of the equilibrium position of the piston from one side to
the other can be induced at a given temperature by tilting the table—or,
in the thermodynamic analogue, by adjustment of some thermodynamic
parameter other than the temperature.

The shift of the equilibrium state from one local minimum to the other
constitutes a first-order phase transition, induced either by a change in
temperature or by a change in some other thermodynamic parameter.

The two states between which a first-order phase transition occurs are
distinct, occurring at separate regions of the thermodynamic configuration
space.

To anticipate “critical phenomena” and “second-order phase transi-
tions” (Chapter 10) it is useful briefly to consider the case in which the
ball bearings are identical or absent. Then at low temperatures the two
competing minima are equivalent. However as the temperature is in-
creased the two equilibrium positions of the piston rise in the pipe,
approaching the apex. Above a particular temperature 7,,, there is only
one equilibrium position, with the piston at the apex of the pipe. In-
versely, lowering the temperature from 7> T, to T < T,,, the single

or’

equilibrium state bifurcates into two (symmetric) equilibrium states. The
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temperature 7, is the “critical tempeia.ure,” and the transition at T, is 4
“second-order phase transition.”

The states between which a second-order phase transition occurs are
contiguous states in the thermodynamic configuration space.

In this chapter we consider first-order phase transitions. Second-orde;
transitions will be discussed in Chapter 10. We shall there also considey
the “mechanical model” in quantitative detail, whereas we here discuss j
only qualitatively.

Returning to the case of dissimilar spheres, consider the piston residing
in the higher minimum—that is, in the same side of the pipe as the large;
ball bearing. Finding itself in such a minimum of the Helmholtz potential,
the piston will remain temporarily in that minimum though undergoing
thermodynamic fluctuations (“Brownian motion”). After a sufficiently
long time a giant fluctuation will carry the piston “over the top™ and intg
the stable minimum. It then will remain in this deeper minimum until ap
even larger (and enormously less probable) fluctuation takes it back to the
less stable minimum, after which the entire scenario is repeated. The
probability of fluctuations falls so rapidly with increasing amplitude (as’
we shall see in Chapter 19) that the system spends almost all of its time in
the more stable minimum. All of this dynamics is ignored by macroscopic
thermodynamics, which concerns itself only with the stable equilibrium
state.

To discuss the dynamics of the transition in a more thermodynamic
context it is convenient to shift our attention to a familiar thermodynamic
system that again has a thermodynamic potential with two local minimum
separated by an unstable intermediate region of concavity. Specifically we
consider a vessel of water vapor at a pressure of 1 atm and at a
temperature somewhat above 373.15 K (i.e.,, above the “normal boiling
point” of water). We focus our attention on a small subsystem—a
spherical region of such a (variable) radius that at any instant it contains
one milligram of water. This subsystem is effectively in contact with a
thermal reservoir and a pressure reservoir, and the condition of equi-
librium is that the Gibbs potential G(T, P, N} of the small subsystem be
minimum. The two independent variables which are determined by the
equilibrium conditions are the energy U and the volume V of the subsys-
tem.

If the Gibbs potential has the form shown in Fig. 9.3, where X, is the
volume, the system is stable in the lower minimum. This minimum
corresponds to a considerably larger volume (or a smaller density) than
does the secondary local minimum.

Consider the behavior of a fluctuation in volume. Such fluctuations
occur continually and spontaneously. The slope of the curve in Fig. 9.3
represents an intensive parameter (in the present case a difference in
pressure) which acts as a restoring “force” driving the system back toward
density homogeneity in accordance with Le Chatelier’s principle. Occa-
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sionally a fluctuation may be so large that it takes the system over the
maximum, to the region of the secondary minimum. The system then
settles in the region of this secondary minimum—but only for an instant.
A relatively small (and therefore much more frequent) fluctuation is all
that is required to overcome the more shallow barrier at the secondary
minimum. The system quickly returns to its stable state. Thus very small
droplets of high density (liquid phase!) occasionally form in the gas, live
priefly, and evanesce.

If the secondary minimum were far removed from the absolute mini-
mum, with a very high intermediate barrier, the fluctuations from one
minimum to another would be very improbable. In Chapter 19 it will be
shown that the probability of such fluctuations decreases exponentially
with the height of the intermediate free-energy barrier. In solid systems (in
which interaction energies are high) it is not uncommon for multiple
minima to exist with intermediate barriers so high that transitions from
one minimum to another take times on the order of the age of the
universe! Systems trapped in such secondary “metastable” minima are
effectively in stable equilibrium (as if the deeper minimum did not exist at
all).

Returning to the case of water vapor at temperatures somewhat above
the “boiling point,” let us suppose that we lower the temperature of the
entire system. The form of the Gibbs potential varies as shown schemati-
cally in Fig. 9.4. At the temperature 7, the two minima become equal, and
below this temperature the high density (liquid) phase becomes absolutely
stable. Thus 7, is the temperature of the phase transition (at the pre-
scribed pressure).

If the vapor is cooled very gently through the transition temperature the
system finds itself in a state that had been absolutely stable but that is
now metastable. Sooner or later a fluctuation within the system will
“discover” the truly stable state, forming a nucleus of condensed liquid.
This nucleus then grows rapidly, and the entire system suddenly under-
goes the transition. In fact the time required for the system to discover the
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Schematic vanation of Gibbs potential
with volume (or reciprocal density) for
various temperatures (7, <7, < Ty <
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preferable state by an “exploratory” fluctuation is unobservably short in
the case of the vapor to liquid condensation. But 1n the transition from
liquid to ice the delay time is easily observed in a pure sample. The liquid
so cooled below its solidification (freezing) temperature is said to be
“supercooled.” A shght tap on the container, however, sets up longitudi-
nal waves with alternating regions of “condensation” and “rarefaction,”
and these externally induced fluctuations substitute for spontaneous
fluctuations to initiate a precipitous transition.

A useful perspective emerges when the values of the Gibbs potential at
each of its minima are plotted against temperature. The result is as shown
schematically in Fig. 9.5. If these minimum values were taken from Fig.
5.4 there would be only two such curves, but any number is possible. At
equilibrium the smallest minimum is stable, so the true Gibbs potential is
the lower envelope of the curves shown in Fig. 9.5. The discontinuities in
the entropy (and hence the latent heat) correspond to the discontinuities
in slope of this envelope function.

Figure 9.5 should be extended into an additional dimension, the ad-
ditional coordinate P playing a role analogous to 7. The Gibbs potential
is then represented by the lower envelope surface, as each of the three

G—>

FIGURE %5
Minima of the Gibbs potential as a
T —> function of T
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single-phase surfaces intersect. The projection of these curves of intersec-
tion onto the P-T plane is the now familiar phase diagram (e.g., Fig. 9.1).

A phase transition occurs as the state of the system passes from one
envelope surface, across an intersection curve, to another envelope surface.

The variable X, or V in Fig. 9.4, can be any extensive parameter. In a
transition from paramagnetic to ferromagnetic phases X is the magnetic
moment. In transitions from one crystal form to another (e.g., from cubic
to hexagonal) the relevant parameter X is a crystal symmetry variable. In
a solubility transition it may be the mole number of one component. We
shall see examples of such transitions subsequently. All conform to the
general pattern described.

At a first-order phase transition the molar Gibbs potential of the two
phases are equal, but other molar potentials (u, f, h, etc.) are discontinu-
ous across the transition, as are the molar volume and the molar entropy.
The two phases inhabit different regions in “thermodynamic space,” and
equality of any property other than the Gibbs potential would be a pure
coincidence. The discontinuity in the molar potentials is the defining
property of a first-order transition.

As shown in Fig. 9.6, as one moves along the hquid-gas coexistence
curve away from the solid phase (i.e., toward higher temperature), the
discontinuities in molar volume and molar energy become progressively
smaller. The two phases become more nearly alike. Finally, at the terminus
of the liquid-gas coexistence curve, the two phases become indistinguish-
able. The first-order transition degenerates into a more subtle transition, a
second-order transition, to which we shall return in Chapter 10. The
terminus of the coexistence curve is called a critical point.

The existence of the critical point precludes the possibility of a sharp
distinction between the generic term liquid and the generic term gas. In
crossing the liquid—gas coexistence curve in a first-order transition we
distinguish two phases, one of which is “clearly” a gas and one of which 1s

D 1,
C r.
A/8 N~/ T,
T |\
a &)
T-> V—>

FIGURE $6

The two minima of G corresponding to four points on the coexistence curve. The minima
coalesce at the critical point D.
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“clearly” a liquid. But starting at one of these (say the liquid, immediately
above the coexistence curve) we can trace an alternate path that skirts
around the critical point and arrives at the other state (the “gas™) without
ever encountering a phase transition! Thus the terms gas and liguid have
more intuitive connotation than strictly defined denotation. Together
liquids and gases constitute the fluid phase. Despite this we shall follow
the standard usage and refer to “the liquid phase” and “the gaseous
phase” in a liquid—gas first-order transition.

There is another point of great interest in Fig. 9.1: the opposite
terminus of the liquid—gas coexistence curve. This point is the coterminus
of three coexistence curves, and it is a unique point at which gaseous,
liquid, and solid phases coexist. Such a state of three-phase compatibility
is a “triple point”—in this case the triple point of water. The uniquely
defined temperature of the triple point of water is assigned the (arbitrary)
value of 273.16 K to define the Kelvin scale of temperature (recall Section
2.6).

PROBLEM

9.1-1. The slopes of all three curves in Fig. 9.5 are shown as negative. Is this
necessary? Is there a restriction on the curvature of these curves?

9-2 THE DISCONTINUITY IN THE ENTROPY —LATENT HEAT

Phase diagrams, such as Fig. 9.1, are divided by coexistence curves into
regions in which one or another phase is stable. At any point on such a
curve the two phases have precisely equal molar Gibbs potentials, and
both phases can coexist.

Consider a sample of water at such a pressure and temperature that it is
in the “ice” region of Fig. 9.1a. To increase the temperature of the ice one
must supply roughly 2.1 kJ/kg for every kelvin of temperature increase
(the specific heat capacity of ice). If heat is supplied at a constant rate the
temperature increases at an approximately constant rate. But when the
temperature reaches the “melting temperature,” on the solid-liquid
coexistence line, the temperature ceases to rise. As additional heat is
supplied ice melts, forming liqud water at the same temperature. It
requires roughly 335 kJ to melt each kg of ice. At any moment the amount
of liquid water in the container depends on the quantity of heat that has
entered the container since the arrival of the system at the coexistence
curve (i.e., at the melting temperature). When finally the requisite amount
of heat has been supplied, and the ice has been entirely melted, continued
heat input again results in an increase in temperature—now at a
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rate determined by the specific heat capacity of liquid water (= 4.2 kJ/
kg-K).

The quantity of heat required to melt one mole of solid is the heat of
fusion (or the latent heat of fusion). It is related to the difference in molar
entropies of the liquid and the solid phase by

t o= T[s® — O] (9.1)

where T is the melting temperature at the given pressure.
More generally, the latent heat in any first-order transition 1is

{=TAs (9.2)

where T is the temperature of the transition and As is the difference in
molar entropies of the two phases. Alternatively, the latent heat can be
written as the difference in the molar enthalpies of the two phases

{=Ah (9.3)

which follows immediately from the identity » = Ts + p (and the fact
that p, the molar Gibbs function, is equal in each phase). The molar
enthalpies of each phase are tabulated for very many substances.

If the phase transition is between liquid and gaseous phases the latent
heat is called the heat of vaporization, and if it is between solid and
gaseous phases it 1s called the heat of sublimation.

At a pressure of one atmosphere the liquid-gas transition (boiling) of
water occurs at 373.15 K, and the latent heat of vaporization is then 40.7
kJ /mole (540 cal /g).

In each case the latent heat must be put into the system as it makes a
transition from the low-temperature phase to the high-temperature phase.
Both the molar entropy and the molar enthalpy are greater in the
high-temperature phase than in the low-temperature phase.

It should be noted that the method by which the transition is induced is
irrelevant—the latent heat is independent thereof. Instead of heating the
ice at constant pressure (crossing the coexistence curve of Fig. 9.1a
“horizontally”), the pressure could be increased at constant temperature
(crossing the coexistence curve “ vertically™). In either case the same latent
heat would be drawn from the thermal reservoir.

The functional form of the liquid-gas coexistence curve for water is
given in “saturated steam tables”—the designation “saturated” denoting
that the steam is in equilibrium with the liquid phase. (“Superheated
steam tables” denote compilations of the properties of the vapor phase
alone, at temperatures above that on the coexistence curve at the given
pressure). An example of such a saturated steam table is given in Table
9.1, from Sonntag and Van Wylen. The properties s, u, v and h of each
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phase are conventionally listed in such tables; the latent heat of the
transition is the difference in the molar enthalpies of the two phases, or it
can also be obtained as TAs.

Similar data are compiled in the thermophysical data literature for a
wide varniety of other materials.

The molar volume, like the molar entropy and the molar energy, is
discontinuous across the coexistence curve. For water this is particularly
interesting in the case of the solid-liquid coexistence curve. It is common
experience that ice floats in liquid water. The molar volume of the solid
(ice) phase accordingly is greater than the molar volume of the liquid
phase—an uncommon attribute of H,0. The much more common situa-
tion is that in which the solid phase is more compact, with a smaller molar
volume. One mundane consequence of this peculiar property of H,O is
the proclivity of frozen plumbing to burst. A compensating consequence,
to which we shall return in Section 9.3, is the possibility of ice skating.
And, underlying all, this peculiar property of water is essential to the very
possibility of life on earth. If ice were more dense than liquid water the
frozen winter surfaces of lakes and oceans would sink to the bottom; new
surface liquid, unprotected by an ice layer, would again freeze (and sink)
until the entire body of water would be frozen solid (“frozen under”
instead of “frozen over”).

PROBLEMS

9.2-1. In a particular solid-liquid phase transition the point Py, T, lies on the
coexistence curve. The latent heat of vaporization at this point is £,. A nearby
point on the coexistence curve has pressure P, + p and temperature Ty + t; the
local slope of the coexistence curve in the P-T plane is p/1. Assuming v, c,, a,
and x; to be known in each phase in the vicinity of the states of interest, find the
latent heat at the point Py + p, T, + ¢.

9.2-2. Discuss the equilibrium that eventually results if a solid is placed in an
initially evacuated closed container and is maintained at a given temperature.
Explain why the solid—-gas coexistence curve is said to define the “ vapor pressure
of the solid™ at the given temperature.

9-3 THE SLOPE OF COEXISTENCE
CURVES; THE CLAPEYRON EQUATION

The coexistence curves illustrated in Fig. 9.1 are less arbitrary than is
immediately evident; the slope dP/dT of a coexistence curve is fully
determined by the properties of the two coexisting phases.
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The slope of a coexistence curve is of direct physical interest. Consider
cubes of ice at equilibrium in a glass of water. Given the ambient pressure,
the temperature of the mixed system is determined by the liquid-solid
coexistence curve of water; if the temperature were not on the coexistence
curve some ice would melt, or some liquid would freeze, until the
temperature would again lie on the coexistence curve (or one phase would
become depleted). At 1 atm of pressure the temperature would be 273.15
K. If the ambient pressure were to decrease—perhaps by virtue of a
change in altitude (the glass of water is to be served by the flight attendant
in an airplane), or by a variation in atmospheric conditions (approach of a
storm)—then the temperature of the glass of water would appropriately
adjust to a new point on the coexistence curve. If AP were the change in
pressure then the change in temperature would be AT = AP/(dP/dT)..,
where the derivative in the denominator is the slope of the coexistence
curve.

Ice skating, to which we have made an earlier allusion, presents another
interesting example. The pressure applied to the ice directly beneath the
blade of the skate shifts the ice across the solid—-liquid coexistence curve
(vertically upward in Fig. 9.14a), providing a lubricating film of liquid on
which the skate slides.

The possibility of ice skating depends on the negative slope of the
liquid—solid coexistence curve of water. The existence of the ice on the
upper surface of the lake, rather than on the bottom, reflects the larger
molar volume of the solid phase of water as compared to that of the liquid
phase. The connection of these two facts, which are not independent, lies
in the Clapeyron equation, to which we now turn.

Consider the four states shown in Fig. 9.7. States 4 and 4’ are on the
coexistence curve, but they correspond to different phases (to the left-hand
and right-hand regions respectively.) Similarly for the states B and B’
The pressure difference Py — P, (or, equivalently, P, — P,) is assumed
to be infinitesimal (= dP), and similarly for the temperature difference
Ty — T, (= dT). The slope of the curve is dP/dT.

FIGURE 97
T —> Four coexistence states.
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Phase equilibrium requires that

Ba = Ba (9.4)
and
Bp= bp (9.5)
whence
Bg— Ba= My ~ ba (9.6)
But
pp— By = —sdT + vdP (9.7)
and
Py —py=—5dTl + v dP (9.8)

in which s and s’ are the molar entropies and v and v’ are the molar
volumes in each of the phases. By inserting equations 9.7 and 9.8 in
equation 9.6 and rearranging the terms, we easily find

dP s’ —s

Ff - v —-v (9.9)
dP As

T Ao (9.10)

in which As and Av are the discontinuities in molar entropy and molar
volume associated with the phase transition. According to equation 9.2 the
latent heat is

{= TAs (9.11)
whence
dpP 4
ﬁ = Thp (9.12)

This is the Clapeyron equation.

The Clapeyron equation embodies the Le Chatelier principle. Consider
a solid-liquid transition with a positive latent heat (s, > s,) and a positive
difference of molar volumes (v,> v,). The slope of the phase curve is
correspondingly positive. Then an increase in pressure at constant temper-
ature tends to drive the system to the more dense (solid) phase (alleviating
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the pressure increase), and an increase in temperature tends to drive the
system to the more entropic (liquid) phase. Conversely, if s> s, but
v, < v,, then the slope of the coexistence curve is negative, and an increase
of the pressure (at constant T) tends to drive the system to the liquid
phase—again the more dense phase.

In practical problems in which the Clapeyron equation is applied it is
often sufficient to neglect the molar volume of the liquid phase relative to
the molar volume of the gaseous phase (v, — v,= v,), and to approximate
the molar volume of the gas by the 1deal gas equatlon (v, = RT/P). This
“Clapeyron—Clausius approx1mauon may be used where appropriate in
the problems at the end of this section.

Example

A light rigid metallic bar of rectangular cross section lies on a block of ice, extend-
ing slightly over each end. The width of the bar is 2 mm and the length of the bar in
contact with the ice is 25 cm. Two equal masses, each of mass M, are hung from the
extending ends of the bar. The entire system is at atmospheric pressure and is
maintained at a temperature of 7 = —2°C. What is the minimum value of M for
which the bar will pass through the block of ice by “regelation”? The given data are
that the latent heat of fusion of water is 80 cal/gram, that the density of liquid water
is 1 gram/cm?, and that ice cubes float with =4/5 of their volume submerged.

Solution
The Clapeyron equation permits us to find the pressure at which the solid-liquid
transition occurs at 7 = —2°C. However we must first use the “ice cube data” to

obtain the difference Av 1n molar volumes of liquid and solid phases The data
given imply that the density of ice is 0.8 g/cm’. Furthermore v,y =18 cm*/mole, and
therefore v,y =22.5 % 10"° m*mole. Thus

51_1_’_) __C _ (80 x 4.2 x 18) J/mole
dTjcc TAv 271 x (4.5 x 107 K—m*mole

= -5 x 10°Pa/K
S0 that the pressure difference required is
P= —-5x10°%(-2)=~10"Pa
This pressure is to be obtained by a weight 2Mg acting on the area A = 5x 107 m?
M=3APA
g

= %(10’ Pa) (5 x 10" °m?) / (9.8 %‘): 2.6Kg
S
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PROBLEMS

9.3-1. A particular liquid boils at 127°C at a pressure of 800 mm Hg. It has a
heat of vaporization of 1000 cal/mole. At what temperature will it boil if the
pressure is raised to 810 mm Hg?

9.3-2. A long vertical column is closed at the bottom and open at the top; it is
partially filled with a particular liquid and cooled to —5°C. At this temperature
the fluid solidifies below a particular level, remaining liquid above this level. If the
temperature is further lowered to —35.2°C the solid-liquid interface moves
upward by 40 cm. The latent heat (per unit mass) is 2 cal /g, and the density of
the liquid phase is 1 g/cm’. Find the density of the solid phase. Neglect thermal
expansion of all materials.

Hint: Note that the pressure at the original position of the interface remains
constant.

Answer:
26g/cm’

9.3-3. It is found that a certain liquid boils at a temperature of 95°C at the top of
a hill, whereas it boils at a temperature of 105°C at the bottom. The latent heat is
1000 cal/mole. What is the approximate height of the hill?

9.3-4. Two weights are hung on the ends of a wire, which passes over a block of
ice. The wire gradually passes through the block of ice, but the block remains
intact even after the wire has passed completely through it. Explain why less mass
isrequired if a semi-flexible wire is used, rather than arigid bar as in the Example.

9.3-5. In the vicinity of the triple point the vapor pressure of liquid ammonia (in
Pascals) is represented by

3063
InP = 2438 — T

This is the equation of the liquid-vapor boundary curve in a P-T diagram.
Similarly, the vapor pressure of solid ammonia is

3754
InP=2792-— T

What are the temperature and pressure at the triple point? What are the latent
heats of sublimation and vaporization? What is the latent heat of fusion at the
triple point?

9.3-6. Let x be the mole fraction of solid phase in a solid-liquid two-phase
system. If the temperature is changed at constant total volume, find the rate of

change of x; that is, find dx/dT. Assume that the standard parameters v,
a, Ky, ¢p are known for each phase.
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9.3-7. A particular material has a latent heat of vaporization of 5 X 10* J/mole,
constant along the coexistence curve. One mole of this material exists in two-phase
(liquid—vapor) equilibrium in a container of volume ¥ = 10~ % m?, at a tempera-
ture of 300 K and a pressure of 10° Pa. The system is heated at constant volume,
increasing the pressure to 2.0 X 10° Pa. (Note that this is not a small AP.) The
vapor phase can be treated as a monatomic ideal gas, and the molar volume of the
liquid can be neglected relative to that of the gas. Find the initial and final mole
fractions of the vapor phase [x = N,/(N, + N,)].

9.3-8. Draw the phase diagram, in the B,-T plane, for a simple ferromagnet;
assume no magnetocrystalline anisotropy and assume the external field B, to be
always parallel to a fixed axis in space. What is the slope of the coexistence curve?
Explain this slope in terms of the Clapeyron equation.

93-9. A system has coexistence curves similar to those shown in Fig. 9.6a, but
with the liquid-solid coexistence curve having a positive slope. Sketch the
isotherms in the P—v plane for temperature T such that

@T<T, OT=T, @T,sT<Tp, T, <TsTy ©T=
7::nl’ (f) T Z Tcnl'
Here 7, and T, denote the triple point and critical temperatures, respectively.

9-4 UNSTABLE ISOTHERMS AND
FIRST-ORDER PHASE TRANSITIONS

Our discussion of the origin of first-order phase transitions has focused,
quite properly, on the multiple minima of the Gibbs potential. But
although the Gibbs potential may be the fundamental entity at play, a
more common description of a thermodynamic system is in terms of the
form of its isotherms. For many gases the shape of the isotherms is well
represented (at least semiquantitatively) by the van der Waals equation of
state (recall Section 3.5)

RT a

P=_______
(v—50) o’

(9.13)

The shape of such van der Waals isotherms is shown schematically in
the P—v diagram of Fig. 9.8.

As pointed out in Section 3.5 the van der Waals equation of state can
be viewed as an “underlying equation of state,” obtained by curve fitting,
by inference based on plausible heuristic reasoning, or by statistical
mechanical calculations based on a simple molecular model. Other em-
pirical or semiempirical equations of state exist, and they all have iso-
therms that are similar to those shown in Fig. 9.8.

We now explore the manner in which isotherms of the general form
shown reveal and define a phase transition.
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vV —
FIGURE 9 8
van der Waals isotherms (schematic). 7, < 7, < T;. ..

It should be noted immediately that the isotherms of Fig. 9.8 do not
satisfy the criteria of intrinsic stability everywhere, for one of these criteria
(equation 8.21) is k, > 0, or

(%)T <0 (9.14)

This condition clearly is violated over the portion FKM of a typical
isotherm (which, for clarity, is shown separately in Fig. 9.9). Because of
this violation of the stability condition a portion of the isotherm must be
unphysical, superseded by a phase transition in a manner which will be
explored shortly.

The molar Gibbs potential is essentially determined by the form of the
isotherm. From the Gibbs-Duhem relation we recall that

dp= —sdT + vdP (9.15)

whence, integrating at constant temperature

p=fvdP+¢(T) (9.16)

where ¢(T) is an undetermined function of the temperature, arising as the
“constant of integration.” The integrand v(P), for constant temperature,
is given by Fig. 9.9, which is most conveniently represented with P as



Unstable Isotherms and First-Order Phase Trapsitions 235

Ny —

v(P)

FIGURE 99
A particular isotherm of the van der Waals shape.

abscissa and v as ordinate. By arbitrarily assigning a value to the chemical
potential at the point 4, we can now compute the value of g at any other
point on the same isotherm, such as B, for from equation 9.16

ws == *o(P) dp (9.17)

In this way we obtain Fig. 9.10. This figure, representing p versus P, can
be considered as a plane section of a three-dimensional representation of
p versus P and 7, as shown in Fig. 9.11. Four different constant-tempera-
ture sections of the p-surface, corresponding to four isotherms, are shown.
It is also noted that the closed loop of the g versus P curves, which results
from the fact that v(P) is triple valued in P (see Fig. 9.9), disappears for
high temperatures in accordance with Fig. 9.8.

Finally, we note that the relation p = p(7, P) constitutes a fundamen-
tal relation for one mole of the material, as the chemical potential y is the
Gibbs function per mole. It would then appear from Fig. 9.11 that we
have almost succeeded in the construction of a fundamental equation
from a single given equation of state, but it should be recalled that
although each of the traces of the p-surface (in the various constant
temperature planes of Fig. 9.11) has the proper form, each contains an
additive “constant” ¢(7'), which varies from one temperature plane to
another. Consequently, we do not know the complete form of the
K(T, P)-surface, although we certainly are able to form a rather good
mental picture of its essential topological properties.

With this qualitative picture of the fundamental relation implied by the
van der Waals equation, we return to the question of stability.
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FIGURE 910
Isothermal dependence of the molar Gibbs potential on pressure.
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Consider a system in the state A of Fig. 9.9 and in contact with thermal
and pressure reservoirs. Suppose the pressure of the reservoir to be
increased quasi-statically, maintaining the temperature constant. The sys-
tem proceeds along the isotherm in Fig. 9.9 from the point A in the
direction of point B. For pressures less than P, we see that the volume of
the system (for given pressure and temperature) is single valued and
unique. As the pressure increases above Pg, however, three states of equal
P and T become available to the system, as, for example, the states
designated by C, L, and N. Of these three states L is unstable, but at
both C and N the Gibbs potential is a (local) minimum. These two local
minimum values of the Gibbs potential (or of p) are indicated by the
points C and N in Fig. 9.10. Whether the system actually selects the state
C or the state N depends upon which of these two local minima of the
Gibbs potential is the lower, or absolute, minitmum. It is clear from Fig.
9.10 that the state C is the true physical state for this value of the pressure
and temperature.

As the pressure is further slowly increased, the unique point D is
reached. At this point the p-surface intersects itself, as shown in Fig. 9.10,
and the absolute minimum of p or G thereafter comes from the other
branch of the curve. Thus at the pressure Pr = P,, which is greater than
Pp, the physical state is Q. Below P, the right-hand branch of the
isotherm in Fig. 9.9a is the physically significant branch, whereas above
P, the left-hand branch 1s physically significant. The physical isotherm
thus deduced from the hypothetical isotherm of Fig. 9.9 is therefore shown in
Fig. 9.12.

The isotherm of Fig. 9.9 belongs to an “underlying fundamental
relation”; that of Fig. 9.12 belongs to the stable “thermodynamic funda-
mental relation.”

FIGURE 912

The physical van der Waals isotherm. The “ underlying” isotherm is SOMKFDA, but the
€qual-area construction converts it to the physical isotherm SOKDA.
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The points D and O are determined by the condition that u, = u,, or,
from equation 9.17

fov(P)dP -0 (9.18)

D

where the integral is taken along the hypothetical isotherm. Referring to
Fig. 9.9, we see that this condition can be given a direct graphical
interpretation by breaking the integral into several portions

LdeP+LdeP+LMvdP+f:vdP=0 (9.19)

and rearranging as follows

fdeP—fKdeP =fKudP —fovdP (9.20)

D M M

Now the integral [fvdP is the area under the arc DF in Fig. 9.12 and the
integral [fvdP is the area under the arc KF. The difference in these
integrals is the area in the closed region DFKD, or the area marked I in
Fig. 9.12. Similarly, the right-hand side of equation 9.20 represents the
area II in Fig. 9.12, and the unique points O and D are therefore
determined by the graphical condition

area | = area Il (9.21)

It is only after the nominal ( non-monotonic) isotherm has been truncated by
this equal area construction that it represents a true physical isotherm.

Not only is there a nonzero change in the molar volume at the phase
transition, but there are associated nonzero changes in the molar energy
and the molar entropy as well. The change in the entropy can be
computed by integrating the quantity

ds
ds = (%)Tdv (9.22)

along the hypothetical isotherm OMKFD. Alternatively, by the thermody-
namic mnemonic diagram, we can write

daP
As =5, — s, = M[ (——) dv (9.23)
? ? OMKFD T |,

A geometrical interpretation of this entropy difference, in terms of the
area between neighboring isotherms, is shown in Fig. 9.13.
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T+ AT
As =5, -5, = Al_TfAPdv = ALT-(shaded area)

v—
FIGURE 913
The discontinuity in molar entropy. The area between adjacent isotherms is related to the
entropy discontinuity and thence to the latent heat.

As the system is transformed at fixed temperature and pressure from
the pure phase O to the pure phase D, it absorbs an amount of heat per
mole equal to /,, = TAs. The volume change per mole is Av = vy, — v,
and this is associated with a transfer of work equal to PAv. Consequently,
the total change in the molar energy is

Au=uy—u,=TAs — PAv (9.24)

Each isotherm, such as that of Fig. 9.12, has now been classified into
three regions. The region SO is in the liquid phase. The region DA is in
the gaseous phase. The flat region OKD corresponds to a mixture of the
two phases. Thereby the entire P-v plane is classified as to phase, as
shown in Fig. 9.14. The mixed liquid-plus-gas region is bounded by the
inverted parabola-like curve joining the extremities of the flat regions of
each isotherm.

Within the two-phase region any given point denotes a mixture of the

.two phases at the extremities of the flat portion of the isotherm passing
‘through that point. The fraction of the system that exists in each of the
two phases is governed by the “lever rule.” Let us suppose that the molar
volumes at the two extremities of the flat region of the isotherm are v, and
U, (suggesting but not requiring that the two phases are liquid and gas, for
definiteness). Let the molar volume of the mixed system be v = V/N.
Then if x, and x ¢ are the mole fractions of the two phases

V= Nv= Nx,u,+ Nxp, (9.25)

from which one easily finds
v, — U

(9.26)

Xp=
Ug'_‘ U{
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Liquid
Liquid
plus
gas
U—o
FIGURE 914

Phase classification of the P — v plane.

and

U_U{

x (9.27)

g _
U, — U

That is, an intermediate point on the flat portion of the isotherm implies a
mole fraction of each phase that is equal to the fractional distance of the
point from the opposite end of the flat region. Thus the point Z in Fig
9.14 denotes a mixed liquid-gas system with a mole fraction of liquid
phase equal to the “length” ZD divided by the “length” OD. This is the
very convenient and pictorial lever rule.

The vertex of the two-phase region, or the point at which O” and D”
coincide in Fig. 9.14, corresponds to the critical point—the termination of
the gas—liquid coexistence curve in Fig. 9.1a. For temperatures above the
critical temperature the isotherms are monotonic (Fig. 9.14) and the molar
Gibbs potential no longer is reentrant (Fig. 9.10).

Just as a P-v diagram exhibits a two-phase region, associated with the
discontinuity in the molar volume, so a 7-s diagram exhibits a two-phase
region associated with the discontinuity in the molar entropy.

Example 1

Find the critical temperature T, and critical pressure P_, for a system described
by the van der Waals equation of state. Write the van der Waals equation of state
in terms of the reduced variabies T = T/T,, P= P/P_, and & = v/v,,.

re
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Solution
The critical state coincides with a point of horizontal inflection of the isotherm, or

2
(gg) (ap) _0
dv av?
(Why?) Solving these two simultaneous equations gives

a 8a
v, =3b P"—ﬁ, RT, = >

from which we can write the van der Waals equation in reduced variables:

. 8T 3
P”w~1_ﬁ

Example 2
Calculate the functional form of the boundary of the two-phase region in the P-T
plane for a system described by the van der Waals equation of state.

Solution

We work in reduced variables, as defined in the preceding example. We consider a
fixed temperature and we carry out a Gibbs equal area construction on the
corresponding isotherm. Let the extremities of the two-phase region, correspond-

ing to the reduced temperature 7, be ¥, and ,. The equal area construction
corresponding to equations 9.20 and 9.21 is

¥ ~ ~
f%@=@@—@)
Uy

where P, = P is the reduced pressure at which the phase transition occurs (at the
given reduced temperature 7). The reader should draw the isotherm, identify
the significance of each side of the preceding equation, and reconcile this form of
the statement with that in equations 9.20 and 9.21; he or she should also justify
the use of reduced variables in the equation. Direct evaluation of the integral
.glves

91 1

9 1 1
Bv_l)+3?_"_§§j7 14&V—n+4TW 35,1

Slmultaneous solution of this equation and of the van der Waals equations for
g(P T) and v,(P T) gives v b, and P for each value of 7.

PROBLEMS

9f4'1’ Show that the difference in molar volumes across a coexistence curve is
Biven by Av = — P A

9.4-2. Derive the expressions for v,, P, and T, given in Example 1.
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9.4-3. Using the van der Waals constants for H,0, as given in Table 3.1, calculate
the critical temperature and pressure of water. How does this compare with the
observed value T, = 647.05 K (Table 10.1)?

9.4-4. Show that for sufficiently low temperature the van der Waals isotherm
mtersects the P = 0 axis, predicting a region of negative pressure. Find the
temperature below which the isotherm exhibits this unphysical behavior.

Hint: Let P =0 in the reduced van der Waals equation and consider the
condition that the resultant quadratic equation for the variable §~' have two real
roots.

5 Answer:
T=4%4=084

9.4-5. Is the fundamental equation of an ideal van der Waals fluid, as given in
Section 3.5, an “underlying fundamental relation” or a “thermodynamic funda-
mental relation?” Why?

9.4-6. Explicitly derive the relationship among b,, U, and T, as given in
Example 2.

9.4-7. A particular substance satisfies the van der Waals equation of state. The
coexistence curve is plotted in the P, T plane, so that the critical point is at (1, 1).
Calculate the reduced pressure of the transition for 7 = 0.95. Calculate the
reduced molar volumes for the corresponding gas and liquid phases,

Answer:

09—
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FIGURE 915
The T = 0.95 isotherm.

The T = 0.95 isotherm is shown in Fig. 9.15.
Counting squares permits the equal area construction
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shown, giving the approximate roots indicated on
the figure. Refinement of these roots by the
analytic method of Example 2 yields P = 0.814,
0, = 1.71 and §,= 0.683

9.4-8. Using the two points at 7 = 0.95 and 7 = 1 on the coexistence curve of a
fluid obeying the van der Waals equation of state (Problem 9.4-7), calculate the
average latent heat of vaporization over this range. Specifically apply this result to
H,0.

9.4-9. Plot the van der Waals isotherm, in reduced variables, for T = 0.97,. Make
an equal area construction by counting squares on the graph paper. Corroborate
and refine this estimate by the method of Example 2.

9.4-10. Repeat problem 9.4-8 in the range 0.90 < T < 0.95, using the results of
problems 9.4-7 and 9.4-9. Does the latent heat vary as the temperature ap-
proaches 7.? What is the expected value of the latent heat precisely at 7.7 The
latent heat of vaporization of water at atmospheric pressure is = 540 calories per
gram. Is this value qualitatively consistent with the trend suggested by your
results?

9.4-11. Two moles of a van der Waals fluid are maintained at a temperature
T = 0.957. in a volume of 200 cm®. Find the mole number and volume of each
phase. Use the van der Waals constants of oxygen.

9-5 GENERAL ATTRIBUTES OF
FIRST-ORDER PHASE TRANSITIONS

Our discussion of first-order transitions has been based on the general
shape of realistic isotherms, of which the van der Waals isotherm is a
characteristic representative. The problem can be viewed in a more general
perspective based on the convexity or concavity of thermodynamic poten-
tials.

Consider a general thermodynamic potential, U[P,,..., P], that is a
function of S, X,, X,,..., X,_,, P,, ..., P.. The criterion of stability is that
U[P,..., P} must be a convex function of its extensive parameters and a
concave function of its intensive parameters. Geometrically, the function
must lie above its tangent hyperplanes in the X),..., X,_, subspace and
below its tangent hyperplanes in the P,, ..., P, subspace.

Consider the function U[P,,..., P] as a function of X, and suppose it
to have the form shown in Fig. 9.164. A tangent line DO'is also shown. It
will be noted that the function lies above this tangent line. It also lies
above all tangent lines drawn at points to the left of D or to the right of
O. The function does not lie above tangent lines drawn to points inter-
mediate between D and O. The local curvature of the potential is positive
for all points except those between points F and M. Nevertheless a phase
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FIGURE 9.16

Stability reconstruction for a general potential.

transition occurs from the phase at D to the phase at 0. Global curvature
fails (becomes negative) at D before local curvature fails at F.

The “amended” thermodynamic potential U[P,,..., P,] consists of the
segment AD in Fig. 9.15a, the straight line two-phase segment DO, and
the original segment OR.

An intermediate point on the straight line segment, such as Z, corre-
sponds to a mixture of phases D and O. The mole fraction of phase D
varies linearly from unity to zero as Z moves from point D to point O,
from which it immediately follows that

(X - x?)
(X~ xP)

This is again the “lever rule.”

The value of the thermodynamic potential U[P,,..., P,] in the mixed
state (i.e., at Z) clearly is less than that in the pure state (on the initial
curve corresponding to X7). Thus the mixed state given by the straight
line construction does minimize U[P,,..., P,] and does correspond to the
physical equilibrium state of the system.

The dependence of U[P,...,P] on an intensive parameter P, is
subject to similar considerations, which should now appear familiar. The
Gibbs potential U[T, P] = Nu(T, P) is the particular example studied in
the preceding section. The local curvature is negative except for the
segment MF (Fig. 9.16b). But the segment MD lies above, rather than
below, the tangent drawn to the segment ADF at D. Only the curve
ADOR lies everywhere below the tangent lines, thereby satisfying the
conditions of global stability.

Thus the particular results of the preceding section are of very general
applicability to all thermodynamic potentials.
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9-6 FIRST-ORDER PHASE TRANSITIONS
IN MULTICOMPONENT SYSTEMS—GIBBS PHASE RULE

If a system has more than two phases, as does water (recall Fig. 9.1), the
phase diagram can become quite elaborate. In multicomponent systems
the two-dimensional phase diagram is replaced by a multidimensional
space, and the possible complexity would appear to escalate rapidly.
Fortunately, however, the permissible complexity is severely limited by the
“Gibbs phase rule.” This restriction on the form of the boundaries of
phase stability applies to single-component systems as well as to multi-
component systems, but it is convenient to explore it directly in the
general case.

The criteria of stability, as developed in Chapter 8, apply to multicom-
ponent systems as well as to single-component systems. It is necessary
only to consider the various mole numbers of the components as extensive
parameters that are completely analogous to the volume V' and the
entropy S. Specifically, for a single-component system the fundamental
relation is of the form

U= U(S,V,N) (9.28)
or, in molar form
u=u(s,v) (9.29)
For a multicomponent system the fundamental relation is
U= U(S,V,N,N,,...,N) (9.30)
and the molar form is
u=u(s,0,x;,Xx3,---,%,_) (9.31)

The mole fractions x, = N,/N sum 1o unity, so that only r — 1 of the x|
are independent, and only » — 1 of the mole fractions appear as indepen-
dent variables in equation 9.31. All of this is (or should be) familiar, but it
IS repeated here to stress that the formalism is completely symmetric in
}he variables s,v,x,,...,x, ;, and that the stability criteria can be
Interpreted accordingly. At the equilibrium state the energy, the enthalpy,
and the Helmholtz and Gibbs potentials are convex functions of the mole
fractions x,, x,,...,x, , (see Problems 9.6-1 and 9.6-2).

If the stability criteria are not satisfied in multicomponent systems a
Phase transition again occurs. The mole fractions. like the molar entropies
and the molar volumes, differ in each phase. Thus the phases generally are
different in gross composition. A mixture of salt (NaCl) and water
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brought to the boiling temperature undergoes a phase transition in which
the gaseous phase is almost pure water, whereas the coexistent liquid
phase contains both constituents—the difference in composition between
the two phases in this case is the basis of purification by distillation.

Given the fact that a phase transition does occur, in either a single or
multicomponent system, we are faced with the problem of how such a
multiphase system can be treated within the framework of thermodynamic
theory. The solution is simple indeed, for we need only consider each
separate phase as a simple system and the given system as a composite
system. The “wall” between the simple systems or phases is then com-
pletely nonrestrictive and may be analyzed by the methods appropriate to
nonrestrictive walls.

As an example consider a container maintained at a temperature 7 and
a pressure P and enclosing a mixture of two components. The system is
observed to contain two phases: a liquid phase and a solid phase. We wish
to find the composition of each phase.

The chemical potential of the first component in the liquid phase is
p{5(T, P, x{P), and in the solid phase it is ST, P, x{5); it should be
noted that different functional forms for u, are appropriate to each phase.
The condition of equilibrium with respect to the transfer of the first
component from phase to phase is

wO(T, P, x(P) = (T, P, x(®) (9.32)

Similarly, the chemical potentials of the second component are
pO(T, P, x{(M) and pbS(T, P, x{S); we can write these 1 terms of x,
rather than x, because x, + x, is unity in each phase. Thus equating p¢’
and p$> gives a second equation, which, with equation 9.32, determines
x{P and x{5.

Let us suppose that three coexistent phases are observed in the forego-
ing system. Denoting these by I, II, and III, we have for the first
component

w (T, P, xt) = g7, P, x1) = pi(T, P, x11) (9.33)

and a similar pair of equations for the second component. Thus we have
four equations and only three composition variables: x!, x', and x!".
This means that we are not free to specify both T and P a priori, but if 7
is specified then the four equations determine P, x!, x!, and x
Although it is possible to select both a temperature and a pressure
arbitrarily, and then to find a two-phase state, a three-phase state can exist
only for one particular pressure if the temperature is specified.

In the same system we might inquire about the existence of a state in
which four phases coexist. Analogous to equation 9.33, we have three
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equations for the first component and three for the second. Thus we have
six equations involving 7, P, x{, x{!, x{"!, and x!V. This means that we
can have four coexistent phases only for a uniquely defined temperature
and pressure, neither of which can be arbitrarily preselected by the
experimenter but which are unique properties of the system.

Five phases cannot coexist in a two-component system, for the eight
resultant equations would then overdetermine the seven variables
(T, P, x},-..,x), and no solution would be possible in general.

We can easily repeat the foregoing counting of variables for a multi-
component, multiphase system. In a system with r components the
chemical ?otentials in the first phase are functions of the variables,
T, P,x{,x3,...,x}_,. The chemical potentials in the second phase are
functions of T, P, x{", x¥,...,x |. If there are M phases, the complete
set of independent variables thus consists of 7, P, and M(r — 1) mole
fractions; 2 + M(r — 1) vanables in all. There are M — 1 equations of
chemical potential equality for each component, or a total of r(M — 1)
equations. Therefore the number f of variables, which can be arbitrarily
assigned, 1s [2 + M(r — )] - r(M — 1), or

f=r—M+2 (9.34)

The fact that r — M + 2 variables from the set (T, P, x], x5,...,x" )
can be assigned arbitrarily in a system with r components and M phases
is the Gibbs phase rule.

The quantity f can be interpreted alternatively as the number of
thermodynamic degrees of freedom, previously introduced in Section 3.2
and defined as the number of intensive parameters capable of independent
variation. To justify this interpretation we now count the number of
thermodynamic degrees of freedom in a straightforward way, and we show
that this number agrees with equation 9.34.

For a single-component system in a single phase there are two degrees
of freedom, the Gibbs-Duhem relation eliminating one of the three
“variables T, P, . For a single-component system with two phases there
are three intensive parameters (7, P, and p, each constant from phase to
phase) and there are two Gibbs—Duhem relations. There is thus one
degree of freedom. In Fig. 9.1 pairs of phases accordingly coexist over
one-dimensional regions (curves).

If we have three coexistent phases of a single-component system, the
three Gibbs—Duhem relations completely determine the three intensive
Parameters 7, P, and p. The three phases can coexist only in a unique
zero-dimensional region, or point; the several “triple points” in Fig. 9.1.

For a multicomponent, multiphase system the number of degrees of
freedom can be counted easily in similar fashion. If the system has r
tomponents, there are r + 2 intensive parameters: T, P, p, fy, ..., [,

ach of these parameters is a constant from phase to phase. But in each of
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the M phases there is a Gibbs-Duhem relation. These M relations reduce
the number of independent parameters to (r + 2) — M. The number of
degrees of freedom f is therefore » — M + 2, as given in equation 9.34.

The Gibbs phase rule therefore can be stated as follows. In a system
with r components and M coexistent phases it is possible arbitrarily to
preassign r — M + 2 variables from the set (T, P, x}, x},...,xM ) or from
the set (T, P, py, phoy.-., 1))

It is now a simple matter to corroborate that the Gibbs phase rule gives
the same results for single-component and two-component systems as we
found in the preceding several paragraphs. For single-component systems
r=1and f= 0if M = 3. This agrees with our previous conclusion that
the triple point is a unique state for a single-component system. Similarly,
for the two-component system we saw that four phases coexist in a unique
point (f= 0, r =2, M = 4), that the temperature could be arbitrarily
assigned for the three-phase system (f = 1, r = 2, M = 3), and that both
T and P could be arbitrarily assigned for the two-phase system ( f = 2,
r=2 M=2)

PROBLEMS

9.6-1. In a particular system, solute 4 and solute B are each dissolved in
solvent C.

a) What is the dimensionality of the space in which the phase regions exist?

b) What is the dimensionality of the region over which two phases coexist?

¢) What is the dimensionality of the region over which three phases coexist?

d) What is the maximum number of phases that can coexist in this system?

9.6-2. If g, the molar Gibbs function, is a convex function of x,, x,,...,x,_;,
show that a change of variables to x,, x5,...,x, results in g being a convex
function of x,, x,,...,x,. That is, show that the convexity condition of the molar

Gibbs potential is independent of the choice of the “redundant” mole fraction.

9.6-3. Show that the conditions of stability in a multicomponent system require
that the partial molar Gibbs potential p, of any component be an increasing
function of the mole fraction x, of that component, both at constant v and at
constant P, and both at constant s and at constant T.

9-7 PHASE DIAGRAMS FOR BINARY SYSTEMS

The Gibbs phase rule (equation 9.34) provides the basis for the study of
the possible forms assumed by phase diagrams. These phase diagrams.
particularly for binary (two-component) or ternary (three-component)
systems, are of great practical importance in metallurgy and physical
chemistry, and much work has been done on their classification. To
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illustrate the application of the phase rule, we shall discuss two typical
diagrams for binary systems.

For a single-component system the Gibbs function per mole is a
function of temperature and pressure, as in the three-dimensional repre-
sentation in Fig. 9.11. The “phase diagram” in the two-dimensional T- P
plane (such as Fig. 9.1) is a projection of the curve of intersection (of the
p-surface with itself) onto the T-P plane.

For a binary system the molar Gibbs function G/(N, + N,) is a
function of the three variables T, P, and x,. The analogue of Fig. 9.11 is
then four-dimensional, and the analogue of the T-P phase diagram is
three-dimensional. It 1s obtained by projection of the “hypercurve” of
intersection onto the P, T, x, “hyperplane.”

The three-dimensional phase diagram for a simple but common type of
binary gas—liquid system is shown in Fig. 9.17. For obvious reasons of
graphic convenience the three-dimensional space 1s represented by a series
of two-dimensional constant-pressure sections. At a fixed value of the
mole fraction x, and fixed pressure the gaseous phase is stable at high
temperature and the liquid phase is stable at low temperature. At a
temperature such as that labeled C in Figure 9.17 the system separates
into two phases—a liquid phase at A and a gaseous phase at B. The

T P=p
T
Gas
L’QUI
d %
ga
Liquid J
0 1 0 1
X —> - >

0
X—> xq-—>
FIGURE 9 17
The three-dimensional phase diagram of a typical gas-liqud binary system. The two-
dimensional sections are constant pressure planes, with P, < P, < P, < P,
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composition at point C in Figure 9.17 is analogous to the volume at point
Z in Figure 9.14 and a form of the lever rule is clearly applicable.

The region marked “gas” in Figure 9.17 1s a three-dimensional region,
and 7, P, and x, can be independently varied within this region. This is
true also for the region marked “liquid.” In each case r = 2, M = 1, and
f=3.

The state represented by point C in Figure 9.17 is really a two-phase
state, composed of A and B. Thus only 4 and B are physical points, and
the shaded region occupied by point C is a sort of nonphysical “hole” in
the diagram. The two-phase region is the surface enclosing the shaded
volume in Figure 9.17. This surface is two-dimensional (r = 2, M = 2,
f = 2). Specifying T and P determines x;' and x uniquely.

If a binary liquid with the mole fraction x{' is heated at atmospheric
pressure, it will follow a vertical line in the appropriate diagram in Fig.
9.17. When it reaches point A, it will begin to boil. The vapor that escapes
will have the composition appropriate to point B.

A common type of phase diagram for a liquid- solid, two-component
system is indicated schematically in Fig. 9.18 in which only a single
constant-pressure section is shown. Two distinct solid phases, of different
crystal structure, exist: One is labeled « and the other is labeled 8. The
curve BDHA is called the liquidus curve, and the curves BEL and ACJ
are called solidus curves. Point G corresponds to a two-phase
system—some liquid at H and some solid at F. Point K corresponds to
a-solid at J plus B-solid at L.

A
_
Liquid G
c,,’,///// /4/
7/
T B-Pf;ase ' / GS%TISS)E
T (solid) \
é \
\\ \ N\
0 2 — > 1

FIGURE 9 18
Typical phase diagram for a binary system at constant pressure.

If a liquid with composition x,, is cooled, the first solid to precipitate
out has composition x.. If it is desired to have the solid precipitate with
the same composition as the iiquid, it is necessary to start with a liquid of
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composition x . A liquid of this composition is called a eutectic solution.
A eutectic solution freezes sharply and homogeneously, producing good
alloy castings in metallurgical practice.

The liquidus and solidus curves are the traces of two-dimensional
surfaces in the complete 7-x,- P space. The eutectic point D is the trace
of a curve 1n the full T-x,- P space. The eutectic is a three-phase region,
in which liquid at D, B-solid at E, and a-solid at C can coexist. The fact
that a three-phase system can exist over a one-dimensional curve follows
from the phase rule (r =2, M =3, f=1).

Suppose we start at a state such as N in the liquid phase. Keeping T
and x, constant, we decrease the pressure so that we follow a straight line
perpendicular to the plane of Fig. 9.18 in the T-x,- P space. We eventu-
ally come to a two-phase surface, which represents the liquid—gas phase
transition. This phase transition occurs at a particular pressure for the
given temperature and the given composition. Similarly, there is another
particular pressure which corresponds to the temperature and composition
of point Q and for which the solid 8 is in equilibrium with its own vapor.
To each point T, x; we can associate a particular pressure P in this way.
Then a phase diagram can be drawn, as shown in Fig. 9.19. This phase
diagram differs from that of Fig. 9.18 in that the pressure at each point is
different, and each point represents at least a two-phase system (of which
one phase is the vapor). The curve B’D’ is now a one-dimensional curve
(M =3, f=1), and the eutectic point D’ is a unique point (M = 4,
f=0). Point B’ is the triple point of the pure first component and point
A’ is the triple point of the pure second component.

Although Figs. 9.18 and 9.19 are very similar in general appearance,
they are clearly very different in meaning, and confusion can easily arise

Liquid + vapor
5\ Vapor + Vapor + §
T § iquid + 8 liquid + >
+
T |+ o
LY
E D' C
Vapor + ¢ + 8
0 1
Il —_—

FIGURE 919
Phase diagram for a binary system in equilibrium with its vapor phase
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from failure to distinguish carefully between these two types of phase
diagrams. The detailed forms of phase diagrams can take on a myriad of

differences in detail, but the dimensionality of the intersections of the
various multiphase regions is determined entirely by the phase rule.

PROBLEMS

9.7-1. The phase diagram of a solution of 4 in B, at a pressure of 1 atm, 1s as
shown. The upper bounding curve of the two-phase region can be represented by

T= To_(z) - Tl)xi

(P =1 atm)

Gas

2, = Na
AT Ng+ Ng

The lower bounding curve can be represented by
T=T,—(To - T)x,(2 — x,)

A beaker containing equal mole numbers of A and B is brought to its boiling
temperature. What is the composition of the vapor as it first begins to boil off?
Does boiling tend to increase or decrease the mole fraction of 4 in the remaining
liquid?

Answer
x 4(vapor) = 0.866

9.7-2. Show that if a small fraction (—dN/N) of the material is boiled off the
system referred to in Problem 9.7-1, the change in the mole fraction in the
remaining liquid is

dx, = —[(ZxA —xi); - x"](:wd]!)
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9.7-3. The phase diagram of a solution of 4 in B, at a pressure of 1 atm and in
the region of small mole fraction (x, < 1), is as shown. The upper bounding

xg—>
curve of the two-phase region can be represented by
T=T,-Cx,
and the lower bounding curve by
T=T,—- Dx,

in which C and D are positive constants (D > C).

Assume that a liquid of mole fraction x§ is brought to a boil and kept boiling
until only a fraction (N,;/N,) of the material remains; derive an expression for the
final mole fraction of 4.

Show thatif D = 3C and if N,/N, = 3, the final mole fraction of component 4
1s one fourth its 1nitial value.






CRITICAL PHENOMENA

10-1 THERMODYNAMICS IN THE
NEIGHBORHOOD OF THE CRITICAL POINT

The entire structure of thermodynamics, as described in the preceding
chapters, appeared at mid-century to be logically complete, but the
structure foundered on one ostensibly minor detail. That “detail” had to
do with the properties of systems in the neighborhood of the critical point.
Classical thermodynarics correctly predicted that various “generalized
susceptibilities” (heat capacities, compressibilities, magnetic susceptibili-
ties, etc.) should diverge at the critical point, and the general structure of
classical thermodynamics strongly suggested the analytic form (or “shape™)
of those divergences. The generalized susceptibilities do diverge, but the
analytic form of the divergences is not as expected. In addition the
divergences exhibit regularities indicative of an underlying integrative
principle inexplicable by classical thermodynamics.

Observations of the enormous fluctuations at critical points date back
to 1869, when T. Andrews' reported the “critical opalescence” of fluids.
The scattering of light by the huge density fluctuations renders water
“milky” and opaque at or very near the critical temperature and pressure
(647.29 K, 22.09 MPa). Warming or cooling the water a fraction of a
Kelvin restores it to its normal transparent state.

Similarly, the magnetic susceptibility diverges for a magnetic system
nNear its critical transition, and again the fluctuations in the magnetic
moment are divergent.

A variety of other types of systems exhibit critical or “second-order”
‘l‘ransitions; several are listed in Table 10.1 along with the corresponding

order parameter” (the thermodynamic quantity that exhibits divergent
fluctuations, analogous to the magnetic moment).

T, Andrews, Phil. Trans. Royal Soc. 159, 575 (1869)

755
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TABLE10.1

Examples of Critical Points and Their Order Parameters™

Critical Point Order Parameter Example 7., (K)

Liquid-gas Molar volume H,O 647.05

Ferromagnetic Magnetic moment Fe 1044.0

Antiferromagnetic Sublattice magnetic FeF, 78.26
moment

A-line in *He “He quantum mechanical ~ *He 18-21
amplitude

Superconductivity Electron pair amplitude Pb 7.19

Binary fluid mixture Fractional segregation CCl,-C;F, 301.78

of components

Binary alloy Fraction of one atomic Cu-Zn 739
species on one sublattice

Ferroelectric Electnic dipole moment Triglycine sulfate 3225

*Adapted from Shang-Keng Ma, Modern Theory of Crincal Phenomena (Addison-Wesley Advanced
Book Program, CA, 1976 Used by permussion)

In order to fix these preliminary ideas in a specific way we focus on the
gas-liquid transition in a fluid. Consider first a point P,T on the
coexistence curve; two local minima of the underlying Gibbs potential
then compete, as illustrated in Fig. 10.1. If the point of interest were to
move off the coexistence curve in either direction then one or the other of
the two minima would become the lower. The two physical states, corre-
sponding to the two minima, have very different values of molar volume,

T—>
FIGURE 10.1

Competition of two minima of the Gibbs potential near the coexistence curve
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T —>
FIGURE 102
The coalescence of the minima of the Gibbs potential as the critical point is approached.

molar entropy, and so forth. These two states correspond, of course, to the
two phases that compete in the first-order phase transition.

Suppose the point P, T on the coexistence curve to be chosen closer to
the critical point. As the point approaches the critical 7 and P the two
minima of the Gibbs potential coalesce (Fig. 10.2).

For all points beyond the critical point (on the extended or extrapolated
coexistence curve) the minimum is single and normal (Fig. 10.3). As the
critical point is reached (moving inward toward the physical coexistence
curve) the single minimurmn develops a flat bottom, which in turn develops
a “bump” dividing the broadened minimum into two separate minima.
The single minimum “bifurcates” at the critical point.

The flattening of the minimurm of the Gibbs potential in the region of
the critical state implies the absence of a “restoring force” for fluctuations
away from the critical state (at least to leading order)—hence the diver-
Bent fluctuations.

This classical conception of the development of phase transitions was
formulated by Lev Landau,? and extended and generalized by Laszlo
Tisza,* to form the standard classical theory of critical phenomena. The
essential idea of that theory is to expand the appropriate underlying
thermodynamic potential (conventionally referred to as the “free energy
functional”) in a power series in 7 — T, the deviation of the temperature
from its value 7.(P) on the coexistence curve. The qualitative features
described here then determine the relative signs of the first several

2¢f. L. D Landau and E. M. Lifshute, Sratisncal Physics, MIT Press, Cambridge. Massachusetts
and London, 1966.

3€f . L. Twsza, Generalized Thermodynamics, MIT Press, Cambridge, Massachusetts and London,
1966 (see particularly papers 3 and 4)
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T —>
FIGURE 10.3
The classical picture of the development of a first-order phase transition. The dotted curve
is the extrapolated (non-physical) coexistence curve

coefficients, and these terms in turn permit calculation of the analytic
behavior of the susceptibilities as 7, approaches the critical temperature
T,,. A completely analogous treatment of a simple mechanical analogue
model is given in the Example at the end of this section, and an explicit
thermodynamic calculation will be carried out in Section 10.4. At this
point it is sufficient to recognize that the Landau theory is simple,
straightforward, and deeply rooted in the postulates of macroscopic
thermodynamics; it is based only on those postulates plus the reasonable
assumption of analyticity of the free energy functional. However, a direct
comparison of the theoretical predictions with experimental observations
was long bedeviled by the extreme difficulty of accurately measuring and
controlling temperature in systems that are incipiently unstable, with
gigantic fluctuations.

In 1944 Lars Onsager* produced the first rigorous statistical mechanical
solution for a nontrivial model (the “two-dimensional Ising model”), and
it exhibited a type of divergence very different from that expected. The
scientific community was at first loath to accept this disquieting fact,
particularly as the model was two-dimensional (rather than three-dimen-
sional), and furthermore as it was a highly idealized construct bearing
little resemblance to real physical systems. In 1945 E. A. Guggenheim’

4L. Onsager, Phys. Rev. 65, 117 (1944).
SE. A. Guggenheim, J. Chem. Phys i3, 253 (1945)
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observed that the shape of the coexistence curve of fluid systems also cast
doubt on classical predlctlons but it was not until the early 1960s that
precise measurements® forced confrontation of the failure of the classical
Landau theory and initiated the painful reconstruction’ that occupied the
decades of the 1960s and the 1970s.

Deeply probing insights into the nature of critical fluctuations were
developed by a number of theoreticians, including Leo Kadanoff, Michael
Fischer, G. S. Rushbrooke, C. Domb, B. Widom, and many others.®® The
construction of a powerful analytical theory (“renormalization theory”)
was accomplished by Kenneth Wilson, a high-energy theorist interested in
statistical mechanics as a simpler analogue to similar difficulties that
plagued quantum field theory.

The source of the failure of classical Landau theory can be understood
relatively easily, although it depends upon statistical mechanical concepts
yet to be developed in this text. Nevertheless we shall be able in Section
10.5 to anticipate those results sufficiently to describe the origin of the
difficulty in pictorial terms. The correction of the theory by renormaliza-
tion theory unfortunately lies beyond the scope of this book, and we shall
simply describe the general thermodynamic consequences of the Wilson
theory. But first we must develop a framework for the description of the
analytic form of divergent quantities, and we must review both the
classical expectations and the (very different) experimental observations.
To all of this the following mechanical analogue is a simple and explicit
introduction.

Example
The mechanical analogue of Section 9.1 provides instructive insights into the
flattening of the minimum of the thermodynamic potential at the critical point as
that minimum bifurcates into two competing minima below 7,,. We again
consider a length of pipe bent into a semicircle, closed at both ends, standing
vertically on a table in the shape of an inverted U, containing an internal piston.
On either side of the piston there is 1 mole of a monatomic ideal gas. The metal
‘balls that were inserted in Section 9.1 in order to break the symmetry (and
thereby to produce a first-order rather than a second-order transition) are not
presens.

If 6 is the angle of the piston with respect to the vertical, R is the radius of
Curvature of the pipe section, and Mg is the weight of the piston (we neglect
8ravitational effects on the gas itself), then the potential energy of the piston is

Lf P Heller and G. B. Benedek, Phys Rev. Let. 8, 428 (1562).

Lf H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford Umv. Press,
New York and Oxford, 1971.

(f H. E. Stanley, Ibid

P Pfeuty and G. Toulouse, Introduction to the Renormahzaton Group und Crincal Phenomenu,
John Wiley and Sons, NY 1§77



260 Critical Phenomena
(MgR)cos 8, and the Helmholtz potential is
F=U-—TS=(MgR)cos8 + F, + Fy

The Helmholtz potentials F;, and Fy of the gases in the left-hand and right-hand
sections of the pipe are given by (recall Problem 5.3-1)

v,
F, = F(T) —RTln(—Li)
' Vo

where F/(T') is a function of T only. The volumes are determined by the position
6 of the piston

26
V, = (1—2_7f)V0, Ve = (1+7)V0

where we have taken ¥, as half the total volume of the pipe. It follows then that,
for small 8,

2 24

+2FY(T) +RT[(20) + %(2)4 + ]

™

2 4
F(0,T)=MgR[l LA ]

= [MgR + 2F/(T)] + ( —~RT -~ %1\41{;12)492

(24MgR+ RT)G

The coefficient of 6* is intrinsically positive, but the coefficient of #2 changes sign
at a temperature T,

2
aT -
a ﬁ(MgR)

For T > T, there is then only a single minimum; the piston resides at the apex
of the pipe and the two gases have equal volumes.

For T < T, the state 8 = 0 is a maximum of the Helmboltz potential and
there are two symmetric minima at

-T

0= e T
/6 24T+ T,
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For T = T, the Helmholtz potential has a very flat minimum, arising only
from the fourth-order terms. Spontaneous fluctuations thereby experience only
weak restoring forces. The “Brownian motion” (fluctuation) of the position of the
piston is correspondingly large. Furthermore, even a trivially small force applied
to the piston would induce a very large displacement; the “generalized suscept-
ibility” diverges.

Although we have now seen the manner in which this model develops a
bifurcating Helmholtz functional at the critical temperature, it may be instructive
also to reflect on the manner in which a first-order transition occurs at lower
temperatures. For this purpose some additional parameters must be introduced,
to bias one minimum of F relative to the other. We might simply tilt the table
slightly, thereby inducing a first-order transition from one minimum to the other.
Alternatively, and more familiarly, a first-order phase transition can be thermally
induced. In Section 9.1 this possibility was built into the model by inclusion of
two metal ball-bearings of different coefficients of thermal expansion; a more
appealing model would be one in which the two gases are differently nonideal.

Although this example employs a rather artificial system, the fundamental
equation mimics that of homogeneous thermodynamic systems, and the analysis
given above anticipates many features of the classical Landau theory to be
described in Section 10.4.

10-2 DIVERGENCE AND STABILITY

The descriptive picture of the origin of divergences at the critical point,
as alluded to in the preceding section, is cast into an illuminating
perspective by the stability criteria (equation 8.15 and Problem §.2-3)

) ]
— <0 <0 10.1
(arz p P2 ; (10.1)
and

d%g d’g a%g \*

(W)P(m arar) >0 (10:2)

These stability criteria express the concavity requirements of the Gibbs
potential. The “flattening” of the Gibbs potential at the critical point
corresponds to a failure of these concavity requirements. In fact all three
of the stability criteria fail simultaneously, and a, k,, and ¢, diverge
together. Further perspective is provided by a physical, rather than a
formal, point of view. Consider a particular point P, T on the coexistence
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FIGURE 104
Schematic isotherms of a two-phase sys-
U—3 tem.

curve of a two-phase system. The isotherms of the system are qualitatively
similar to those shown in Fig. 10.4 (recall Fig. 9.12, although the van der
Waals equation of state may not be quantitatively relevant). In particular,
the isotherms have a flat portion in the P—T plane. On this flat portion
the system is a mixture of two phases, in accordance with the “lever rule”
(Section 9.4). The volume can be increased at constant pressure and
temperature, the system responding simply by altering the mole fraction
in each of the two coexistent phases. Thus, formally, the isothermal
compressibility k, = —v~(dv/dP), diverges.

Again considering this same system in the mixed two-phase state,
suppose that a small quantity of heat Q (= TAS) is injected. The heat
supplies the heat of transition (the heat of vaporization or the heat of
melting) and a small quantity of matter transforms from one phase to the
other. The temperature remains constant. Thus ¢, = 7(ds/dT) , diverges.

The divergence of k and of ¢, exists formally all along the coexistence
locus. Across the coexistence locus in the P-T plane both k; and ¢, are
discontinuous, jumping from one finite value to another by passing
through an intermediate infinity (in the mixed-phase state), see Fig. 10.5.

As the point of crossing of the coexistence curve is chosen closer to the
critical point, classical Landau theory predicts that the “jump” of
should decrease but that the intermediate infinity should remain. This

}
|
|
|
1
1

cpor Kip o3

FIGURE 10.5
Discontinuity and divergence of gener-
alized susceptibilities across a coexis-

tence locus. The abscissa can be either T
or P, along a line crossing the coexis-
TorP —» tence locus in the 7' — P plane.
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description is correct except very close to the critical point, in which
region nonclassical behavior dominated by the fluctuations intervenes.
Nevertheless, the qualitative behavior remains similar—a divergence of «,
at the critical point, albeit of an altered functional form.

The heat capacity behaves somewhat differently. As we shall see later,
Landau theory predicts that as the critical point is approached both the
jump in the heat capacity and the intermediate divergence should fade
away. In fact the divergence remains, though it is a weaker divergence
than that of k.

10-3 ORDER PARAMETERS AND CRITICAL EXPONENTS

Although Landau’s classical theory of critical transitions was not
quantitatively successful, it did introduce several pivotal concepts. A
particularly crucial observation of Landau was that in any phase transi-
tion there exists an “order parameter” that can be so defined that it is zero
in the high-temperature phase and nonzero in the low-temperature phase.
Order parameters for various second-order transitions are listed in Table
10.1. The simplest case, and the prototypical example, is provided by the
paramagnetic to ferromagnetic transition (or its electric analogue). An
appropriate order parameter is the magnetic moment, which measures the
cooperative alignment of the atomic or molecular dipole moments.

Another simple and instructive transition is the binary alloy
“order—disorder” transition that occurs, for instance, in copper-zinc
(Cu-Zn) alloy. The crystal structure of this material is “body-centered
cubic,” which can be visualized as being composed of two interpenetrating
simple cubic lattices. For convenience we refer to one of the sublattices as
the 4 sublattice and to the other as the B sublattice. At high temperatures
the Cu and Zn atoms of the alloy are randomly located, so that any
particular lattice point is equally likely to be populated by a zinc or by a
copper atom. As the temperature is lowered, a phase transition occurs
such that the copper atoms preferentially populate one sublattice and the
zinc atoms preferentially populate the other sublattice. Immediately below
the transition temperature this preference is very slight, but with decreas-
Ing temperature the sublattice segregation increases. At zero temperature
One of the sublattices is entirely occupied by copper atoms and the other
Sublattice is entirely occupied by zinc atoms. An appropriate order
parameter is (N7, — N&,)/N*, or the difference between the fraction of
4 sites occupied by zinc atoms and the fraction occupied by copper
atoms. Above the transition temperature the order parameter is zero; it
becomes nonzero at the transition temperature; and it becomes either +1
or -1 at 7T =0.

As in the order—disorder transition, the order parameter can always be
chosen to have unit magnitude at zero temperature; it is then “normal-
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ized.” In the ferromagnetic case the normalized order parameter is
I(T)/I{0); whereas the extensive parameter is the magnetic moment
I(T).

In passing we recall the discussion in Section 3.8 on unconstrainable
variables. As was pointed out, it sometimes happens that a formally
defined intensive parameter does not have a physical realization. The
copper-zinc alloy system is such a case. In contrast to the ferromagnetic
case (in which the order parameter is the magnetic moment / and the
intensive parameter dU/dI is the magnetic field B,), the order parameter
for the copper-zinc alloy is (N7, — N&,) but the intensive parameter has
no physical reality. Thus the thermodynamic treatment of the Cu-Zn
system requires that the intensive parameter always be assigned the value
zero. Similarly the intensive parameter conjugate to the order parameter
of the superfluid *He transition must be taken as zero.

Identification of the order parameter, and recognition that various
generalized susceptibilities diverge at the critical point, motivates the
definition of a set of “critical exponents” that describe the behavior of
these quantities in the critical region.

In the thermodynamic context there are four basic critical exponents,
defined as follows.

The molar heat capacity (¢, in the fluid case or ¢, in the magnetic case)
diverges at the critical point with exponents a above T, and a’ below T,

c,ore, ~(T-T,)° (T>T,) (10.3)

c,oreg ~(T,-T)" (T<T,) (10.4)

The “generalized susceptibilities”, k= —(dv/dP);/v in the fluid
case or Xy = po(d1/3B,)r/v in the magnetic case, diverge with expo-
nents y or y’.

kror xp~(T-T,)"" (T>T1,) (10.5)
kpor xp~(T,~T)" (T<T,) (10.6)

Along the coexistence curve the order parameter varies as (7., — T)?
Avorl ~ (T, -T)® (T<T,) (10.7)

and, of course, the order parameter vanishes for 7> T,,. Note that a
prime indicates T < 7, for the exponents a’ and y’; whereas 8 can be
defined only for T < T,, so that a prime is superfluous.
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Finally, on the critical isotherm (i.e., for T = T,)) the order parameter
and its corresponding intensive parameter satisfy the relation

I1~B"® orhv~(P-r,)"? (10.8)

which define the exponent §.

In addition there are several critical exponents defined in terms of
statistical mechanical concepts lying outside the domain of macroscopic
thermodynamics. Perhaps the most significant of these additional expo-
nents describes the range of fluctuations, or the size of the correlated
regions within the system. The long wavelength fluctuations dominate
near the critical point, and the range of the correlated regions diverges.

This onset of long-range correlated behavior is the key to the statistical
mechanical (or “renormalization group”) solution to the problem. Because
large regions are so closely correlated, the details of the particular atomic
structure of the specific matenial become of secondary importance! The
atomic structure is so masked by the long-range correlation that large
families of materials behave similarly—a phenomenon known as “univer-
sality,” to which we shall return subsequently.

10-4 CLASSICAL THEORY IN THE
CRITICAL REGION: LANDAU THEORY

The classical theory of Landau, which evaluates the critical exponents,
provides the standard of expectation to which we can contrast both
experimental observations and the results of renormalization group the-
ory.

We consider a system in which the unnormalized order parameter is ¢.
We have in mind, perhaps, the magnetization of a uniaxial crystal (in
which the dipoles are equally probably “up” or “down” above the
transition temperature), or the binary Cu-Zn alloy. The Gibbs potential
G is a function of T, P,¢, N, N,,..., N,

G=G(T,P,$,N,N,,...,N,). (10.9)

In the immediate vicinity of the critical point the order parameter is small,
Suggesting a series expansion in powers of ¢

G=Gy,+ G+ Gp*+ Gy’ + --- (10.10)

where Gy, G, Gy, ... are functions of T, P, N,..., N,. For the magnetic
System or binary alloy the symmetry of the problems immediately pre-
Cludes the odd terms, requiring that the Gibbs potential be even in ¢;
there is no a priori difference between spin up and spin down, or between
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the 4 and B sublattices. (This reasoning is a precursor and a prototype of
more elaborate symmetry arguments in more complex systems.)

G(T,P,¢,Np,...,N) =Gy + G* + Go* + ---  (10.11)

Each of the expansion coefficients is a function of 7, P, and the N’s,
G,=G(T, P, Ny, ..., N). We now concentrate our attention on the
extrapolated coexistence curve—the dotted curve in Fig. 10.3. Along this
locus P is a function of T, and all mole numbers are constant, so that
each of the expansion coefficients G, is effectively a function of T only.
Correspondingly, G is effectively a function only of 7" and ¢.

The shape of G(T, ¢) as a function of ¢, for small ¢, is shown in Fig.
10.6 for the four possible combinations of signs of G, and G,.

G(T. ¢) G(T, &)

¢;> ¢ —>»
G(T. ¢) G(T, ¢)
G,<0 G,<0
G, >0 G,<0
& —> &b —>

FIGURE 10 6
Possible shapes of G(7, ¢) for various signs of the expansion coefficients

A point on the extrapolated coexistence curve (“beyond” the critical
point) is in the single-phase region of stability where the Gibbs potential
has a simple minimum. From this fact we conclude that G,(T') is positive.
Stability to large fluctuations implies also that G,(7') is positive. As the
point of interest approaches and then passes the critical point, along the
coexistence curve, the curvature G,(T) passes through zero and becomes
negative (Fig. 10.6). The function G,(7") normally remains positive. The
critical temperature is viewed simply as the temperature at which G, happens
to have a zero.

The change of sign of G, at the critical point implies that a series
expansion of G, in powers of (T — T,) has the form

G,IT, P(T)] = (T - T,,)G? + terms of order (T - T,,)* + - -~
(10.12)
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Now, let the intensive parameter conjugate to ¢ have the value zero. In
the magnetic case, in which ¢ is the normalized magnetic moment, this
implies that there is no external magnetic field, whereas in the binary alloy
the intensive parameter is automatically zero. Then, in either type of case

3
% ~ AT —T,)G% + 4G + -~ =0 (10.13)

This equation has different solutions above and below T,,. For T > T,
the only real solution is ¢ = 0.

6=0 (forT>T,) (10.14)

Below T, the solution ¢ = 0O corresponds to a maximum rather than a
minimum value of G (recall Fig. 10.6), but there are two real solutions
corresponding to minima

0

= 2% _

1/2
, (T<T,) (10.15)

This is the basic conclusion of the classical theory of critical points. The
order parameter (magnetic moment, difference in zinc and copper occupa-
tion of the A sublattice, etc.) spontaneously becomes nonzero and grows as
(T,, — T)'/? for temperatures below T,,. The critical exponent B, defined in
equation 10.7, thereby is evaluated classically to have the value .

B(classical) = 1/2 (10.16)

In contrast, experiment indicates that for various ferromagnets or fluids
the value of B is in the neighborhood of 0.3 to 0.4.

In equation 10.13 we assumed that the intensive parameter conjugate to
$ is zero; this was dictated by our interest in the spontaneous value of ¢
below 7. We now seek the behavior of the “susceptibility” x, for
temperatures just above 7, x; being defined by

3*G

-1

X =N(——) (10.17)
T d¢? T.¢—0

In the magnetic case x7! is equal to N( dB,/d1)r ., so that pox 1s the
familiar molar magnetic susceptibility (but in the present context we shall
not be concerned with the constant factor ). Then

%x}‘ = 2T~ T,)G;} + 12G,¢" + - -- (10.18)
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or taking ¢ — 0 according to the definition 10.17,

%x}‘ =T~ T,)G) + -+~ T>T (10.19)

or

This result evaluates the classical value of the exponent y (equation 10.5)
as unity

y(classical) = 1 (10.20)

Again, for ferromagnets and for fluids the measured values of y are in the
region of 1.2 to 1.4.

For T < T,, the order parameter ¢ becomes nonzero. Inserting equa-
tion 10.15 for ¢(7) into equation 10.18

Lo ar-1)6 + 126, x| E T - T) + -
N T r 2 4 2G4 r

= 4T, - T)GO + --- (10.21)

We therefore conclude that the classical value of y’ is unity (recall
equation 10.6). Again this does not agree with experiment, which yields
values of ¥’ in the region of 1.0 to 1.2

The values of the critical exponents that follow from the Landau theory
are listed, for convenience, in Table 10.2.

TABLE 10.2
Critical Exponents; Classical Values and Approximate Range of Observed Values

Approximate range of

Exponent Classical value observed values
a 0 -02<a<02
o 0 -02<a« <03
B 1 03<B<04
Y 1 12<y<14
Y 1 1<y <12
8 3 4<8<5
Example

It is instructive to calculate the classical values of the critical exponents for a
system with a given, definite fundamental equation, thereby corroborating the
more general Landau analysis. Calculate the critical indices for a system de-
scribed by the van der Waals equation of state.
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Solution
From Example 1 of Section 9.4, the van der Waals equation of state can be
written in “reduced variables™;

5 _ 8T 3

3s-1 g2
where P = P/P,, and similarly for 7 and . Then, defining
p=P-1 bd=p-1 e=T-1
and multiplying the van der Waals equation by (1 + #)? we obtain'”
2p(1 + 30+ 407 + 36°) = —30% + 8(1 + 26 + 8?)
or
=30 +e(d—-60+90%+ ---)+ -

If e =0 (thatis T = T, ) then ¥ is proportional to (— p);, so that the critical
exponent 8 is identified as 8 = 3.
To evaluate ¥ we calculate

dP
k! = —V( 3V) =

whence y = v’ = 1.

To calculate 8 we recall that 6(i,) = 6(;), where 6(v) is defined by the last
equation in Example 2, page 241.

6(8) =1n(36 - 1) - (36 — 1)~ + 9/(457).
=m@Bi+ -G+ + 2@+ 1) e+ 1)
=In2+3+ 50 +3e(l+e+v—e -+ ...)
Then, from 8(5,) = 6(#,) we find

Cl

ap\ .
(av) = 60¢ +

(02 + op,+ 02) +e—€*—e(p,+8,)=0
Also p(d,) = p(b,), which gives
02 + b+ b, + 4e — 66(D, + D) =0
These latter two equations constitute two equations in the two unknowns b, and
b,. Eliminating (9, + 0,) we are left with a single equation in §, — i,; we ﬁnd

B, — b= 4(—€)" + ---

which identifies the critical exponent 8 as 1.
The remaining critical exponents are a and «’, referring to the heat capacity.

The van der Waals equation of state alone does not determine the heat capacity,
but we can turn to the “ideal van der Waals fluid” defined in Section 3.5. For that

1°H. Stanley, Introduction to Phase Trunsitions and Crincal Phenomena, Oxford Univ. Press, New
York and Oxford, 1971. (sect. 5.5).
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system the heat capacity ¢, is a constant, with no divergence at the critical point,
and a =a’' = 0.

10-5 ROOTS OF THE CRITICAL POINT PROBLEM

The reader may well ask how so simple, direct, and general an argument
as that of the preceding section can possibly lead to incorrect results. Does
the error lie within the argument itself, or does it lie deeper, at the very
foundations of thermodynamics? That puzzlement was shared by thermo-
dynamicists for three decades. Although we cannot enter here into the
renormalization theory that solved the problem, it may be helpful at least
to identify the source of the difficulty. To do so we return to the most
central postulate of thermodynamics—the entropy maximum postulate.
In fact that “postulate” is a somewhat over-simplified transcription of the
theorems of statistical mechanics. The over-simplification has significant
consequences only when fluctuations become dominant—that is, in the
critical region.

The crucial theorems of statistical mechanics evaluate the probability of
fluctuations in closed composite systems (or in systems in contact with
appropriate reservoirs). In particular, for a closed composite system the
energy of one of the subsystems fluctuates, and the probability that at any
given instant it has a value E is proportional to exp(S(E)/kg), where S
is the entropy of the composite system. The average energy U is to be
obtained from this probability density by a standard averaging process.

Generally the probability density is very “sharp”, or narrow. The
average energy then is very nearly equal to the most probable energy. The
latter is the more easily obtainable from the probability distribution, for it
(i.e., the most probable energy) is simply that value of E that maximizes
exp(S(E)/kg) or that maximizes the entropy S.

The basic postulate of thermodynamics incorrectly identifies the most
probable value of the energy as the equilibrium or average value!

Fortunately the probability density of macroscopic systems is almost
always extremely narrow. For a narrow probability density the average
value and the most probable value coincide, and classical thermodynamics
then is a valid theory. However, in the critical region the minimum of the
thermodynamic potential becomes very shallow, the probability distribu-
tion becomes very broad, and the distinction between average and most
probable states can become significant.

To illustrate the consequence of this distinction near the critical point.
Fig. 10.7 shows the Gibbs potential schematically as a function of the
order parameter ¢ for two temperatures very slightly below T, (with the
intensive parameter equal to zero). Only the positive branch of ¢ 1
shown, though there is a similar branch for negative ¢ (we assume the
system to be in the minimum with ¢ > 0). For 7, the potential is shallow
and asymmetric, and the probability density for the fluctuating order
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(T,~T)—>

c

FIGURE 10.7

Probability distributions, average, and most probable values for the fluctuating order
parameter. The temperatures are T, < T; < T,. The probability distributions are shown as
dotted curves. The classical or most probable values are ¢7'7 and ¢757, and these coincide
with the minima of G. The average or observable values are ¢ and ¢3. The rate of change
of the average values is more rapid than the rate of change of the most probable values
because of the asymmetry of the curves for T;. This is more consistent with a critical index
B = 1 rather than 4, as shown in the small figure.

parameter (shown dotted) is correspondingly broad and asymmetric. The
average value ¢ of ¢ is shifted to the left of the most probable value ¢7'*.
For a temperature T, further removed from the critical temperature the
potential well is almost symmetric near its minimum, and the probability
density is almost symmetric. The average value ¢5 and the most probable
value ¢57 are then almost identical. As the temperature changes from T,
to T, the classically predicted change in the order parameter i1s ¢5'7 — ¢}'?
whereas the statistical mechanical prediction is ¢5 — ¢{. Thus we see that
¢lassical thermodynamics incorrectly predicts the temperature dependence
of the order parameter as the critical temperature is approached, and that
this failure is connected with the shallow and asymmetric nature of the
minimum of the potential.

To extend the reasoning slightly further, we observe that ¢5'7 — ¢7'” is
Smaller than ¢4 — ¢ (Fig. 10.7). That is, the classical thermodynamic
Prediction of the shift in ¢ (for a given temperature change) is smaller
than the true shift (i.e., than the shift in the average value of ¢). This is
consistent with the classical prediction of 8 = 3 rather than the true value

= 1, as indicated in the insert in Fig. 10.7.

This discussion provides, at best, a pictorial insight as to the origin of
the failure of classical Landau theory. It gives no hint of the incredible
depth and beauty of “renormalization-group theory,” about which we
later shall have only a few observations to make.
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10-6 SCALING AND UNIVERSALITY

As mentioned in the last paragraph of Section 10.3, the dominant effect
that emerges in the renormalization group theory is the onset of long-range
correlated behavior in the vicinity of the critical point. This occurs
because the long wave length excitations are most easily excited. As
fluctuations grow the very long wave length fluctuations grow most
rapidly, and they dominate the properties in the cntical region. Two
effects result from the dominance of long range correlated fluctuations.

The first class of effects is described by the term scaling. Specifically,
the divergence of the susceptibilities and the growth of the order parame-
ter are linked to the divergence of the range of the correlated fluctuations.
Rather than reflecting the full atomic complexity of the system, the
diverse critical phenomena all scale to the range of the divergent correla-
tions and thence to each other. This interrelation among the critical
exponents is most economically stated in the “scaling hypothesis,” the
fundamental result of renormalization-group theory. That result states
that the dominant term in the Gibbs potential (or another thermodynamic
potential, as appropriate to the critical transition considered) in the region
of the critical point, is of the form

1+1/8
€

G, ~|T - T, > *| ———
= T |

., (T-T,) (1022)

We here use the magnetic notation for convenience, but B, can be
interpreted generally as the intensive parameter conjugate to the order
parameter ¢. The detailed functional form of the Gibbs potential is
discontinuous across the coexistence curve, as expected, and this discon-
tinuity in form is indicated by the notation f *; the function f* applies
for T > T,, and the (different) function f~ applies for T < T,,. Further-
more the Gibbs potential may have additional “regular” terms, the terms
written in equation 10.22 being only the dominant part of the Gibbs
potential in the limit of approach to the critical point.

The essential content of equation 10.22 is that the quantity
G,/(T — T,)* * is not a function of both T and B, separately, but only
of the single variable B! *'/® /T — T_ |~ It can equally well be written
as a function of the square of this composite variable, or of any other
power. We shall later write it as a function of B, /(T — T,,)? «8/0 8

The scaling property expressed in equation 10.22 relates all other
critical exponents by universal relationships to the two exponents « and 6.
as we shall now demonstrate. The procedure is straightforward; we simply
evaluate each of the critical exponents from the fundamental equation
10.22.

We first evaluate the cnitical index a, to corroborate that the symbol «a
appearing in equation 10.22 does have its expected significance. For this
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purpose we take B, = 0. The functions f *(x) are assumed to be well
pehaved in the region of x = 0, with f ¥(0) being finite constants. Then
the heat capacity is

3°G,(B. = 0)
g ~————— ~

: T’ Q=)@ —a)T =T, /()  (10.23)

Hence the critical index for the heat capacity, both above and below T,,
is identified as equal to the parameter « in G,, whence

o =a (10.24)

Similarly, the equation of state I = I(T, B,) is obtained from equation
10.22 by differentiation

1= 29 e B ) 0 [ BV
8Be “ lT— TNIZ#“ 8B(, IT__ 7"‘"2 a
g | 2 (10.25)
’ T~ T, '

where f*(x) denotes (d/dx)f*(x). Again the functions f’*(0) are
assumed finite, and we have therefore corroborated that the symbol § has
its expected significance (as defined in equation 10.8).

To focus on the temperature dependence of I and of x, in order to
evaluate the critical exponents 8 and vy, it is most convenient to rewrite
f* as a function g* of B,/(T — T,,)? «8/0+8)

B
2-a e
G, ~T- T, gt( T I(HW(M)) (10.26)
Then
3G B
= s — 2 a)/Q+8),r4 ¢
1 3B, T - T, g (‘T_ TL,I‘Z‘“"W”’) (10.27)
whence
2 —_
B=1"% (10.28)
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Also

al B
= —_— — 2-a)1-8)/(1+8) e
X p’O aBe |T 71" g |T _ 7:7'(2"&)8/(14-8)

(10.29)

whence

1-6
y=y’=(oz—2)1+5 (10.30)

Thus all the critical indices have been evaluated in terms of « and 8. The
observed values of the critical indices of various systems are, of course,
consistent with these relationships.

As has been stated earlier, there are two primary consequences of the
dominance of long range correlated fluctuations. One of these is the
scaling of critical properties to the range of the correlations, giving rise to
the scaling relations among the critical exponents. The second conse-
quence is that the numerical values of the exponents do not depend on the
detailed atomic characteristics of the particular material, but are again
determined by very general properties of the divergent fluctuations. Re-
normalization group theory demonstrates that the numerical values of the
exponents of large classes of materials are identical; the values are
determined primarily by the dimensionality of the system and by the
dimensionality of the order parameter.

The dimensionality of the system is a fairly self-evident concept. Most
thermodynamic systems are three-dimensional. However it is possible to
study two-dimensional systems such as monomolecular layers adsorbed on
crystalline substrates. Or one-dimensional polymer chains can be studied.
An even greater range of dimensions is available to theorists, who can
(and do) construct statistical mechanical model systems in four, five, or
more dimensions (and even in fractional numbers of dimensions!).

The dimensionality of the order parameter refers to the scalar, vector,
or tensorial nature of the order parameter. The order parameter of the
binary alloy discussed in Section 10.3 is one-dimensional (scalar). The
order parameter of a ferromagnet, which is the magnetic moment, is 2
vector and is of dimensionality three. The order parameter of a supercon-
ductor, or of superfluid “He, is a complex number; having independent
real and imaginary components it is considered as two-dimensional. And
again theoretical models can be devised with other dimensionalities of the
order parameters.
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Systems* with the same spatial dimensionality and with the same
dimensionality of their order parameters are said to be in the same
«yniversality class.” And systems in the same universality class have the
same values of their critical exponents.

PROBLEMS

10.6-1. Show that the following identities hold among the critical indices
a+2B8+y=2 (“‘Rushbrooke’s scaling law™)
y=8(58-1) (“ Widom’s scaling law™)

10.6-2. Are the classical values of the critical exponents consistent with the
scaling relations?

* : . -
It is assumed that the interatomic forces in the system are not of infinite range.






THE NERNST POSTULATE

11-1 NERNST’S POSTULATE, AND
THE PRINCIPLE OF THOMSEN AND BERTHELOT

One aspect of classical thermodynamics remains. That is the explora-
tion of the consequences of postulate IV, to the effect that the entropy
vanishes at zero temperature.

The postulate as first formulated by Walther Nernst in 1907 was
somewhat weaker than our postulate IV, stating only that the entropy
chunge in any isothermal process approaches zero as the temperature
approaches zero. The statement that we have adopted emerged several
decades later through the work of Francis Simon and the formulation of
Max Planck; it is nevertheless referred to as the Nernst postulate. It is also
frequently called the “third law” of thermodynamics.

Unlike the other postulates of the formalism, the Nernst postulate is
not integral to the overall structure of thermodynamic theory. Having
developed the theory almost in its entirety, we can now simply append the
Nernst postulate. Its implications refer entirely to the low-temperature
region, near 7 = 0.

The historical origins of the Nernst theorem are informative; they lie in
the “principle of Thomsen and Berthelot”—an empirical (but nonrigor-
ous) rule by which chemists had long predicted the equilibrium state of
chemically reactive systems.

Consider a system maintained at constant temperature and pressure (as
by contact with the ambient atmosphere), and released from constraints
(as by mixture of two previously separated chemical reactants). According
to the empirical rule of Thomsen and Berthelot, the equilibrium state to
which the system proceeds is such that the accompanying process evolves
the greatest efflux of heat, or, in the more usual language, “the process is
Tealized that is most exothermic.”

The formal statement of this empirical rule is most conveniently put in
terms of the enthalpy. We recall that in isobaric processes the enthalpy
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acts as a potential for heat, so that the total heat efflux is

heat efﬂux = Hmma] - thal (11.1)

The statement of Thomsen and Berthelot therefore is equivalent to the
statement that the equilibrium state is the one that maximizes H ., —
Hg .., or minimizes Hg_,.

The proper criterion of equilibrium at constant temperature and pres-
sure is, of course, the minimization of the Gibbs potential. Why then
should these two differing criteria provide similar predictions at low
temperatures (and, in fact, sometimes even at or near room temperature)?

In an isothermal process

AG = AH — TAS (11.2)

so that at T = 0 the changes in the Gibbs potential and in the enthalpy
are equal (AS certainly being bounded). But that is not sufficient to
explain why they remain approximately equal over some nonnegligible
temperature range. However, dividing by T

AH-AG _ \¢ (11.3)
T

We have seen from equation 11.2 that AH = AG at T = O; hence the

left-hand side of equation 11.3 is an indeterminate form as 7 — 0. The

limiting value is obtained by differentiating numerator and denominator

separately (LL’Hospital’s rule), whence

dAH dAG
e I I 11.4
( dT )T=O ( dT )T=O ;1_1}10 as ( )

By assuming that

lim AS =0 (11.5)
T-0

it was ensured by Nernst that AH and AG have the same initial slope
(Fig. 11.1), and that therefore the change in enthalpy is very nearly equal
to the change in Gibbs potential over a considerable temperature range.

The Nernst statement, that the change in entropy AS vanishes in any
reversible isothermal process at zero temperature, can be restated: The
T = 0 isotherm is also an isentrope (or “adiabat”). This coincidence of
isotherm and isentrope is illustrated in Fig. 11.2.

The Planck restatement assigns a particular value to the entropy: The
T = 0 isotherm coincides with the S = 0 adiabat.



Problems 279

e —
T

FIGURE 11.1
Illustrating the principle of Thomsen and

T—> Berthelot.

FIGURE 11 2
Isotherms and isentropes (“adiabats”) near T = 0.

In the thermodynamic context there is no a priori meaning to the
absolute value of the entropy. The Planck restatement has significance
bnly in its statistical mechanical interpretation, to which we shall turn in
Part II. We have, in fact, chosen the Planck form of the postulate rather
than the Nernst form largely because of the pithiness of its statement
rather than because of any additional thermodynamic content.

. The “absolute entropies” tabulated for various gases and other systems
In the reference literature fix the scale of entropy by invoking the Planck
form of the Nernst postulate.

PROBLEMS

1L1-1. Does the two-level system of Problem 5.3-8 satisfy the Nernst postulate?
Prove your assertion.
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11-2 HEAT CAPACITIES AND OTHER
DERIVATIVES AT LOW TEMPERATURE

A number of derivatives vanish at zero temperature, for reasons closely
associated with the Nernst postulate.

Consider first a change in pressure at 7 = 0. The change in entropy
must vanish as 7 — 0. The immediate consequence is

(5%,

where we have mmvoked a familiar Maxwell relation. It follows that the
coefficient of thermal expansion a vanishes at zero temperature.

_—=(%)P—>O (as T — 0) (11.6)

a= ( g;) -0 (as T — 0) (11.7)
Replacing the pressure by the volume in equation 11.6, the vanishing of
(3S/dV); implies (again by a Maxwell relation)

(‘;—5—,)”—»0 (as T — 0) (11.8)

The heat capacities are more delicate. If the entropy does not only
approach zero at zero temperature, but if it approaches zero with a bounded
derivative (i.e., if (ds/dT), 1s not infinite) then

ds

c, _T(E)T

) -0 (asT—0) (11.9)
and, similarly, if (ds/dT), is bounded

ds

¢, T( c'iT)

Referring back to Fig. 11.1 it will be noted that both AG and AH were
drawn with zero slope; whereas equations 11.4 and 11.5 required only that
AG and AH have the same slope. The fact that they have zero slope is a
consequence of equation 11.10 and of the fact that the temperature
derivative of AH is just N Ac,.

The vanishing of ¢, and ¢, (and the zero slope of AG or AH) appears
generally to be true. However whereas the vanishing of a and k, are
direct consequences of the Nernst postulate, the vanishing of ¢, and ¢,

are observational facts which are suggested by, but not absolutely requlred
by, the Nernst postulate.

50 (asT—0) (11.10)
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Finally, we note that the pressure in equation 11.6 can be replaced by
other intensive parameters (such as B, for the magnetic case) leading to
general analogues of equation 11.7, and similarly for equation 11.8.

11-3 THE “UNATTAINABILITY” OF ZERO TEMPERATURE

It is frequently stated that, as a consequence of the Nernst postulate,
the absolute zero of temperature can never be reached by any physically
realizable process. Temperatures of 10~ K are reasonably standard in
cryogenic laboratories; 1077 K has been achieved; and there is no reason
to believe that temperatures of 107'° K or less are fundamentally inacces-
sible. The question of whether the state of precisely zero temperature can
be realized by any process yet undiscovered may well be an unphysical
question, raising profound problems of absolute thermal isolation and of
infinitely precise temperature measurability. The theorem that does follow
from the Nernst postulate is more modest. It states that no reversible
adiabatic process starting at nonzero temperature can possibly bring a system
to zero temperature. This is, in fact, no more than a simple restatement of
the Nernst postulate that the 7 = 0 isotherm is coincident with the S = 0
adiabat. As such, the T = 0 isotherm cannot be intersected by any other
adiabat (recall Fig. 11.2).






SUMMARY OF PRINCIPLES
FOR GENERAL SYSTEMS

12-1 GENERAL SYSTEMS

Throughout the first eleven chapters the principles of thermodynamics
have been so stated that their generalization is evident. The fundamental
equation of a simple system is of the form

U= U(S,V,N,N,,...,N.) (12.1)

The volume and the mole numbers play symmetric roles throughout, and
we can rewrite equation 12.1 in the symmetric form

U= U(Xy, Xy, Xy X5, ..., X)) (12.2)

where X, denotes the entropy, X, the volume, and the remaining X, are
the mole numbers. For non- 51mple systems the formalism need merely be
. Te-interpreted, the X, then representing magnetic, electric, elastic, and
other extensive parameters appropriate to the system considered.
For the convenience of the reader we recapitulate briefly the main
theorems of the first eleven chapters, using a language appropriate to
general systems.

12.2 THE POSTULATES

Postulate 1. There exist particular states (called equilibrium states) that,
Macroscopically, are characterized completely by the speczﬁcatwn of the
internal energy U and a set of extensive parameters X,, X,, ..., X, later to be
Specifically enumerated.

283
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Postulate 1. There exists a function (called the entropy) of the extensive
parameters, defined for all equilibrium states, and having the following
property. The values assumed by the extensive parameters in the absence of a
constraint are those that maximize the entropy over the manifold of con-
strained equalibrium states.

Postulate L. The entropy of a composite system is additive over the
constituent subsystems (whence the entropy of each constituent system is a
homogeneous first-order function of the extensive parameters). The entropy is
continuous and differentiable and is a monotonically increasing function of
the energy.

Postulate 1V. The entropy of any system vanishes in the state for which
T=(3U/3S)x.x, .=0.

12-3 THE INTENSIVE PARAMETERS

The differential form of the fundamental equation is

t t
dU=TdS + Y P, dX,=Y P dX, (12.3)
1 0
in which
U
P, =— 12.4
k axk ( )

The term TdS is the flux of heat and ¥{P, dX, is the work. The intensive
parameters are functions of the extensive parameters, the functional
relations being the equations of state. Furthermore, the conditions of
equilibrium with respect to a transfer of X, between two subsystems is the
equality of the intensive parameters P,.

The Euler relation, which follows from the homogeneous first-order
property, is

U= ZPA X, (12.5)
and the Gibbs-Duhem relation is

t

Y Xx,dp, =0 (12.6)

0

Similar relations hold in the entropy representation.
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12-4 LEGENDRE TRANSFORMS
A partial Legendre transformation can be made by replacing the

variables X, X;, X;,..., X, by Py, P,,..., P,. The Legendre transformed
function 1s

UlP,,Py,...., Pl =U—-Y PX, (12.7)
0

The natural variables of this function are P,,..., P, X,,,..., X,, and the
natural derivatives are

U[Py,...,P]

7b, -X,, (k=0,1,...,s) (12.8)
dU|[Py,...,P] _ N
ox, =P,  (k=s+1,...,1) (12.9)
and consequently
5 ]
dulp,,...,P] =Y.(-X,)dP, + ) P, dX, (12.10)
0 s+1

The equilibrium values of any unconstrained extensive parameters in a
system in contact with reservoirs of constant P,, P,,..., P, minimize
UlP,,..., P] atconstant Py,..., P, X, ... X,

12-5 MAXWELL RELATIONS

The mixed partial derivatives of the potential U[P,,..., P,] are equal,
whence, from equation 12.10,

X, ax,
94 _ 9 o
7.~ 3 (if j k <) (12.11)
X, —gP
—L = k if j < )
3%, 3P, (if j < s and k > s) (12.12)
and
dP
L G ks ) (12.13)

X, 3X,
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Ul-P)]

X, P, FIGURE 121
The general thermodynamic mnemonic
diagram. The potential U[...] is a gen-
eral Legendre transform of U. The
Ul-1] Ul~F,,B] potential U[...,P] is U[...]- P X,
That is, U[...,PI] is transformed with
respect to P, in addition to all the vari-
ables of UJ...]. The other functions are

P ..
! Ul-P,) k similarly defined.

In each of these partial derivatives the variables to be held constant are all
those of the set Py,..., P, X, ,,..., X,, except the variable with respect
to which the derivative is taken.

These relations can be read from the mnemonic diagram of Fig. 12.1.

12-6 STABILITY AND PHASE TRANSITIONS

The criteria of stability are the convexity of the thermodynamic poten-
tials with respect to their extensive parameters and concavity with respect
to their intensive parameters (at constant mole numbers). Specifically this
requires

c,>c,>0 kK> ko> 0 12.14)
P v T S

and analogous relations for more general systems.

If the criteria of stability are not satisfied a system breaks up into two
or more phases. The molar Gibbs potential of each component j is then
equal in each phase

po=pll =t (12.15)

The dimensionality f of the thermodynamic “space” in which a given

number M of phases can exist, for a system with r components, is given
by the Gibbs phase rule

f=r—-M+2 (12.16)

The slope, in the P-T plane, of the coexistence curve of two phases is
given by the Clapeyron equation

P _As_ o
dT ~ Av  TAv

(12.17)
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12-7 CRITICAL PHENOMENA

Near a critical point the minimum of the Gibbs potential becomes
shallow and possibly asymmetric. Fluctuations diverge, and the most
probable values, which are the subject of thermodynamic theory, differ
from the average values which are measured by experiment. Thermody-
namic behavior near the critical point is governed by a set of “critical
exponents.” These are interrelated by “scaling relations.” The numerical
values of the critical exponents are determined by the physical dimen-
sionality and by the dimensionality of the order parameter; these two
dimensionalities define “universality classes” of systems with equal criti-
cal exponents.

12-8 PROPERTIES AT ZERO TEMPERATURE

For a general system the specific heats vanish at zero temperature.

thxzw. = T(%)X:;X:... - 0 as T - 0 (12'18)
and
e ip o Poosiaen. >0 28T >0 (12.19)

Furthermore, the four following types of derivatives vanish at zero
temperature.

ﬁ -0 asT -0 (12.20)
dx, Ty X e s Xe 1o Xas 1o -
% X1y X29- - ~ 0 as T - 0 (12'21)
ds
P, 2.22
L3 F ,._A_)O asT—-0 (1222
and
0x,
(_a?)"h---'xk»..&.x“b 4 -0 asT -0 (12.23)






PROPERTIES OF MATERIALS

13-1 THE GENERAL IDEAL GAS

A brief survey of the range of physical properties of gases, liquids, and
solids logically starts with a recapitulation of the simplest of systems—the
ideal gas. All gases approach ideal behavior at sufficiently low density, and
all gases deviate strongly from ideality in the vicinity of their critical
points.

The essence of ideal gas behavior is that the molecules of the gas do not
interact. This single fact implies (by statistical reasoning to be developed
in Section 16.10) that

(a) The mechanical equation of state is of the form PV = NRT.

(b) For a single-component ideal gas the temperature is a function only
of the molar energy (and inversely).

(¢) The Helmholtz potential F(T,V, N, N,,..., N,) of a multicompo-
nent ideal gas is additive over the components (“Gibbs’s Theorem”):

F(T,V,N,,...,N)=F(T,V,N,) + F,(T,V, N,)
+ .-+ +F(T,V,N,) (13.1)

Considering first a single-component ideal gas of molecular species j,
Property (b) implies

U=Nu(T) (13.2)

It is generally preferable to express this equation in terms of the heat
capacity, which is the quantity most directly observable

.,
U=Nuy,+ N,fr ¢, (T")dT’ (13.3)

where T, is some arbitrarily-chosen standard temperature.

70N
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The entropy of a single-component ideal gas, like the energy, is de-
termined by c, (7). Integrating ¢, = N, 'T(dS,/dT),, and determining
the constant of i integration by the equatlon of state PV N RT

vo N

J

T - 7 ’ v N
S, =Ns,o= NjfT T ', (T")dT’ + Nlen(—— —0) (13.4)

Finally, the Helmholtz potential of a general multicomponent ideal gas
is, by property (c)

F(T,V)=YU(T)-TY.S(T,V)=U-TS (13.5)

Thus the most general muiticomponent ideal gas is completely characterized
by the molar heat capacities CW(T) of its individual constituents (and by the
values of u,, 5,4 a551gned in some arbltrary reference state).

The first summatlon in equation 13.5 is the energy of the multicompo-
nent gas, and the second summation is the entropy. The general ideal gas
obeys Gibbs’s theorem (recall the discussion following equation 3.39).

Similarly, as in equation 3.40, we can rewrite the entropy of the general
ideal gas (equation 13.4) in the form

S = ZS —ZNf —C,U(T)dT’+ZNRl {” ]I/)

’
T1]
=NfroT'

and the last term is again the entropy of mixing. We recall that the entropy
of mixing is the difference in entropies between that of the mixture of
gases and that of a collection of separate gases, each at the same
temperature and the same density N,/V, = N/V as the original mixture
(and hence at the same pressure as the ongmal mixture).
It is left to the reader to show that «,, a, and the difference (¢, —c,

have the same values for a general ideal gas as for a monatomic ideal gas
(recall Section 3.8). In particular,

— 1))
c,(T’)dT’ + NR an—O - NR?xj Inx, (13.6)

1 1

B a= c.—c, =R (13.7)

Kr= ? ’ p v

The molar heat capacity appearing in equation 13.3 is subject to certain
thermostatistical requirements, and these correspond to observational
regularities. One such regularity is that the molar heat capacity c, of real
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FIGURE 13.1
The molar heat capacity of a system with two vibrational modes, with w, = 15w,.

gases approaches a constant value at high temperatures (but not so high
that the molecules ionize or dissociate). If the classical energy can be
written as a sum of quadratic terms (in some generalized coordinates and
momenta), then the high temperature value of c, is simply R/2 for each
such quadratic term. Thus, for a monatomic ideal gas the energy of each
molecule is (p2 + p? + p2)/2m; there are three quadratic terms, and
hence ¢, = 3R/2 at fligh temperatures. In Section 16.10, we shall explore
the thermostatistical basis for this “equipartition value” of ¢, at high
temperatures.

At zero temperature the heat capacities of all materials in thermody-
namic equilibrium vanish, and in particular the heat capacities of gases
fall toward zero (until the gases condense). At high temperatures the heat
capacities of ideal gases are essentially temperature independent at the
“equipartition” value described in the preceding paragraph. In the inter-
mediate temperature region the contribution of each quadratic term in the
Hamiltonian tends to appear in a restricted temperature range, so that c,
versus T curves tend to have a roughly steplike form, as seen in Fig. 13.1

The temperatures at which the “steps” occur in the ¢, versus T curves,
and the “height” of each step, can be understood in descriptive terms
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(anticipating the statistical mechanical analysis of Chapter 16). The
quadratic terms in the energy represent kinetic or potential energies
associated with particular modes of excitation. Each such mode contributes
additively and independently to the heat capacity, and each such mode is
responsible for one of the “steps” in the ¢, versus T curve.

For a diatomic molecule there is a quadratic term representing the
potential energy of stretching of the interatomic bond, and there is
another quadratic term representing the kinetic energy of vibration;
together the potential and kinetic energies constitute a harmonic oscillator
of frequency w,.

The contribution of each mode appears as a “step” of height R /2 for each
quadratic term in the energy (two terms, or Ac, = R, for a vibrational
mode). The temperature at which the step occurs is such that kT is of
the order of the energy difference of the low-lying energy levels of the
mode (k zT = hw, for a vibrational mode).

Similar considerations apply to rotational, translational, and other types
of modes. A more detailed description of the heat capacity will be
developed in Chapter 16.

13-2 CHEMICAL REACTIONS IN IDEAL GASES

The chemical reaction properties of ideal gases 1s of particular interest.
This reflects the fact that in industrial processes many important chemical
reactions actually are carried out in the gaseous phase, and the assump-
tton of ideal behavior permits a simple and explicit solution. Furthermore
the theory of ideal gas reactions provides the starting point for the theory
of more realistic gaseous reaction models.

It follows directly from the fundamental equation of a general ideal gas
mixture (as given parametrically in equations 13.3 to 13.5) that the partial
molar Gibbs potential of the jth component is of the form

p,=RT[¢,(T) +In P + Inx | (13.8)
The quantity ¢ (T') is a function of T only, and x, is the mole fraction of
the jth component. The equation of chemical equilibrium is (equation
2.70 or 6.51)
Yop, =0 (13.9)
7
whence

Yynx,=—~YymP-Yre(T) (13.10)
7 J J
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Defining the “equilibrium constant” K(7) for the particular chemical
reaction by

InK(T) = —):v¢(T (13.11)

we find the mass action law

[Ix) =P 2"K(T) (13.12)
J

The equilibrium constant K(7') can be synthesized from the functions
¢,(T) by the definition (13.11), and the functions ¢ (7') are tabulated for
common chemical gaseous components. Furthermore the equilibrium con-
stant K(T) is itself tabulated for many common chemical reactions. In
either case the equilibrium constant can be considered as known. Thus,
given the temperature and pressure of the reaction, the product [x} is
determined by the mass action law (13.12). Paired with the condition that
the sum of the mole fractions is unity, and given the quantities of each
atomic constituent in the system, the knowledge of ITx determines each
of the x . We shall illustrate such a determination in an example, but we
first note that tabulations of equilibrium constants for simple reactions
can be extended to additional reactions by “logarithmic additivity.”
Certain chemical reactions can be considered as the sum of two other
chemical reactions. As an example, consider the reactions

2H, + O, =2H,0 (13.13)
and

2CO + 0, = 2CO, (13.14)
Subtracting these two equations in algebraic fashion gives

2H, — 2CO = 2H,0 - 2CO, (13.15)
or

2[H, + CO, = H,0 + CO]J (13.16)
We now observe that the quantities In K(7T') of the various reactions can

be subtracted in a corresponding fashion.
Consider two reactions

0= Tyha, (13.17)
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and

0= Tr®4, (13.18)

and a third reaction obtained by multiplying the first reaction by a
constant B,, the second reaction by B,, and adding

0= Xv¥4 = X(BpD + Byp®)4, (13.19)

Assume that the equilibrium constant of the first reaction i1s K(7") and
that of the second reaction is K,(7T), so that by definition

InK,(T) = —v® (T) (13.20)
and
InK,(T) = —Zvj(z)d)j(T) (13.21)

The equilibrium constant for the resultant reaction equation 13.19 is
defined by an analogous equation, from which it follows that

InK;(T)= B, InK,(T) + B,InK,(T) (13.22)

Thus tabulations of equilibrium constants for basic reactions can be
extended to additional reactions by the additivity property.

Finally we recall that in the discussion following equation 6.58 it was
observed that the heat of reaction is plausibly related to the temperature
dependence of the equilibrium constant. We showed there that, in fact,

dH 3
A Tom(Ev,) b, (13.23)

and, inserting equation 13.8

a_ 0

g TaT(RTZwb + RTYy InP + RTYy Inx,) (13.24)
di_ ~Tvp, - RTZ—ZV ¢, (13.25)
dN ’

Recognizing that ¥ » p, vanishes at equilibrium and recalling the defini-
tion (13.11) of the equilibrium constant, we find the van’t Hoff relation

i _ pr2d
i = RT i K(T) (13.26)
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Thus measurements of the equilibrium constant at various temperatures
enable calculation of the heat of reaction without calorimetric methods
(the equilibrium coristant being measurable by direct determination of the
concentrations X, ).

Example

Two moles of H,0 are enclosed in a rigid vessel and heated to a temperature of
2000 K and a pressure of 1 MPa. The equilibrium constant K(T) for the
chemical reaction

H,0 2 H, + 30,

has the value K(2000) = 0.0877 Pa*/2. What is the equilibrium composition of the
system? What is the composition if the temperature remains constant but the
pressure is decreased to 10* Pa?

The law of mass action states that

1/2
XH,X0, - P_I/ZK(T)

XH,0
The mole numbers of each component are given by

2

N

so that the sum of the mole numbers is 2 + AN /2. Consequently

. _2-AN AN e = 1 AN
O 2+ 1AN * 2+3AN 7% 241AN

The law of mass action accordingly becomes

_1— (AfV)3/2
V2 (2= AR)(2 + 3AR)Y?

= P~12K(T)

and with the right-hand side known we can solve numerically for AN. We find
AN =0.005 for P =1 MPa and AN = 0.023 for P = 10* Pa. Thus, for a
Pressure of 1 MPa, the mole fractions of the components are

X0 = 09963  xy =00025 xo = 0.0012

Whereas for a pressure of 104 Pa the mole fractions are

Xpo=009828  xy =00114 xo = 0.0057



296 Properties of Materials
PROBLEMS

13.2-1. How is the equilibrium constant of the reaction in the Example related to
that for the same reaction when written with stoichiometric coefficients twice as
large? Note this fact with caution!

13.2-2. What are the mole fractions of the constituents in the Example if the
pressure is further reduced to 10° Pa?

13.2-3. In the Example, what would the final mole fractions be at a pressure of 10*
Pa if the vessel initially had contained 1 mole of oxygen as well as 2 moles of water?

13.2-4. In an ideal gas reaction an increase in pressure at constant temperature
increases the degree of reaction if the sum of the stoichiometric coefficients of the
“reactants” is greater in absolute value than the sum of the v’s of the “products,”
and vice versa. Prove this statement or show it to be false, using the law of mass
action. What is the relation of this statement to the Le Chatelier—Braun principle
(Sect. 8.5)7

13.2-5. The equilibrium constant of the reaction
SO, = SO, + 10,

has the value 171.9 Pa!/? at T = 1000 K. Assuming 1 mole of SO, and 2 moles of
O, are introduced into a vessel and maintained at a pressure of 0.4 MPa, find the
number of moles of SO; present in equilibrium,

13.2-6. At temperatures above ~ 500 K phosphorus pentachloride dissociates
according to the reaction

PCl, = PCl, + Cl,

A PCl, sample of 1.9 X 1073 Kg is at a temperature of 593 K and a pressure of
0.314 x 10° Pa. After the reaction has come to equilibrium the system is found to
have a volume of 2.4 liters (or 2.4 X 1073 m®). Determine the equilibrium
constant. What is the “degree of dissociation” (i.e., the degree of reaction ¢ for
this dissociation reaction; recall equation 6.53)?

13.2-7. A system containing 0.02 Kg of CO and 0.02 Kg of O, is maintained at a
temperature of 3200 K and a pressure of 0.2 MPa. At this temperature the
equilibrium constant for the reaction

2C0, = 2CO + O,

is K = .0424 MPa. What is the mass of CO, at equilibrium?

13.2-8. Apply equation 13.8 to a single-component general ideal gas (of species ;).
Evaluate p, for the single-component ideal gas by equation 134 (note that by
equation 13.3 constant U implies constant T'), and in this way obtain an
expression for ¢,.

13.2-9. An experimenter finds that water vapor is 0.53% dissociated at a temper-
ature of 2000 K and a pressure of 10° Pa. Raising the temperature to 2100 K and
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keeping the pressure constant leads to a dissociation of 0.88%. That is, an initia]
mole of H,O remains as 0.9947 moles at 2000 K or as 0.9912 moles at 2100 x
after the reaction comes to completion. Calculate the heat of reaction of t}e
dissociation of water at P = 10° Pa and T = 2050 K.

Answer:
AH = 2.7 X 10% ¥ /mole

13-3 SMALL DEVIATIONS FROM
“IDEALITY”—THE VIRIAL EXPANSION

Although all gases behave “ideally” at sufficiently large molar volume,
they exhibit more complicated behavior as the molar volume v is de-
creased. To describe at least the initial deviations from ideal gas behavior
the mechanical equation of state can be expanded in inverse powers of v

1; 1:(1+ (UT)+C£2T)+

(13.27)

This expansion is called a “ virial expansion”; B(T) is called the “second
virial coefficient,” C(T') is the “third virial coefficient,” and so forth. The
forms of these functions depend on the form of the intermolecular forces
in the gas. The second virial coefficient is shown in Fig. 13.2 as a function
of temperature for several simple gases.

Corresponding to the virial expansion of the mechanical equation of
state, in inverse powers of v, the molar Helmholtz potential can be
similarly expanded

_ B(T) , Cc(T)  D(T)

f=fiaea * RT[ ot T (13.28)
The equality of the coefficients B(T), C(T),... in these expansions
follows, of course, from P = —3f/dv.

All thermodynamic quantities thereby are expressible in virial-type
eXpansions, in inverse powers of v. The molar heat capacity c,, for
instance, is

2 d*(DT
Cu undeaJ+RT|:1d(BT)+LM+L_(—_1+'.']

dar? 202 dT? 20 dT?
(13.29)

and the molar energy is

1 dB 1 dC 1 dD

— 2 ittt - e
u=u ldeaJ+RT{ ar T 52 dT+31)3 at ] (13.30)



298 Properties of Materials

30+
N;
20—
H, A
Ne
/
10

He
100 300 400 5(1)0 G(L)O 7(1)0

—30 1}~

o

B(cm3/mole) —>

!
=
=

FIGURE 13.2

Second virial coefficient as a function of temperature for several gases. Measurements by
Holborn and Otto. Data from Staustical Thermodynamics, by R H. Fowler and E A
Guggenheim, Cambridge University Press, 1939.

PROBLEMS

13.3-1. In a thermostatistical model in which each atom is treated as a small hard
sphere of volume 7, the leading virial coefficients are

B=4N,s C=10Nx?* D =1836N}s’
Using the value of B determined from Fig. 13.2, find the approximate radius of a

He atom. Given Fig. 13.2, what would be a reasonable (though fairly crude) guess
as to the value of the third virial coefficient of He?

13.3-2. Expand the mechanical equation of state of a van der Waals gas (equation
3.41) in a virial expansion, and express the virial coefficients in terms of the van
der Waals constants a and b.

13.3-3. Show that the second vinial coefficient of gaseous nitrogen (Fig. 13.2) can
be fit reasonably by an equation of the form

B,

T

and find the values of B, and B,. Assume that all higher virial coefficients can b¢
neglected. Also take the molar heat capacity c, of the noninteracting gas to b¢
SR/2.

(a)/ Explain why ¢, (noninteracting) reasonably can be taken as SR /2.

(b) Evaluate the values of B, and B, from Fig. 13.2.

B=B,—
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(¢) What is the value of ¢,(7,v) for N,, to second order in a virial expansion?

13.3-4. The simplest analytic form suggested by the qualitative shape of B(T) of
H, and Ne in Fig. 13.2 is B(T) = By, — B,/T (as in Problem 13.3-3). With this
assumption calculate ¢ (7, v) for H, and Ne.

13.3-5. A “porous plug” experiment is carried out by installing a porous plug in a
plastic pipe. To the left of the plug the gas is maintained at a pressure slightly
higher than atmospheric by a movable piston. To the right of the plug there is a
freely sliding piston, and the right-hand end of the pipe is open to the atmo-
sphere. What is the fractional difference of velocities of the pistons?

(a) Express the answer in terms of atmospheric pressure F,, the driving pressure
P,, and ¢, @ Kr, and v (assuming that the pressure difference is small
enough that no distinction need be made between the values of the latter
quantities on the two sides of the plug).

(b) Evaluate this result for an ideal gas, and express the deviation from this
result in terms of the second virial coefficient, carrying results only to first
order in B(T) or its derivatives (the heat capacity ¢, is to be left as an
unspecified quantity in the solution).

13-4 THE “LAW OF CORRESPONDING STATES” FOR GASES

A complete virial expansion can describe the properties of any gas with
high precision, but only at the cost of introducing an infinite number of
expansion constants. In contrast the van der Waals equation of state
captures the essential features of fluid behavior, including the phase
transition, with only two adjustable constants. The question arises as to
whether the virial coefficients of real gases are indeed independent, or
whether there exists some general relationships among them. Alternatively
stated, does there exist a more or less universal form of the equation of
State of fluids, involving some finite (or even small) number of indepen-
dent constants?

In the equation of state of any fluid there is one unique point—the
Critical point, characterized by 7,,, P,,, and v,,. A dimensionless equation
of state would, then, be most naturally expressed in terms of the “reduced
temperature” T/T,, the “reduced pressure” P/P,,, and the “reduced
molar volume” v/v,,.

It might be expected that the three parameters 7,,, P,,, and v, are
themselves independent. But evaluation of the dimensionless ratio P.v,/RT,
Or various gases reveals a remarkable regularity, as shown in Table 13.1.

e ratio is strikingly constant (with small deviations to lower values for a
W polar fluids such as water or ammonia). The dimensionless constant

oV, /RT,, has a value on the order of 0.27 for all “normal” fluids. Of the
ree parameters that characterize the critical point, only two are indepen-
ent (in the semiquantitative sense of this section).

ry
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TABLE 13.1
Critical Constants and the Rat'o P.,v;, / RT,, of Various Fluids*

crer

Substance Molecular Waight T, (Kj P,(10° Pa) v, (10 *m’) P, /RT,

croer

H, 2,016 333 1.30 0.0649 0.30
He 4.003 53 0.23 0.0578 0.30
CH, 16.043 191.1 4.64 0.0993 0.29
NH, 17.03 4055  11.28 0.0724 0.24
H,0 18.015 6473  22.09 0.0568 023
Ne 20.183 445 273 0.0417 0.31
N, 28.013 126.2 3.39 0.0899 0.29
C,H, 30.070 305.5 4.88 0.1480 0.28
0, 31.999 154.8 5.08 0.0780 031
C,H, 44,097 370 4.26 0.1998 0.28
C,H,0H 46.07 516 6.38 0.1673 0.25
SO, 64.063 430.7 7.88 0.1217 0.27
C.H, 78.115 562 4.92 0.2603 0.27
Kr 83.80 209.4 5.50 0.0924 0.29
ccl, 153.82 556.4 4.56 0.2759 0.27

* Abstracted from K A Kobe and R E. Lynn, Jr, Chemt Rev 52, 117 (1953)

Proceeding further, then, one can plot v/v,, as a function of P/P,, and
T/T, for a variety of fluids. Again there is a remarkable similarity among
all such “reduced equations of state”.

There exists, at least semiquantitatively, a universal equation of staie
containing no arbitrary constants if expressed in the reduced variables v /v, ,,
P/P,, and T/T . This empirical fact is known as the “Law of Corre-
sponding States”.

The universal reduced equation of state can be represented in a con-
venient two-dimensional form, as in Fig. 13.3 from Sonntag and Van
Wylen.! The dependent variable, the ordinate in the figure, is the dimen-
sionless quantity Pv/RT, or 0.27 (P/P_) (v/v,,)/(T/T,,). The indepen-
dent variables are P/P,, and T/T,,. The reduced pressure P/P,, is the
abscissa in the graph. In order to avoid a third dimension the reduced
temperature scale is superimposed as a set of constant reduced tempet-
ature loci in the plane.

To find v/v,, at a given value of P/P,, and T/T,, one reads P/P_ on
the abscissa and locates the appropriate 7/7,, curve. These values de-
termine a point, of which one can read the ordinate. The ordinate 1
= 0.27(P/P ) v/v,)/(T/T,), so that v/v,, is thereby evaluated.

The existence of such an approximate universal equation of state i
given a rational basis by statistical mechanical models. The force betwee?

'R. E Sonntag and G J Van Wylen, Introducuon to Thermodynamics, Cluassical and Staustrcal
2nd ed (Wiley, New York, 1982)
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“Generalized” or universal equation of state of gases in terms of reduced variables. From
R E Sonntag and G. van Wylen, Introduction to Thermodynamics, Classical and Statisti-
¢al, 2nd edition, 1982, John Wiley & Sons, New York

Molecules is generally repulsive at small distance (where the molecules
Physically overlap) and attractive at larger distances. The long-range
attraction in nonpolar molecules is due to the polarization of one mole-
2“16 by the instantaneous fluctuating dipole moment of the other; such a

van der Waals force” falls as the sixth power of the distance. Thus
the force between two molecules can be parametrized by the radi of the
Molecules (describing the short-range repulsion) and the strength of the
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long-range attractive force. It is this two-parameter characterization of the
intermolecular forces that underlies the two-parameter equation of state.

13-5 DILUTE SOLUTIONS:
OSMOTIC PRESSURE AND VAPOR PRESSURE

Whereas the “law of corresponding states” applies most accurately in
the gaseous region of the fluid state (with increasing validity as the density
decreases below that at the critical point), the liquid region is less subject
to a generalized treatment. There is, however, a very useful general
regularity that applies to dilute solutions of arbitrary density. That regu-
larity consists of the carry-over of the “entropy of mixing” terms (recall
equation 13.6) from ideal gas mixtures to general fluid mixtures.

Consider a single-component fluid system, for which the chemical
potentlal is p(P, T). Then let a second component (the solute) be added,
in small concentration. The Gibbs potential of the dilute solution can be
written in the general form

G(T,P,N,, N,) = Ny2(P,T) + Nyy(P,T) + NNRTIn——
N, + N,

N,
+NRT Iyt (13.31)

where ¢ is an unspecified function of P and T and where the latter two
terms are suggested by the entropy of mixing terms (equation 13.6) of an
ideal gas. From a statistical mechanical perspective { represents the effect
of the interaction energy between the two types of molecules; whereas the
entropy of mixing terms arise purely from combinational considerations
(to be developed in Chapters 15 et seq.). For our present purposes,
however, equation 13.31 is to be viewed as an empirical thermodynamic
approximation.

In the region of valdity (i.e., small concentrations, or N, < N,) we can
expand the third term to first order in N,/N, and we can neglect N,
relative to N, in the denominator of the logarithm in the last term,
obtaining

N,
G(T,P,N,,N,) = Nuo(P,T) + Nyy(P,T) — N,RT + Neranl
1

(13.32)

It follows that the partial molar Gibbs potentials of solvent and solute are,
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respectively

(P T.x) = g3 = (P, T) = xRT (13.33)

where x is the mole fraction of solute (= N,/N;), and

ko(P,T.x) = 2= y(P,T) + RT Inx (13.34)

It is of interest to examine some simple consequences of these results.
Consider first the case of the osmotic pressure difference across a semi-
ermeable membrane. Suppose the membrane to be permeable to a liquid
(water, for instance). A small amount of solute (such as sugar) is intro-
duced on one side of the membrane. Assume that the pressure on the pure
solvent side of the membrane is maintained constant (= P), but that the
pressure on the solute side can alter (as by a change in height of the liquid
in a vertical tube). Then the condition of equilibrium with respect to
diffusion of the solvent across the membrane is

(P, T,0) = p,(P",T, X) (13.35)

where P’ is the as yet unknown pressure on the solute side of the
membrane. Then, by equation 13.33

‘LI(P’ T, 0) = p‘l(P” T, 0) — xRT (13'36)

Where we have altered the notation slightly to write p,(P,7,0) for
LI(P, T). Then, expanding p,( P’, T, 0) around the pressure P

p,(P*,T,0) = (P, T,0) + ﬁ‘l'i‘#%z_(’l X (P’ — P)
= (P, T,0) +(P" — P)v (13.37)
or, from equation 13.18
(P’ — P)v = xRT (13.38)

N_Illltiplying by N, we find the van’t Hoff relation for osmotic pressure in
ilute solutions

VAP = N,RT (13.39)
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Another interesting effect in liquids is the reduction in the vapor
pressure (recall Sections 9.1 to 9.3) by the addition of a low concentration
of nonvolatile solute. In the absence of the solute

pio (P, T) = p&=(P,T) (13.40)
But with the addition of the solute, as in 13.36
pi9( P, T) — xRT = p*(P’,T) (13.41)
Expanding the first term around the original pressure P
pla(P’ . T) = yi9(P,T) + v"(P,T) X(P'— P)  (13.42)

and similarly for the gaseous phase, whence we find

PP—P=-—

(13.43)

Thus the addition of a solute decreases the vapor pressure.
If we make the further approximation that v, > v, and that v, = RT/P
(the ideal gas equation) we obtain

—— = —x (13.44)

which is known as Raoult’s Law.

PROBLEMS

13.5-1. Assuming the latent heat of vaporization of a fluid to be constant over the
temperature range of interest, and assuming that the density of the vapor can be
neglected relative to that of the liquid, plot the vapor pressure (i.e., the liquid—gas
coexistence curve) as a function of the dimensionless temperature R /¢. Plot the
corresponding graphs for five and ten percent dissolved solute.

13.5-2. One hundred grams of a particular solute are dissolved in one liter of
water. The vapor pressure of the water is decreased by roughly 6%. Is the solute
more likely to be sugar (C;,H,,0,,), table salt (NaCl), or sodium bicarbonate
(Na(CO,),)? lonic solutions double their effective Raoult concentration!

13.5-3. If 20 grams of sugar (C,,H,,0,,) are dissolved in 250 cm® of water, what
is the change in the boiling temperature at atmospheric pressure?
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13-6 SOLID SYSTEMS

The heat capacities and various other properties of a wide variety of
solid systems show marked similarities, as we shall see in specific detail in
Section 16.6 (where we shall carry out an explicit statistical mechanical
calculation of the thermal equation of state of a solid). Accordingly, we
defer further description of the properties of solids, other than to stress
that the thermal properties of solids are not qualitatively different than
those of liquids; it is the thermomechanical properties of solids that
introduce new elements in the theory.

Whereas the mechanical state of a fluid is adequately characterized by
the volume, a solid system can be characterized by a set of elastic strain
components. These describe both the shape and the angular dilatations
(“twists”) of the system. The corresponding intensive parameters are the
elastic stress components. These conjugate variables follow the structure of
the general thermodynamic formalism. For specific details the reader is
referred to the monograph by Duane C. Wallace?, or to references cited
therein. However, it is important to stress that conventional thermodynamic
theory, in which the volume is the single mechanical parameter, fully apphes
to solids. The more detailed analysis in terms of elastic strains gives
additional information, but it does not invalidate the results obtained by
the less specific, conventional form of thermodynamics.

In the full theory the extensive parameters include both the volume (the
“fully symmetric strain”) and various other strain components. The
conjugate intensive parameters are the stress components, including the
pressure (the “fully symmetric stress component”). If the walls of the
system impose no stress components other than the pressure, then these
stress components vanish and the formalism reduces to the familiar form
in which the volume is the only explicit mechanical parameter. Inversely,
in the more general case the additional strain components can be appended
to the simple theory in a manner fully analogous to the addition of any
generalized extensive parameter.

2Duane C Wallace, Thermodynarmcs of Crystals (Wiley, New York, 1972)






IRREVERSIBLE THERMODYNAMICS

14-1 GENERAL REMARKS

As useful as the characterization of equilibrium states by thermostatic
theory has proven to be, it must be conceded that our primary interest is
frequently in processes rather than in states. In biology, particularly, it is
the life process that captures our imagination, rather than the eventual
equilibrium state to which each organism inevitably proceeds. Thermostat-
ics does provide two methods that permit us to infer some limited
information about processes, but each of these methods is indirect and
each yields only the most meager return. First, by studying the initial and
terminal equilibrium states it is possible to bracket a process and thence
to determine the effect of the process in its totality. Second, if some
process occurs extremely slowly, we may compare it with an idealized,
nonphysical, quasistatic process. But neither of these methods confronts
the central problem of rates of real physical processes.

The extension of thermodynamics that has reference to the rates of
physical processes is the theory of irreversible thermodynamics.

Irreversible thermodynamics is based on the postulates of equilibrium
thermostatics plus the additional postulate of time reversal symmetry of
Physical laws. This additional postulate states that the laws of physics
remain unchanged if the time t is everywhere replaced by its negative —t,
and if simultaneously the magnetic field B, is replaced by its negative — B,
(and, if the process of interest is one involving the transmutation of
fundamental particles, that the charge and “parity” of the particles also
be reversed in sign). For macroscopic processes the parenthetical restric-
tion has no observable consequences, and we shall henceforth refer to time
reversal symmetry in its simpler form.

The thermodynamic theory of irreversible processes is based on the
Onsager Reciprocity Theorem, formulated by Lars Onsager! in brilliant

YLars Onsager, Physical Review 37, 405 (1931); 38, 2265 (1931).
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pioneering papers published in 1931, but not widely recognized for almost
20 years thereafter. Powerful statistical mechanical theorems also exist.
the “fluctuation-dissipation theorem”,? the “Kubo relations,” and the
formalism of “linear response theory” based on the foregoing theorems®
We review only the thermodynamic theory, rooted in the Onsager theo-

rem.

14-2 AFFINITIES AND FLUXES

Preparatory to our discussion of the Onsager theorem, we define certain
quantities that appropriately describe irreversible processes. Basically we
require two types of parameters: one to describe the “force” that drives a
process and one to describe the response to this force.

The processes of most general interest occur in continuous systems,
such as the flow of energy in a bar with a continuous temperature
gradient. However, to suggest the proper way to choose parameters in
such continuous systems, we first consider the relatively simple case of a
discrete system. A typical process in a discrete system would be the flow
of energy from one homogeneous subsystem to another through an
infinitely thin diathermal partition.

Consider a composite system composed of two subsystems. An exten-
sive parameter has values X, and X/ in the two subsystems, and the
closure condition requires that

X, + X, =X.  aconstant (14 1)

If X, and X/ are unconstrained, their equilibrium values are determincc
by the vanishing of the quantity

(o] _+_ ? ’
}*kz(as) =(§.(_S:_S_)) :ig___as :FA*FA’
X el

JX, JX, X,  ax;
(14 2)

Thus, if %, is zero the system is 1n equilibrium, but if %, is nonzero an
irreversible process occurs, taking the system toward the equilibrium state.
The quantity .%,, which is the difference in the entropy-representation
intensive parameters, acts as a “generalized force” which “drives” the
process. Such generalized forces are called affinities.

H Callen and T Welton, Phys Rev. 83, 34 (1951)
* f R Kubo, FLectures in Theoretieal Physies. vol 1 (Interscience, New York, 1959, p 120-203)
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For definiteness, consider two systems separated by a diathermal wall,
and let X, be the energy U. Then the affinity 1s

1
7 (14.3)

1

F, = —

k T,
No heat flows across the diathermal wall if the difference in inverse
temperatures vanishes. But a nonzero difference in inverse temperature,
acting as a generalized force, drives a flow of heat between the subsystems.

Similarly, if X, is the volume the affinity %, is[P/T — (P’/T")}, and
if X, is a mole number the associated affinity 1s [} /7" — (u,/T)})

We characterize the response to the applied force by the rate of change
of the extensive parameter X,. The flux J, is then defined by

dX,
Ji = 0 (14.4)
Therefore, the flux vanishes if the affinity vanishes, and a nonzero affinity
leads to a nonzero flux. It is the relationship between fluxes and affinities
that characterizes the rates of irreversible processes.

The identification of the affinities in a particular type of system is
frequently rendered more convenient by considering the rate of produc-
tion of entropy. Differentiating the entropy S( X,,, X, -..) with respect to
the time, we have

ds s dX,
- = ; 5X. dn (14.5)

or

S=YLF (14.6)

k

Thus the rate of production of entropy is the sum of products of each flux
with its associated affinuty.

The entropy production equation is particularly useful in extending the
definition of affinities to continuous systems rather than to discrete
Systems. If heat flows from one homogeneous subsystem to another,
‘f_lrough an infinitely thin diathermal partition, the generahzed force is the
difference [1/7 — (1/7")]; but if heat flows along a metal rod, in which
the temperature varies in a continuous fashion, it is difficult to apply our
Previous definition of the affinity. Nevertheless we can compute the rate of
Production of entropy, and thereby we can identify the affinity.

_ With the foregoing considerations to guide us, we now turn our atten-
ion to continuous systems. We consider a three-dimensional system in
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which energy and matter flow, driven by appropriate forces. We choose
the components of the vector current densities of energy and matter as
fluxes. Thus, associated with the energy U we have the three energy fluxes
Joxs Joys J,,- These quantities are the x, y, and z components of the vector
current density J . By definition the magnitude of J, is the amount of
energy that flows across the unit area in unit time, and the direction of J,
is the direction of this energy flow. Similarly, the current density J, may
describe the flow of a particular chemical component per unit area and
per unit time; the components J,,, J,,, and J,, are fluxes.

In order to identify the affinities, we now seek to write the rate of
production of entropy in a form analogous to equation 14.6. One problem
that immediately arises is that of defining entropy in a nonequilibrium
system. This problem is solved in a formal manner as follows.

To any infinitesimal region we associate a local entropy S( X, X, ...),
where, by definition, the functional dependence of S on the local extensive
parameters X, X,, ... is taken to be identical to the dependence in equi-
librium. That is, we merely adopt the equilibrium fundamental equation to
associate a local entropy with the local parameters X, X}, ... . Then

ds = Y} F dX, (14.7)
k

or, taking all quantities per unit volume,*

ds =Y F,dx, (14.8)
k

The summation in this equation omits the term for volume and conse-
quently has one less term than that in equation 14.7.

Again, the local intensive parameter F,_is taken to be the same function of
the local extensive parameters as it would be in equilibrium. It is because of
this convention, incidentally, that we can speak of the temperature varying
continuously in a bar, despite the fact that thermostatics implies the
existence of temperature only in equilibrium systems.

Equation 14.7 immediately suggests a reasonable definition of the
entropy current density Jg

J.=3FJ 14.9)
A) kY k

in which J, is the current density of the extensive parameter X,. The
magnitude of the entropy flux J is the entropy transported through unit
area per unit time.

“It should be noted that in the remainder of this chapter we use lowercase Ictiers to indicat®
extensive parameters per umt volume rather than per mole
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The rate of local production of entropy is equal to the entropy leaving the
region, plus the rate of increase of entropy within the region. 1f § denotes
the rate of production of entropy per unit volume and ds/dt denotes the
jncrease 1n entropy per unit volume, then

=tV J5 (14.10)

If the extensive parameters of interest are conserved, as are the energy and
(in the absence of chemical reactions) the mole numbers, the equations of
continuity for these parameters become

dx,
0="K4 v, (14.11)

We are now prepared to compute § explicitly and thence to identify the

affinities in continuous systems.
The first term in equation 14.10 is easily computed from equation 14.8.

ds

9
S =YFRE (14.12)
k

ot

The second term in equation 14.10 is computed by taking the divergence
of equation 14.9

V-J=v ‘(ZFka)=ZVF;.‘Jk+ZFLV -3, (14.13)
k k K
Thus equation 14.10 becomes
. dIx,
§=YFR—ZF+ LVF- 5+ LFv -3, (14.14)
K K k

Finally, by equation 14.11, we observe that the first and third terms
Cancel, giving

§=Y VF, -J, (14.15)
k

Although the affinity is defined as the difference in the entropy-representation
Intensive parameters for discrete systems, it is the gradient of the entropy-
Tepresentation intensive parameters in continuous systems.

If J,, denotes the z component of the energy current density, the
associated affinity %,, is v,(1,/T), the z component of the gradient of the
Inverse temperature. And if J, denotes the kth mole number current
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density (the number of moles of the kth component flowing through unit
area per second), the affinity associated with J,, s .%,, = — v (1, /T).

14-3 PURELY RESISTIVE AND LINEAR SYSTEMS

For certain systems the fluxes at a given instant depend only on the
values of the affinities at that instant. Such systems are referred to as
“purely resistive.”

For other than purely resistive systems the fluxes may depend upon the
values of the affinities at previous times as well as upon the instantaneous
values. In the electrical case a “resistor” is a purely resistive system,
whereas a circuit containing an inductance or a capacitance is not purely
resistive. A non-purely-resistive system has a “memory.”

Although it might appear that the restriction to purely resistive systems
is very severe, it is found in practice that a very large fraction of the
systems of interest, other than electrical systems, are purely resistive.
Extensions to non-purely-resistive systems do exist, based on the fluctua-
tion—dissipation theorem or Kubo formula referred to in Section 14.1.

For a purely resistive system, by definition, each local flux depends only
upon the instantaneous local affinities and upon the local intensive
parameters. That is, dropping the indices denoting vector components

Jo=J (% F,....F, .. FF,...,F,...) (14.16)
Thus, the local mole number current density of the kth component
depends on the gradient of the inverse temperature, on the gradients of
p,/ T for each component, and upon the local temperature, pressure, and
so forth. It should be noted that we do not assume that each flux depends
only on its own affinity but rather that each flux depends on all affinities
It is true that each flux tends to depend most strongly on its own
associated affinity, but the dependence of a flux on other affinities as well
is the source of some of the most interesting phenomena in the field of
irreversibility.
Each flux J, is known to vanish as the affinities vanish, so we can
expand J, in powers of the affinities with no constant term

1
J, =Zijg§+?ZZLukg{g§+ (14.17)
] Ty

where

L, = ( aJk) (14.18)
0
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and

3%,
£ ) (14.19)
¢}

L,Jk = (ag:l 337‘;

The functions L, are called kinetic coefficients. They are functions of the
local intensive parameters

L

w =L, (F, F,...) (14.20)
The functions L, , are called second-order kinetic coefficients, and they are
also functions of the local intensive parameters. Third-order and higher-
order kinetic coefficients are similarly defined.

For the purposes of the Onsager theorem, which we are about to
enunciate, it is convenient to adopt a notation that exhibits the functional
dependence of the kinetic coefficients on an externally applied magnetic
field B,, suppressing the dependence on the other intensive parameters

L,=L,(B,) (14.21)
The Onsager theorem states that
L,B,)=L,,(-B) (14.22)

That is, the value of the kinetic coefficient L, measured in an external
magnetic field B, is identical to the value of L, , measured in the reversed
magnetic field —B,.

The Onsager theorem states a symmetry between the linear effect of the
Jth affinity on the kth flux and the linear effect of the kth affinity on the
Jth flux when these effects are measured in opposite magnetic fields.

A situation of great practical interest arises if the affinities are so small
that all quadratic and higher-order terms in equation 14.17 can be
neglected. A process that can be adequately described by the truncated
approximate equations

Jo=YL,% (14.23)
J

1s called a linear purely resistive process. For the analysis of such
processes the Onsager theorem is a particularly powerful tool.

It is perhaps surprising that so many physical processes of interest are
linear. But the affinities that we commonly encounter in the laboratory are
quite small in the sense of equation 14.17, and we therefore recognize that
we generally deal with systems that deviate only slightly from equilibrium.
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Phenomenologically, it is found that the flow of energy in a thermally
conducting body is proportional to the gradient of the temperature.
Denoting the energy current density by J,, we find that experiment yields
the linear law

J,=—-xvT (14.29)
in which « is the thermal conductivity of the body. We can rewrite this in
the more appropriate form

3, = mvz(%) (14.25)

and similarly for x and y components, and we see that (xT?) is the
kinetic coefficient. The absence of higher-order terms, such as [v(1/7)]’
and [v(1/T)]°, in the phenomenological law shows that commonly
employed temperature gradients are small in the sense of equation 14.17.

Ohm’s law of electrical conduction and Fick’s law of diffusion are other
linear phenomenological laws which demonstrate that for the common
values of the affinities in these processes higher-order terms are negligible.
On the other hand, both the linear region and the nonlinear region can be
realized easily in chémical systems, depending upon the deviations of the
molar concentrations from their equilibrium values. Although the class of
linear processes is sufficiently common to merit special attention, it is by
no means all inclusive, and the Onsager theorem is not restricted to this
special class of systems.

14-4 THE THEORETICAL BASIS
OF THE ONSAGER RECIPROCITY

The Onsager reciprocity theorem has been stated but not proved in the
preceding sections. Before turning to applications in the following sections
we indicate the relationship of the theorem to the underlying principle of
time reversal symmetry of physical laws.

From the purely thermodynamic point of view, the extensive parame-
ters of a system in contact with a reservoir are constants. In fact, if an
extensive parameter (such as the energy) is permitted to flow to and from
a reservoir, it does so in continual spontaneous fluctuations. These fluctua-
tions tend to be very rapid, and macroscopic observations average over
the fluctuations (as discussed in some detail in Chapter 1). Occasionally a
large fluctuation occurs, depleting the energy of the system by a non-
negligible amount. If the system were to be decoupled from the reservoir
before this rare large fluctuation were to decay, we would then associate a
lower temperature to the system. But if the system were not decoupled,
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the fluctuation would decay by the spontaneous flow of energy from the
reservoir to the system.

Onsager connected the theory of macroscopic processes to thermody-
namic theory by the assumption that the decay of a spontaneous fluctuation
is identical to the macroscopic process of flow of energy or other analogous
quantity between the reservoir and the system of depleted energy.

We consider a system in equilibrium with a pair of reservoirs corre-
sponding to the extensive parameters X, and X,. Let the instantaneous
values of these parameters be denoted by X and X o and let 8X denote
the deviation of X, from its average value. Thus 8X describes a ﬂuctua-
tion, and the average value of 8X is zero. Nevertheless the average value
of (8X )2, denoted by ((8X )2 ) is not zero. Nor is the correlation
moment (8X 8Xk) A very slight extension of the thermodynamic for-
malism, 1nvokmg only very general features of statistical mechanics,
permits exact evaluation of the correlation moments of the fluctuations (as
we shall see in Chapter 19).

More general than the correlation moment ( 8 X 8Xk) is the delayed
correlation moment (8X 8X (7)), which is the average product of the
deviations 8 X, and 8Xk, with the latter being observed a time r after the
former. It is this delayed correlation moment upon which Onsager focused
attention.

The delayed correlation moment 1s subject to certain symmetries that
follow from the time reversal symmetry of physical laws. In particular,
assuming no magnetic field to be present, the delayed correlation moment
must be unchanged under the replacement of = by —=

(8X,8X,(v)y = (8% 8K, (1)) (14.26)
or, since only the relative times in the two factors are significant,
(8% 8%,(7)) = (8% (v) 8%,) (14.27)

If we now subtract (8X 8X,) from each side of the equation and divide
by 7, we find

<sﬁr SXA(T)“SX’(>=< X(7) ~ 8X ’ax> (14.28)

4 T T

In the limit as 7 — 0 we can write the foregoing equation in terms of time
derivatives.

(8%, 8X,) = (8X,8X,) (14.29)
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Now we assume that the decay of a fluctuation 8 X, is governed by the
same linear dynamical laws as are macroscopic processes

8X, = YL 6% (14.30)

Inserting these equations in equation 14.29 gives

LL(8X 8F) =Y L, (8%, 8X,) (14.31)

The theory of fluctuations reveals (Chapter 19) the plausible result that
in the absence of a magnetic field the fluctuation of each affinity 1s
associated only with the fluctuation of its own extensive parameter; there
are no cross-correlation terms of the form <8X 8% with i + j. Further-
more it will be shown that the “diagonal” correlatlon function (with i = )
has the value —k, (though the specific value is not of importance for our
present purposes)

o s —kp ifi=j
¢6X 85 { 0 ifis) B,=0 (14.32)
It follows that in the absence of a magnetic field L,, = L , which is the
Onsager reciprocity theorem (equation 14.22).

In the presence of a magnetic field the proof follows in similar fashion,
depending upon a similar symmetry in the correlation functions of the
spontaneous fluctuations.

Despite this fundamental basis in fluctuation theory, the applications of
the Onsager theory are purely macroscopic, expressed in terms of phe-
nomenological dynamical equations. This thermodynamic emphasis of
application has motivated interjection of the subject prior to the statistical
mechanical chapters to follow. Accordingly we turn to thermoelectric
effects as an illustrative application of the Onsager theorem.

14-5 THERMOELECTRIC EFFECTS

Thermoelectric effects are phenomena associated with the simultaneous
flow of electrnic current and “heat current” in a system. Relationships
among various such phenomena were proposed in 1854 by Lord Kelvin on
the basis of empirical observations. Kelvin also presented a heuristic
argument leading to the relations, carefully pointing out, however, that the
argument was not only unjustified but that it could be made to yield
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incorrect relations as well as correct ones. Unfortunately the argument
continually resurfaces with renewed claims of rigor—of which the reader
of the thermodynamic literature should be forewarned.

To analyze the thermoelectric effects in terms of the Onsager reciprocity
we focus attention on a conductor in which both electric current and heat
current flow In one dimension, and we describe the electric current as
being carried by electrons. Then if s is the local entropy density

1 p
w=?@—2ﬁﬂ@k (14.33)

k

in which u is the local energy density, p is the electrochemical potential
(per particle) of the electrons, » is the number of electrons per unit
volume, and in which the sum refers to other “components.” These other
components are the various types of atomic nuclei that together with the
electrons constitute the solid. It will be noted that we have taken n as the
number of electrons rather than the number of moles of electrons, and p
is accordingly the electrochemical potential per particle rather than per
mole. In this regard we deviate from the more usual parameters merely by
multiplication and division by Avogadro’s number, respectively.

Just as equation 14.7 led to equation 14.9, equation 14.33 now leads to

1
Yo =3y — 4y (14.34)

in which Jg, J,, and J, are current densities of entropy, energy, and
number of electrons, respectively. The other components in equation 14.33
are assumed immobile and consequently do not contribute flux terms to
equation 14.34.

Repeating the logic leading to equation 14.15, we find

. 1 ©
S=V?'JU—V?'JN (1435)

Thus if the components of J, and —J, are taken as fluxes, the associated
affinities are the components of V(l/T) and vp/T. Assuming for
blmpl1c1ty that all flows and forces are parallel to the x-direction, and
Omitting the subscript x, the linear dynamical laws become

1
=Lyt =+ L (14.36)
Jo=Lywt ek (14.37)
v 2V 2V 7 .
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and the Onsager theorem gives the relation
L,(B,) = Ly(-B,) (14.38)

Before drawing physical conclusions from equation 14.38 we recast the
dynamical equations into an equivalent but instructive form. Although J,
is a current density of total internal energy, we generally prefer to discuss
the current density of heat. In analogy with the relation dQ = TdS we
therefore define a heat current density J,, by the relation

J, =TI (14.39)
or, by equation 14.34,
Jo=Jdy— prdy (14.40)

In a very rough intuitive way we can look on p as the potential energy per
particle and on pJ, as a current density of potential energy; subtraction
of the potential energy current density from the total energy current
density yields the heat current density as a sort of kinetic energy current
dgnsity. At any rate, eliminating J;, in favor of J, from equation 14.34
gives

] 1 1
S=V?'JQ—?V[J.'JN (14.41)

It follows from this equation that if the components of J, and of —J,, are
chosen as fluxes the associated affinities are the corresponding compo-

nents of V(1/7T) and of (1/T)wp, respectively. The dynamical equations
can then be written, in the one-dimensional case, as

1 1

—JIy= Lyzve+ Lv T (14.42)
1 1

Jo= LygVe+ L¥ (14.43)

and the Onsager relation is

LIZ(Be) = L21( _Be) (14.44)

The reader should verify that the dynamical equations 14.42 and 14.43
can also be obtained by direct substitution of equation 14.40 into the
previous pair of dynamical equations 14.36 and 14.37 without recourse to
the entropy production equation 14.41.
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The significance of the heat current can be exhibited in another manner.
We consider, for a moment, a steady-state flow. Then both J,, and J,, are
divergenceless and taking the divergence of equation 14.40 gives

Vo do=—vp-dy (in the steady state) (14.45)

which states that in the steady state the rate of increase in heat current is
equal to the rate of decrease in the potential energy current. Furthermore,
the insertion of this equation into equation 14.41 gives

, 1 1
§=Vr ot TV Y (14.46)

which can be interpreted as stating that the production of entropy is due
to two causes: The first term is the production of entropy due to the flow
of heat from high to low temperature, and the second term is the increase
in entropy due to the appearance of heat current.

We now accept the dynamical equations 14.42 and 14.43 and the
symmetry condition (equation 14.44) as the basic equations with which to
study the flow of heat and electric current in a system.

14-6 THE CONDUCTIVITIES

We consider a system in which an electric current and a heat current
flow parallel to the x-axis in a steady state, with no applied magnetic field.
Then omitting the subscript x

1 1

—JIy = Lll?vy‘ + Ly T (14.47)
1 1

Jo= Lugor+ Loy = (14.48)

where the Onsager theorem has reduced to the simple symmetry
L,=1L, (14.49)

The three kinetic coefficients appearing in the dynamical equations can
be related to more familiar quantities, such as conductivities. In develop-
ing this connection we first comment briefly on the nature of the electro-
chemical potential p of the electrons. We can consider p as being
composed of two parts, a chemical portion p_ and an electrical portion p,

p=p.t+p, (14.50)
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If the charge on an electron is e, then p_ is simply e¢, where ¢ is the
ordinary electrostatic potential. The chemical potential p, is a function of
the temperature and of the electron concentration. Restating these facts in
terms of gradients, the electrochemical potential per unit charge is (1/e)u;
its gradient (1/e)vpy is the sum of the electric field (1/e)Vi,, plus an
effective driving force (1/e)wp, arising from a concentration gradient.

The electric conductivity o is defined as the electric current density (eJ)
per unit potential gradient (1/e)vp in an isothermal system. It is easily
seen that (1/e)wp is actually the emf, for in a homogeneous isothermal
system vu, = 0 and vu = wp,. Thus, by definition

0= —eJN/%Vp forvT =0 (14.51)
whence equation 14.47 gives

o=2eL,/T (14.52)

Similarly the heat conductivity k is defined as the heat current density
per unit temperature gradient for zero electric current

k= —Jo/vT  forJy, =0 (14.53)

Solving the two kinetic equations simultaneously, we find

k=2 (14.54)
T’L,,

where D denotes the determinant of the kinetic coefficients

D=1Ly,L, - Lj (14.55)

14-7 THE SEEBECK EFFECT AND
THE THERMOELECTRIC POWER

The Seebeck effect refers to the production of an electromotive force in
a thermocouple under conditions of zero electric current.

Consider a thermocouple with junctions at temperatures 7, and 7-
(T, > T)), as indicated in Fig. 14.1. A voltmeter is inserted in one arm of
the thermocouple at a point at which the temperature is 7. This voltmeter
is such that it allows no passage of electric current but offers no resistance
to the flow of heat. We designate the two materials composing the
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Ky T1

FIGURE 14 1

thermocouple by 4 and B. With J, = 0, we obtain from the kinetic
equations, for either conductor

Vi = 71*2?1 vT (14.56)
Thus
= iy = flz 5;1 ar (14.57)
by — = fz% dT (14.58)
-y = fll% ar (14.59)

Eliminating p, and g, from these equations

2{ L, LY
RPN e R N Y 14.60
w ] /; TL'fl TLF] ( )

But, because there is no temperature difference across the voltmeter, the
voltage is simply

A B
LIZ L12

eTL{  eTL}§

1 2
V= (k- ) =fl dT (14.61)

The thermoelectric power of the thermocouple, .5, is defined as the
change in voltage per unit change in temperature difference. The sign of
€, is chosen as positive if the voltage increment is such as to drive the



322 Irreversible Thermodynamics

current from A4 to B at the hot junction. Then

vV _Lfgz _Liqz
Eap = o = . p— 14.62
A8~ 9T, \erL® |\ eTLA (14.62)

Defining the absolute thermoelectric power of a single medium by the
relation

€, = :ifl (14.63)
4 eTLY,
the thermoelectric power of the thermocouple is
€,5=Ep— £, (14.64)

If we accept the electric conductivity o, the heat conductivity k, and the
absolute thermoelectric power ¢ as the three physically significant dynami-
cal properties of a medium, we can eliminate the three kinetic coefficients
in favor of these quantities and rewrite the kinetic equations in the
following form

To\ 1 T’0¢ 1

o= [E o (REe 7 1459
TZUE 1 3.2 2 1

JQ__( : )?Vp+(Toe FTRV 5 (1466)

An interesting insight to the physical meaning of the absolute thermo-
electric power can be obtained by eliminating (1,/7)vy between the two
foregoing dynamical equations and writing Jj, in terms of J, and v(1,/T)

1
Jy = Teely + T?xvw T (14.67)

or, recalling that Jg = J,/T

Jo = eeJy + Tky lT (14.68)

According to this equation, each electron involved in the electric current
carries with it an entropy of ee. This flow of entropy is in addition to the
entropy current 7k (1/T), which is independent of the electronic cur-
rent. The thermoelectric power can be looked on as the entropy trans-
ported per coulomb by the electron flow.
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14-8 THE PELTIER EFFECT

The Peltier effect refers to the evolution of heat accompanying the flow
of an electric current across an isothermal junction of two materials,
A B
N JN»JUB
FIGURE 142

Consider an isothermal junction of two conductors 4 and B and an
electric current ed), to flow as indicated in Fig. 14.2. Then the total energy
current will be discontinuous across the junction, and the energy dif-
ference appears as Peltier heat at the junction. We have J,, = J, + pJ,,
and since both p and J, are continuous across the junction it follows that
the discontinuity in J, is equal to the discontinuity in J,

Jg=Jf=d5-J3 (14.69)

Because of the 1sothermal condition, the dynamical equations 14.65 and
14.66 give, in either conductor

J, = Te(ely) (14.70)
whence

J§ = UG = T(eg — €,)(edy) (14.71)

The Peltier coefficient m,, is defined as the heat that must be supplied
to the junction when unit electric current passes from conductor 4 to
conductor B. Thus

Tap = (JE = Jf) /el = T(eg — €,) (14.72)

Equation 14.72, which relates the Peltier coefficient to the absolute
thermoelectric powers, is one of the relations presented on empirical
evidence by Kelvin in 1854. It is called the second Kelvin relation.

The method by which we have derived equation 14.72 is typical of all
applications of the Onsager relations, so that it may be appropriate to
review the procedure. We first write the linear dynamical equations,
reducing the number of kinetic coefficients appearing therein by invoking
the Onsager relations. We then proceed to analyze various effects, ex-
pressing each in terms of the kinetic coefficients. When we have analyzed
as many effects as there are kinetic coefficients, we rewrite the dynamical
equations in terms of those effects rather than in terms of the kinetic
coefficients (as in equations 14.65 and 14.66). Thereafter every additional
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effect analyzed on the basis of the dynamical equations results in a
relation analogous to equation 14.72 and expresses this new effect in terms
of the coefficients in the dynamical equation.

14-9 THE THOMSON EFFECT

The Thomson effect refers to the evolution of heat as an electric current
traverses a temperature gradient in a material.

Consider a conductor carrying a heat current but no electric current. A
temperature distribution governed by the temperature dependence of the
kinetic coefficients will be set up. Let the conductor now be placed in
contact at each point with a heat reservoir of the same temperature as that
point, so that there is no heat interchange between conductor and re-
servoirs. Now let an electric current pass through the conductor. An
interchange of heat will take place between conductor and reservoirs. This
heat exchange consists of two parts—the Joule heat and the Thomson
heat.

As the electric current passes along the conductor, any change in total
energy flow must be supplied by an energy interchange with the reservoirs.
Thus we must compute ¥ - J,

V-dy=v - (Jptpd)=v-Jy+wr-d, (14.73)
which can be expressed in terms of J, and v (1/7T) by using equations

14.67 and 14.68

1 e? 1
v-J,=v -(TeeJN + Ty 7,) +(—- —;JN + Tleey 7) -Jy

(14.74)

or

2
v Jy=Tve-(edy) + ¥ .(szvlT)——eo—JN (14.75)

However the temperature distribution is that which is determined by the
steady state with no electric current, and we know that ¥ - J,, vanishes 1n
that state. By putting J, =0 and v -J, =0 in equation 14.75 we
conclude that the temperature distribution is such as to make the second
term vanish, and consequently

V- Jy=Tve-(eJy) - %(eJN)Z (14.76)
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Furthermore, noting that the thermoelectric power is a function of the
local temperature, we write

de
Ve = d—TVT (14.77)
and
de 1 2
v-J,= Td_j-VT'("JN)_;(‘—’JN) (14.78)

The second term is the Joule heat, produced by the flow of electric
current even in the absence of a temperature gradient. The first term
represents the Thomson heat, absorbed from the heat reservoirs when the
current eJ,, traverses the temperature gradient v 7. The Thomson coeffi-
cient 7 is defined as the Thomson heat absorbed per unit electric current
and per unit temperature gradient

Thomson heat T ﬁ
vT-(edy) dT

T

(14.79)

Thus the coefficient of the Thomson effect is related to the temperature
derivative of the thermoelectric power.
Equations 14.72 and 14.79 imply the “first Kelvin relation”

dm, g
daT

+1, T, = €, — &g (14.80)

which was obtained by Kelvin on the basis of energy conservation alone.

Various other thermoelectric effects can be defined, and each can be
expressed in terms of the three independent coefficients L,,, L,,, and L,,,
or in terms of a, k, and .

In the presence of an orthogonal magnetic field the number of * thermo-
Mmagnetic” effects becomes quite large. If the field is in the z-direction an
*-directed electric current produces a y-directed gradient of the electro-
chemical potential; this is the “Hall effect.” Similarly an x-directed
thermal gradient produces a y-directed gradient of the electrochemical
Potential; the Nernst effect. The method of analysis® is identical to that of
the thermoelectric effects, with the addition of the field dependence
(equation 14.22) of the Onsager reciprocity theorem.

*H Callen, Phys Rev 73, 1349 (1948)
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STATISTICAL MECHANICS IN THE
ENTROPY REPRESENTATION: THE
MICROCANONICAL FORMALISM

15-1 PHYSICAL SIGNIFICANCE OF
THE ENTROPY FOR CLOSED SYSTEMS

Thermodynamics constitutes a powerful formalism of great generality,
erected on a basis of a very few, very simple hypotheses. The central
concept introduced through those hypotheses is the entropy. It enters the
formulation abstractly as the wvariational function in a mathematical
extremum principle determining equilibrium states. In the resultant for-
malism, however, the entropy is one of a set of extensive parameters,
together with the energy, volume, mole numbers and magnetic moment.
As these latter quantities each have clear and fundamental physical
interpretations it would be strange indeed if the entropy alone were to be
exempt from physical interpretation.

The subject of statistical mechanics provides the physical interpretation
of the entropy, and it accordingly provides a heuristic justification for the
extremum principle of thermodynamics. For some simple systems, for
which we have tractable models, this interpretation also permits explicit
calculation of the entropy and thence of the fundamental equation.

We focus first on a closed system of given volume and given number of
particles. For definiteness we may think of a fluid, but this is in no way
necessary. The parameters U, V, and N are the only constraints on the
system. Quantum mechanics tells us that, if the system is macroscopic,
there may exist many discrete quantum states consistent with the specified
values of U, V, and N. The system may be in any of these permissible
States.

Naively we might expect that the system, finding itself in a particular
quantum state, would remain forever in that state. Such, in fact, is the lore

329
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of elementary quantum mechanics; the “quantum numbers” that specify ¢
particular quantum state are ostensibly “constants of the motion.” This
naive fiction, relatively harmless to the understanding of atomic systems
(to which quantum mechanics 1s most commonly applied) i1s flagrantly
misleading when applied to macroscopic systems.

The apparent paradox is seated in the assumption of isolation of a
physical system. No physical system is, or ever can be, truly isolated. There
exist weak, long-range, random gravitational, electromagnetic and other
forces that permeate all physical space. These forces not only couple
spatially separated material systems, but the force fields themselves con-
stitute physical systems in direct interaction with the system of interest.
The very vacuum is now understood to be a complex fluctuating entity in
which occur continual elaborate processes of creation and reabsorption of
electrons, positrons, neutrinos, and a myriad of other esoteric subatomic
entities. All of these events can couple with the system of interest.

For a simple system such as a hydrogen atom in space the very weak
interactions to which we have alluded seldom induce transitions between
quantum states. This i1s so because the quantum states of the hydrogen
atom are widely spaced in energy, and the weak random fields in space
cannot easily transfer such large energy differences to or from the atom.
Even so, such interactions occassionally do occur. An excited atom may
“spontaneously” emit a photon, decaying to a lower energy state. Quan-
tum field theory reveals that such ostensibly “spontaneous” transitions
actually are induced by the interactions between the excited atom and the
modes of the vacuum. The quantum states of atoms are not infinitely long
lived, precisely because of their interaction with the random modes of the
vacuum.

For a macroscopic system the energy differences between successive
quantum states become minute. In a macroscopic assembly of atoms each
energy eigenstate of a single atom “splits” into some 102 energy eigen-
states of the assembly, so that the average energy difference between
successive states is decreased by a factor of ~ 107%. The slightest
random field, or the weakest coupling to vacuum fluctuations, 1s then
sufficient td buffet the system chaotically from quantum state to quantum
state.

A realistic view of a macroscopic system is one in which the system makes
enormously rapid random transitions among its quantum states. A macro-
scopic measurement senses only an average of the properties of myriads of
quantum states.

All “statistical mechanicians™ agree with the preceding paragraph, but
not all would agree on the dominant mechanism for inducing transitions.
Various mechanisms compete and others may well dominate in some or
even in all systems. No matter—it is sufficient that any mechanism exists,
and it is only the conclusion of rapid, random transitions that is needed to
validate statistical mechanical theory.
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Because the transitions are induced by purely random processes, jt ig
reasonable to suppose that a macroscopic system samples every permissible
quantum state with equal probability—a permissible quantum state being
one consistent with the external constraints.

The assumption of equal probability of all permissible microstates is the
fundamental postulate of statistical mechanics. Its justification will be
examined more deeply in Part III, but for now we adopt it on two bases;
its a priori reasonableness, and the success of the theory that flows from it.

Suppose now that some external constraint is removed—such as the
opening of a valve permitting the system to expand into a larger volume.
From the microphysical point of view the removal of the constraint
activates the possibility of many microstates that previously had been
precluded. Transitions occur into these newly available states. After some
time the system will have lost all distinction between the original and the
newly available states, and the system will thenceforth make random
transitions that sample the augmented set of states with equal probability.
The number of microstates among which the system undergoes transitions,
and which thereby share uniform probability of occupation, increases to the
maximum permitted by the imposed constraints.

This statement is strikingly reminiscent of the entropy postulate of
thermodynamics, according to which the entropy increases to the maxi-
mum permitted by the imposed constraints. It suggests that the entropy
can be identified with the number of microstates consistent with the
imposed macroscopic constraints.

One difficulty arises: The entropy is additive (extensive), whereas the
number of microstates is multiplicative. The number of microstates availa-
ble to two systems is the product of the numbers available to each (the
number of “microstates” of two dice is 6 X 6 = 36). To interpret the
entropy, then, we require an additive quantity that measures the number
of microstates available to a system. The (unique!) answer is to identify the
entropy with the logarithm of the number of available microstates (the
logarithm of a product being the sum of the logarithms). Thus

S = kylnQ (15.1)

where © is the number of microstates consistent with the macroscopic
constraints. The constant prefactor merely determines the scale of S; it is
chosen to obtain agreement with the Kelvin scale of temperature, defined
by T-! = 9S/0U. We shall see that this agreement is achieved by taking the
constant to be Boltzmann’s constant kz = R/N, = 1.3807 x 10" *J/K.
With the definition 15.1 the basis of statistical mechanics is established.
Just as the thermodynamic postulates were elaborated through the
formalism of Legendre transformations, so this single additional postulate
will be rendered more powerful by an analogous structure of mathemati-
cal formalism. Nevertheless this single postulate is dramatic in its brevity,
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simplicity, and completeness. The statistical mechanical formalism that
derives directly from it is one in which we “simply” calculate the loga-
rithm of the number of states available to the system, thereby obtaining §
as a function of the constraints U, V, and N. That is, it is statistical
mechanics in the entropy representation, or, in the parlance of the field, 1t
1s statistical mechanics in the microcanonical formalism.

In the following sections of this chapter we treat a number of systems
by this microcanonical formalism as examples of its logical completeness

As in thermodynamics, the entropy representation is not always the
most convenient representation. For statistical mechanical calculations it
is frequently so inconvenient that it is analytically intractable. The
Legendre transformed representations are usually far preferable, and we
shall turn to them in the next chapter. Nevertheless the microcanonical
formulation establishes the clear and basic logical foundation of statistical
mechanics.

PROBLEMS

15.1-1. A system is composed of two harmonic oscillators each of natural
frequency w, and each having permissible energies (n + 3)hw,, where n is any
non-negative integer. The total energy of the system is E’ = n'hw,, where n’ is a
positive integer. How many mucrostates are available to the system? What is the
entropy of the system?

A second system is also composed of two harmonic oscillators, each of natural
frequency 2w,. The total energy of this system is E” = n”hw,, where n” is an
even integer. How many microstates are available to this system? What is the
entropy of this system?

What is the entropy of the system composed of the two preceding subsystems
(separated and enclosed by a totally restrictive wall)? Express the entropy as &
function of E” and E”.

Answer.
E/b 14 )
2h%wl

Sior = kBln(

15.1-2. A system is composed of two harmonic oscillators of natural frequencies
wy and 2wy, respectively. If the system has total energy E = (n + 4)hw,, where 7
1s an odd integer, what is the entropy of the system?

If a composite system is composed of two non-interacting subsystems of the
type just described, having energies £, and E;, what is the entropy of the compo-
site system?
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15-2 THE EINSTEIN MODEL
OF A CRYSTALLINE SOLID

With a identification of the meaning of the entropy we proceed to
calculate the fundamental equation of macroscopic systems. We first
apply the method to Einstein’s simplified model of a nonmetallic crystal-
line solid.

It is well to pause immediately and to comment on so early an
introduction of a specific model system. In the eleven chapters of this
book devoted to thermodynamic theory there were few references to
specific model systems, and those occasional references were kept care-
fully distinct from the logical flow of the general theory. In statistical me-
chanics we almost immediately introduce a model system, and this will be
followed by a considerable number of others. The difference is partially a
matter of convention. To some extent it reflects the simplicity of the
general formalism of statistical mechanics, which merely adds the logical
interpretation of the entropy to the formalism of thermodynamics; the
interest therefore shifts to applications of that formalism, which underlies
the various material sciences (such as solid state physics, the theory of
liquids, polymer physics, and the like). But, most important, it reflects the
fact that counting the number of states available to physical systems
requires computational skills and experience that can be developed only
by explicit application to concrete problems.

To account for the thermal properties of crystals, Albert Einstein, in
1907, introduced a highly idealized model focusing only on the vibrational
modes of the crystal. Electronic excitations, nuclear modes, and various
other types of excitations were ignored. Nevcertheless, for temperatures
that are neither very close to absolute zero nor very high, the model is at
least qualitatively successful. _

Einstein’s model consists of the assumption that each of the N atoms in
the crystal can be considered to be bound to its equilibrium position by a
harmonic force. Each atom is free to vibrate around its equilibrium
position in any of the three coordinate directions, with a natural frequency
Wg-
More realistically (recall Section 1.2) the atoms of crystals are harmoni-
cally bound to their neighboring atoms rather than to fixed points.
Accordingly the vibrational modes are strongly coupled, giving rise to 3N
collective normal modes. The frequencies are distributed from zero (for
very long wave length modes) to some maximum frequency (for the modes
of minimum permissible wave length, comparable to the interatomic
distance). There are far more high frequency modes than low frequency
modes, with the consequence that the frequencies tend to cluster mainly in
a narrow range of frequencies, to which the Einstein frequency w, is a
rough approximation.
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In the Einstein model, then, a crystal of N atoms is replaced by 3N
harmonic oscillators, all with the same natural frequency wy,.

For the present purposes it is convenient to choose the zero of energy so
that the energy of a harmonic oscillator of natural frequency w, can take
only the discrete values nhwg, with n = 0,1,2,3,... . Here h = h/27 =
1.055 X 10 3*J-s., h being Planck’s constant.

In the language of quantum mechanics, each oscillator can be “oc-
cupied by an integral number of energy quanta,” each of energy hw,.

The number of possible states of the system, and hence the entropy, can
now be computed easily. If the energy of the system is U it can be
considered as constituting U/hw, quanta. These quanta are to be distrib-
uted among 3N vibrational modes. The number of ways of distributing
the U/hw, quanta among the 3N modes is the number of states §
available to the system.

The problem is isomorphic to the calculation of the number of ways of
placing U/hw, identical (indistinguishable) marbles in 3N numbered
(distinguishable) boxes.

oooﬂoo“oﬂo ----- Hoooﬂoo

FIGURE 151

Mustrating the combinatorial problem of distributing U/hw, indistinguishable objects
(“marbles™) in 3N distinguishable *“boxes

The combinatorial problem can be visualized as follows. Suppose we
have U/hw, marbles and 3N — 1 match sticks. We lay these out in a
linear array, in any order. One such array is shown in Fig. 15.1. The
interpretation of this array is that three quanta (marbles) are assigned to
the first mode, two quanta to the second, none to the third, and so forth.
and two quanta are assigned to the last mode (the 3N-th). Thus the
number of ways of distributing the U/hw, quanta among the 3N modes 1
the number of permutations of (3N — 1 + U/hw,) objects. of which
U/hw, are identical (marbles or quanta), and 3N — 1 are identical (match
sticks). That is

(BN =1+ Ushey)! (BN + U/hay)!
(BN = )N U/hey)t (BNYU/ha,)!

(15.2)

This completes the calculation, for the entropy is simply the logarithm of
this quantity (multiplied by k). To simplify the result we employ the
Stirling approximation for the logarithm of the factorial of a large number

In(M")=MInM— M+ --- (if M > 1) (15.3)
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whence the molar entropy is

s=3R ln(l + i) + 3R—“—1n(1 + ﬂ) (15.4)
u, u, u
where
up = 3N, h, (15.5)

This is the fundamental equation of the system.

It will be left to the problems to show that the fundamental equation
implies reasonable thermal behavior. The molar heat capacity is zero at
zero temperature, rises rapidly with increasing temperature, and ap-
proaches a constant value (3R) at high temperature, in qualitative
agreement with experiment. The rate of increase of the heat capacity is not
quantitatively correct because of the naiveté of the model of the vibra-
tional modes. This will be improved subsequently in the “Debye model”
(Section 16.7), in which the vibrational modes are treated more realisti-
cally.

The heat capacity of the Einstein model is plotted in Fig. 15.2. The
molar heat capacity ¢, is zero at 7 = 0, and it asymptotes to 3R at high
temperature. The rise in c, occurs in the region kyT = 3k, (in particular
¢./3R =1 and the point of maximum slope both occur near kyT/hw, = 3). At
low temperature c, rises exponentially, whereas experimentally the heat
capacity rises approximately as 7°.

The mechanical implications of the model—the pressure-volume rela-
tionship and compressibility—are completely unreasonable. The entropy,
according to equation 15.5, is independent of the volume, whence the
pressure T9S/dV is identically zero! Such a nonphysical result is, of
course, a reflection of the naive omission of volume dependent effects
from the model.

Certain consequences of the model give important general insights.
Consider the thermal equation of state

kp IN
T= 3_U = mln(l + _U—NAh""O) (15.6)

Now, noting that there are 3NN, oscillators in the system

u _ hw,
3NN, ehwo/ksT _

mean energy per oscillator = (15.7)

The quantity hwy/kp is called the “Einstein temperature” of the crystal,
and it generally is of the same order of magnitude as the meltine
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FIGURE 15.2

Heat capacity of the Einstein model, or of a single harmonic oscillator. The upper curve
refers to the upper scale of kzT/fiw,, and the lower curve to the lower (expanded) scale. The
ordinate can be interpreted as the heat capacity of one harmonic oscillator in units of kg,
or as the molar heat capacity in units of 3R.

temperature of the solid. Thus below the melting temperature, the mean
energy of an oscillator is less than, or of the order of, hw,. Alternatively
stated, the solid melts before the Einstein oscillators attain quantum
numbers appreciably greater than unity.

PROBLEMS

15.2-1. Calculate the molar heat capacity of the Einstein model by equation 15.7.
Show that the molar heat capacity approaches 3R at high temperatures. Show
that the temperature dependence of the molar heat capacity is exponential near
zero temperature, and calculate the leading exponential term.

15.2-2. Obtain an equation for the mean quantum number 7 of an Einstein

oscillator as a function of the temperature. Calculate n for kyT/hw, =
0,1,2,3,4,10, 50, 100 (ignore the physical reality of melting of the crystal!).
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15.2-3. Assume that the Einstein frequency w, for a particular crystal depends
upon the molar volume:

Wy = wg—Aln(P—)

Uy

a) <Calculate the isothermal compressibility of this crystal.
b) Calculate the heat transfer if a crystal (of one mole) is compressed at
constant temperature from v, to v,.

15-3 THE TWO-STATE SYSTEM

Another model that illustrates the principles of statistical mechanics in
a simple and transparent fashion is the *two-state model.” In this model
each “atom” can be either in its “ground state” (with energy zero) or in its
“excited state” (with energy &).

To avoid conflict with certain general theorems about energy spectra we
assume that each atom has additional states, but all of such high energy as
to exceed the total energy of the system under consideration. Such states
are then inaccessible to the system and need not be considered further in
the calculation.

If U is the energy of the system then U/e atoms are in the excited state
and (N — U/g) atoms are in the ground state. The number of ways of
choosing U/e atoms from the total number N 1s

Nt
b= (U/e)Y(N — U/e)

(15.8)

The entropy is therefore

S = k,InQ = kyln(N1) — kBln( v ) - k,,ln[(ﬁ - g)'] (15.9)

—!
E
or, invoking Stirling’s approximation (equation 15.3)

U - U U U
S = (-; - N)kBln(l - N_) = kaln 7 (15.10)

£

~ Again, because of the artificiality of the model. the fundamental equa-
tion is independent of the volume. The thermal equation of state is easily
calculated to be

1. %‘-’—m(ﬂ’f - 1) (15.11)
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Recalling that the calculation is subject to the condition U < Ne, we
observe that the temperature is a properly positive number. Solving for
the energy

Ne

v= 1+ e*/ksT

(15.12)

The energy approaches Ne/2 as the temperature approaches infinity in
this model (although we must recall that additional states of high energy
would alter the high temperature properties). At infinite temperature half
the atoms are excited and half are in their ground state.

The molar heat capacity is

du £ etlksT

dar =~ N k,T? (1 + e%aT)?

2

£ — _

c= — NA p (eEIZkBT +e EIZkBT) 2
l:i7

(15.13)

A graph of this temperature dependence is shown in Fig 15.3. The molar
heat capacity is zero both at very low temperatures and at very high
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FIGURE 15.3

Heat capacity of the two-state model; the “Schottky hump.”
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temperatures, peaking in the region of k37 = .42¢. This behavior is known
as a “Schottky hump.” Such a maximum, when observed in empirical
duta, is taken as an indication of a pair of low lying energy states, with all
other energy states lying at considerably higher energies. This is an
example of the way in which thermal properties can reveal information
about the atomic structure of materials.

PROBLEMS

15.3-1. In the two-state model system of this section suppose the excited state
energy € of an “atom” depends on its average distance from its neighboring
atoms so that

(]
i
z|<

where a and y are positive constants. This assumption, applied to a somewhat
more sophisticated model of a solid, was introduced by Gruneisen, and vy is the
“Gruneisen parameter.” Calculate the pressure P as a function of & and T.

Answer:

_I‘_J_(ea/kaﬂ' + 17!
5y+1

15-4 A POLYMER MODEL—THE RUBBER BAND REVISITED

There exists another model of appealing simplicity that is euphemisti-
cally referred to as a “polymer model.” Its connection with a real polymer
is tenuous, but that connection is perhaps close enough to serve the
pedagogical purpose of providing some sense of physical reality while
again illustrating the basic algorithm of statistical mechanics. And in
particular the model provides an insight to the behavior of a “rubber
band,” as discussed on purely phenomenological grounds in Section 3.7.
As we saw in that section the extensive parameter of interest, which
replaces the volume, is the length; the corresponding intensive parameter,
analogous to the pressure, is the tension. We are interested in the equation
of state relating tension to length and temperature.

The “rubber band” can be visualized as a bundle of long chain
polymers. Each polymer chain is considered to be composed of N mono-
mer units each of length a, and we focus our attention on one particular
polymer chain in the bundle. One end of the polymer chain is fixed at a
point that is taken as the origin of coordinates. The other end of the chain
is subject to an externally applied tension 7, parallel to the positive
x-axis (Fig. 15.4).
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FIGURE 154
“Polymer” model. The string should be much longer than shown, so that the end of the
polymer 1s free to move in the y-direction, and the applied tension 9 is directed along the
x-direction.

In the polymer model each monomer unit of the chain is permitted to
lie either parallel or antiparallel to the x-axis, and zero energy is associ-
ated with these two orientations. Each monomer unit has the additional
possibility of lying perpendicular to the x-axis, in the +y or —y direc-
tions only. Such a “perpendicular” monomer unit presumably suffers
interference with other polymer chains in the bundle; we represent this
interference by assigning a positive energy & to such a perpendicular
monomer.

A somewhat more reasonable model of the polymer might permit the
perpendicular monomers to lie along the +:z directions as well as along
the +y directions, and, more importantly, would account for the inter-
ference of a chain doubling back on itself. Such models complicate the
analysis without adding to the pedagogic clarity or qualitative content of
the result.

We calculate the entropy S of one polymer chain as a function of the
energy U = U’e, of the coordinates L, and L, of the end of the polymer
chain, and of the number N of monomer units in the chain.

Let N/ and N, be the numbers of monomers along the +x and —x
directions respectively, and similarly for N and N, . Then

NS + N, + N7+ N, =N

L
NS =N/ =—=1L,
a
L
N'—-N =—2=1L
a .
N/ + N/ ?UE U (15.14)
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from which we find

N =§U +L)
N, =3{U - L) (15.15)

The number of configurations of the polymer consistent with given
coordinates L, and L, of its terminus, and with given energy U, is
- Nt
Q(u,L,,L,,N)= NN NN (15.16)

The entropy is, then, using the Stirling approximation (equation 15.3)
S =1kyinQ=Nk,InN - Nk,In N — N k,In N,
—Nykgln N — N kyln N (15.17)
or
S =NkyinN ~ (N — U + L)kgIn[3(N — U + L.)]

~4(N = U = L)kpn[3(N ~ U - L;)]

34U + L) kgin[}(U" + L2)]

U - L )kyin[ (U - L) (15.18)
With the statistical mechanical phase of the calculation completed, the
thermodynamic formalism comes into play. The y-component of the

tension J, is conjugate to the extensive coordinate L, (see Problem
15.4-1). Setting 7, = 0 gives

g, 38

7y kp T Ny
T~ 3L ZanU'+L;

¥

U - L
Y =0 (15.19)

from which we conclude (as expected) that

L,=L,=0 (15.20)
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Similarly
T, 35 ks N-U-1L,
T 3L Zalnﬁ_ Ut L (15.21)
and
1 — aS —_ kB Y, ’ ’ kB Y ’ y) kB 7]
=G 281n(N+ L —-U)+ 281n(N L.~ U) ~InU
(15.22)
or
]'\7 _ N2 _ rn2
greiar - N = U) — L (15.23)

Ur2

This is the “thermal equation of state.” The “mechanical equation of
state” (15.21) can be written in an analogous exponential form

N-U-L,
N-U+L.

-29a/kgT _

e (15.24)

The two preceding equations are the equations of state in the entropy
representation, and accordingly they involve the energy U’. That is not
generally convenient. We proceed, then, to eliminate U’ between the two
equations. With some algebra we find (see Problem 15.4-2) that

L, sinh(Z a/k,T)
N cosh(Ta/k,T) + e /*sT

(15.25)

For small 7 a (relative to k,T) the equation can be expanded to first
order

P\
x kBT 1 + e tkaT

(15.26)

The modulus of elasticity of the rubber band (the analogue of the
compressibility —1/V(dV/dP)) is, for small 7,

1{dL ) a?
7] = 1+ e ehl)™! 15.27)
N( a7, |, k7 ¢ (
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The fact that this elastic modulus decreases with increasing temperature
(or that the “stiffness” increases) is in dramatic contrast to the behavior of
a spring or of a stretched wire. The behavior of the polymer is sometimes
compared to the behavior of a snake; if we grasp a snake by the head and
tail and attempt to stretch it straight the resistance is attributable to the
writhing activity of the snake. The snake, in its writhing, assumes all
possible configurations, and more configurations are accessible if the two
ends are not greatly distant from each other. At low temperatures the
rubber band is like a torpid snake. At high temperatures the number of
configurations available, and the rate of transitions among them, is
greater, resulting in a greater contractive tension. It is the entropy of the
snake and of the rubber band that is responsible for the tendency of the
ends to draw together!

The behavior described is qualitatively similar to that of the simple
phenomenological model of Section 3.7. But compared to a truly realistic
model of a rubber band, both models are extremely naive.

PROBLEMS

154-1. Is the sign correct in equation 15.19? Explain.

15.4-2. Eliminate U/e between equations 15.23 and 15.24 and show that the
formal solution is equation 15.25 with a + sign before the second term in the
denominator. Consider the qualitative dependence of L_/Na on e, and show that
physical reasoning rejects the negative sign in the denominator, thus validating

equation 15.25.

15.4-3. A rubber band consisting of n polymer chains 1s stretched from zero
length to its full extension (L = Na) at constant temperature 7. Does the energy
of the system increase or decrease? Calculate the work done on the system and the
heat transfer to the system.

15.4-4. Calculate the heat capacity at constant length for a “rubber band”
consisting of n polymer chains. Express the answer in terms of 7 and L,.

15.4-5. Calculate the “coefficient of longitudinal thermal expansion” defined by
, 1 (dL,
r= 7;( aT )y,
Express k4. as a function of T and sketch the qualitative behavior. Compare this
with the behavior of a metallic wire and discuss the result.

1S-5 COUNTING TECHNIQUES AND THEIR
CIRCUMVENTION; HIGH DIMENSIONALITY

To repeat, the basic algorithm of statistical mechanics consists of
counting the number of states consistent with the constraints imposed; the
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entropy is then the product of Boltzmann’s constant and the logarithm of
the permissible number of states.

Unfortunately counting problems tend to require difficult and sophisti-
cated techniques of combinatorial mathematics (if they can be done at
all!) In fact only a few highly artificial, idealized models permit explicit
solution of the counting problem, even with the full armamentarium of
combinatorial theory. If statistical mechanics is to be a useful and
practical science it is necessary that the difficulties of the counting
problem somehow be circumvented. One method of simplifying the count-
ing problem i1s developed in this section. It is based on certain rather
startling properties of systems of “high dimensionality”—a concept to be
defined shortly. The method i1s admittedly more important for the insights
it provides to the behavior of complex systems than for the aid it provides
in practical calculations. More general and powerful methods of
circumventing the counting problem are based on a transfer from thermo-
dynamics to statistical mechanics of the technique of Legendre transfor-
mations. That transfer will be developed in the following chapters.

For now we turn our attention to the simplifying effects of high
dimensionality, a concept that can best be introduced in terms of an
explicit model. We choose the simplest model with which we are already
familiar—the Einstein model. _

Recall that the Einstein solid is a collection of N atoms, each of which
18 to be associated with three harmonic oscillators (corresponding to the
oscillations of the atom along the x, y, and z axes). A quantum state of
the system is specified by the 3V quantum numbers n,, n,, n,,..., 1y,
and the energy of the system is

3N
Uln,n,,...,n55) = 3 n hay, (15.28)

=1

Each such state can be represented by a “point,” with coordinates
N, Ny, N, ..., 35, In @ 3N-dimensional “state space.” Only points with
positive integral coordinates are permissible, corresponding to the dis-
creteness or “quantization” of states in quantum mechanics. It is to be
stressed that a single point represents the quantum state of the entire
crystal.

The locus of states with a given energy U is a “diagonal” hyperplane
with intercepts U/hw, on each of the 3N coordinate axes (Fig. 15.5). All
states lying “inside” the plane (i.e., closer to the origin) have energies less
than U, and all states lying outside the plane, further from the origin, have
energies greater than U.

The first critical observation which is called to our attention by Fig.
15.5 is that an arbitrary “diagonal plane,” corresponding to an arbitrary
energy U, will generally pass through none of the discrete coordinate
points in the space! That is, an arbitrarily selected number U generally
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nly

FIGURE 155

Quantum state space for the Einstein solid. The three-dimenstonal state space shown is for
an FEinstein solid composed of a single atom. Each additional atom would increase the
dimensionality of the space by three. The hyperplane U/ has intercepts U/hw, on all axes.
There is one state for each unit of hypervolume, and (neglecting surface corrections) the
number of states with energy less than U is equal to the volume inside the diagonal
hyperplane U.

cannot be represented in the form of equation 15.28, such a decomposi-
tion being possible only if U/hw, is an integer.

More generally, if we inquire as to the number of quantum states of a
system with an arbitrarily chosen and mathematically precise energy, we
almost always find zero. But such a question is unphysical. As we have
stressed previously the random interactions of every system with its
environment make the energy slightly imprecise. Furthermore we never
know (and cannot measure) the energy of any system with absolute
precision.

The entropy is not the logarithm of the number of quantum states that lie
on the diagonal hyperplane U of Fig. 15.5, but rather it is the logarithm of
the number of quantum states that lie in the close vicinity of the diagonal
hyperplane.

This consideration leads us to study the number of states between two
hyperplanes: U and U — A. The energy separation A is determined by the
imprecision of the energy of the macroscopic system. That imprecision
may be thought of as a consequence either of environmental interactions
or of imprecision in the preparation (measurement) of the system.

The remarkable consequence of high dimensionality is that the volume
between the two planes (U — A and U), and hence the entropy, is essentially
independent of the separation A of the planes!
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This result is (at first) so startlingly counter-intuitive, and so fundamen-
tal, that it warrants careful analysis and discussion. We shall first corrobo-
rate the assertion on the basis of the geometrical representation of the
states of the Einstein solid. Then we shall reexamine the geometrical
representation to obtain a heuristic understanding of the general geometri-
cal basis of the effect. _

The number of states £(U) with energies less than (or equal to) a given
value U is equal to the hypervolume lying “inside” the diagonal hyper-
plane U. This hypervolume is (see problem 15.5-1)

Q(U) = (number of states with energies less than U)

_a (u\”?
- (3»’0!( hay ) (13.29)

The fact that this result is proportional to U3, where 3N is the dimen-
sionality of the “state space,” is the critical feature of this result. The
precise form of the coefficient in equation 15.29 will prove to be of only
secondary importance.

By subtraction we find the number of states with energies between
U— A and U to be

Q(U)_Q(U_A)z(TI%)T(h_%)BN_HJ%(%)W

or

Q(U) - QU - A) = Q(U)[l —(1 - %)m} (15.30)

But (1 — A/U) is less than unity; raising this quantity to an exponent
3N = 10% results in a totally negligible quantity (see Problem 15.5-2), so
that

QU) =4U) - QU - A) =Q(U) (15.31)

That is, the number Q(U) of states with energies between U — A and U is
essentially equal to the total number Q(U) of states with energies less
than U-—and this result is essentially independent of A!

Thus having corroborated the assertion for our particular model, let us
reexamine the geometry to discern the more general geometrical roots of
this strange, but enormously useful, result.

The physical volume in Fig. 15.5 can be looked at as one eighth of a
regular octahedron (but only the portion of the octahedron in the physical
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octant of the space has physical meaning). With higher dimensionality the
regular polyhedron would become more nearly “spherical.”” The dimen-
sionless energy U/hw, is analogous to the “radius” of the figure, being
the distance from the origin to any of the corners of the polyhedron. This
viewpoint makes evident the fact (equation 15.29) that the volume is
prOportlonal to the radius raised to a power equal to the dimensionality of
the space (r? in two dimensions, r? in three, etc.). The volume between
two concentric polyhedra, with a difference 1n radii of dr, is dV =
(dV/dr) dr. The ratio of the volume of this “shell” to the total volume is

dV oV dr
Vo Vv (15.32)
oh, if V=A4,r"
av dr
7 = nT (15.33)

If we take n = 102 we find dV/V = 0.1 only if dr/r = 10~%. For dr/r
greater than ~ 1072 the equation fails, telling us that the use of
differentials is no longer valid. The failure of the differential analysis is
evidence that dV/V already becomes on the order of unity for values of
dr/r as small as dr/r = 102,

In an imaginary world of high dimensionality there would be an
automatic and perpetual potato famine, for the skin of a potato would
occupy essentially its entire volume!

In the real world in which three-dimensional statistical mechanicians
calculate entropies as volumes in many-dimensional state spaces, the
properties of high dimensionality are a blessing. We need not calculate the
number of states “in the vicinity of the system energy U ”—it is quite as
satisfactory, and frequently easier, to calculate the number of states with
energies less than or equal to the energy of the physical system.

Retummg to the Einstein solid, we can calculate the fundamental
equation using the result 15.29 for QU), the number of states witlr
energies less than U: the entropy is S = kzInQ(U), and it is easily
corroborated that this gives the same result as was obtained in equation
15.4.

The two methods that we have used to solve the Einstein model of a solid
should be clearly distinguished. In Section 15.2 we assumed that U/hw,
was an integer, and we counted the number of ways of distributing quanta
among the modes. This was a combinatorial problem, albeit a simple and
tractable one because of the extreme simplicity of the model. The second
method, in this section, involved no combinatorial calculation whatsoever.
Instead we defined a volume in an abstract “state space” and the entropy
was related to the total volume inside the bounding surface defined by the
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energy U. The combinatorial approach is not easily transferable to more
complicated systems—the method of hypervolumes is general and is
usually more tractable. However the last method is not applicable at very
low temperature where only a few states are occupied, and where the occu-
pied volume in state space shrinks toward zero.

PROBLEMS

15.5-1. To establish equation 15.29 let £, be the hypervolume subtended by the
diagonal hyperplane in n dimensions. Draw appropriate figures for n = 1, 2, and
3 and show that if L is the intercept on each of the coordinate axes

15.5-2. Recalling that

im(1+x)""=e (=2718...)

x—0

show that

e*A/U

R

(-3

With this approximation discuss the accuracy of equation 15.31 for a range of
reasonable values of A/ U (ranging perhaps from 10° ? to 10719).

With what precision A/U would the energy have to be known in order that
corrections to equation 15.31 might become significant? Assume a system with
N =10%

15.5-3. Calculate the fraction of the hypervolume between the radii 0.9 and r

for hyperspheres in 1, 2, 3, 4, and 5 dimensions. Similarly for 10, 30, and 50
dimensions.

A
for T <« 1
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THE CANONICAL FORMALISM:
STATISTICAL MECHANICS IN
HELMHOLTZ REPRESENTATION

16-1 THE PROBABILITY DISTRIBUTION

The microcanonical formalism of the preceding chapter is simple in
principle, but it is computationally feasible only for a few highly idealized
models. The combinatorial calculation of the number of ways that a given
amount of energy can be distributed in arbitrarily sized “boxes” is
generally beyond our mathematical capabilities. The solution is to remove
the limitation on the amount of energy available—to consider a system in
contact with a thermal reservoir rather than an isolated system. The
statistical mechanics of a system in contact with a thermal reservoir may
be viewed as statistical mechanics “in Helmholtz representation”; or, in
the parlance of the field, “in canonical formalism.”

States of all energies, from zero to arbitrarily large energies, are avail-
able to a system in contact with a thermal reservoir. But, in contrast to the
state probabilities in a closed system, each state does not have the same
probability. That is, the system does not spend the same fraction of time
in each state. The key to the canonical formalism is the determination of
the probability distribution of the system among its microstates. And this
problem is solved by the realization that the system plus the reservoir
constitute a closed system, to which the principle of equal probability of
microstates again applies.

A simple analogy is instructive. Consider a set of three dice, one of
which is red (the remaining two being white). The three dice have been
“thrown” many thousands of times. Whenever the sum of the numbers on
the three dice has been 12 (and only then), the number on the red die has
been recorded. In what fraction of these recorded throws has the red die
shown a one, a two, ..., a six?

349
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The result, left to the reader, is that the red die has shown a one in % of
the throws, a two 1n &, ..., a five in &, and a six in 3 of the recorded
throws. The probability of a (red) six, in this restricted set of throws, is §.

The red die is the analogue of our system of interest, the white dice
correspond to the reservoir, the numbers shown correspond to the energies
of the respective systems, and the restriction to throws in which the sum 1s
12 corresponds to the constancy of the total energy (of system plus
reservoir).

The probability f, of the subsystem being in state j is equal to the fraction
of the total number of states (of system-plus-reservoir) in which the subsys-
tem is in the state j (with energy E ).

gres(E( - E )

ot i

5= (B

(16.1)

Here E,, is the total energy of the system-plus-reservoir, and 2, is
the total number of states of the system-plus-reservoir. The quantity in the
numerator, £, (E, — E)) is the number of states available to the
reservoir when the subsystem is in the state j (leaving energy E,,, — E, in
the reservoir).

This is the seminal relation in the canonical formalism, but it can be
re-expressed in a far more convenient form. The denominator is related to
the entropy of the composite system by equation 15.1. The numerator is
similarly related to the entropy of the reservoir, so that

= eXp {kBISres(E(o( - E!)}
! exp{kElSm(E,o,)}

If U is the average value of the energy of the subsystem, then the
additivity of the entropy implies

S(ot(E(o() = S(U) + Sres(Eto( - U) (163)

(16.2)

Furthermore, expanding S (E,, — E,) around the equilibrium point
En—U
S

res(Etot - Ej) = Sres(E(o( -U+U- E/)

= Sres(Etot - U) +(U - E])/T (164)

No additional terms in the expansion appear (this being the very defini-
tion of a reservoir). Inserting these latter two equations in the expression
for f,

[ = ek DWU=TSW))p = A/ksTHE, (16.5)
i )
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The quantity 1/k,T appears so pervasively throughout the theory that it
is standard practice to adopt the notation

B=1/(kyT) (16.6)

Furthermore U — TS(U) 1s the Helmholtz potential of the system, so that
we finally achieve the fundamental result for the probability f, of the
subsystem being in the state j

f, = effe P (16.7)

Of course the Helmholtz potential is not known; it 1s in fact our task to
compute it. The key to its evaluation is the observation that e?F plays the
role of a state-independent normalization factor in equation 16.7.

Y=Y e Ph=1 (16.8)
J J

or
e Fr=27 (16.9)
where Z, the “canonical partition sum,” is defined by

J

We have now formulated a complete algorithm for the calculation of a
Jundamental relation in the canonical formalism. Given a list of all states j of
the system, and their energies E,, we calculate the partition sum (16.10). The
partition sum is thus obtained as a function of temperature (or 8) and of the
parameters (V, Ny, N,,...) that determine the energy levels. Equation 16.9
in turn determines the Helmholtz potential as a function also of T,V, Ny, N,.
This is the sought for fundamental relation.

The entire algorithm is summarized in the relation

—BF=InYe P o=z
J

which should be committed to memory.
A corroboration of the consistency of the formalism follows from
recalling that f, is the probability of occupation of the jth state, which

gfrom equations 16.7, 16.9 and 16.10) can be written in the very useful
orm

f,= e PE/Y e - (16.11)
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The average energy is then expected to be
U=YEf=)YEeP5/) e? (16.12)
7] 7] t

or
U= —(d/dB)InZ (16.13)

Insertion of equation 16.9, expressing Z in terms of F, and recalling that
B = 1/k T reduces this equation to the familiar thermodynamic relation
U= F+ TS = F— T(dF/dT) and thereby confirms its validity. Equa-
tions 16.12 and 16.13 are very useful in statistical mechanics, but it must
be stressed that these equations do not constitute a fundamental relation.
The fundamental relation is given by equations 16.9 and 16.10, giving F
(rather than U) as a function of 8, ¥V, N.

A final observation on units and on formal structure is revealing. The
quantity 8 1s, of course, merely the reciprocal temperature in “natural
units.” The canonical formalism then gives the quantity SF in terms of f3,
V,and N. That is, F/T is given as a function of 1/7, V, and N. This is u
Sfundamental equation in the representation S[1/T] (recall Section 5.4). Just
as the microcanonical formalism is naturally expressed in entropy repre-
sentation, the canonical formalism is naturally expressed in S[f] repre-
sentation. The generalized canonical representations to be discussed 1n
Chapter 17 will similarly all be expressed most naturally in terms of
Massieu functions. Nevertheless we shall conform to universal usage and
refer to the canonical formalism as being based on the Helmholtz poten-
tial. No formal difficulties arise from this slight “misrepresentation.”

PROBLEMS

16.1-1. Show that equation 16.13 is equivalent to U = F + TS.

16.1-2. From the canonical algorithm expressed by equations 16.9 and 16.10,
express the pressure in terms of a derivative of the partiton sum. Further, express
the pressure in terms of the derivatives JE /dV (and of T and the E,). Can you
give a heuristic interpretation of this equation?

16.1-3. Show that S/k, = B*3F/Jf and thereby express S in terms of Z and its
derivatives (with respect to B).

16.1-4. Show that ¢, = —B(ds/dB), and thereby express ¢, in terms of the
partition sum and its derivatives (with respect to ).

Answer
,3*InZ

c,= N %
s BB 3[32
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16-2 ADDITIVE ENERGIES AND
FACTORIZABILITY OF THE PARTITION SUM

To illustrate the remarkable simplicity of the canonical formalism we
recall the two-state system of Section 15.3. In that model N distinguish-
able “atoms” each were presumed to have two permissible states, of
energies 0 and e. Had we attributed even only three states to each atom
the problem would have become so difficult as to be insoluble by the
microcanonical formalism, at least for general values of the excitation
energies. By the canonical formalism it is simple indeed!

We consider a system composed of N distinguishable “elements,” an
element being an independent (noninteracting) excitation mode of the
system. If the system is composed of noninteracting material constituents,
such as the molecules of an ideal gas, the “elements” refer to the
excitations of the individual molecules. In strongly interacting systems the
elements may be wavelike collective excitations such as vibrational modes
or electromagnetic modes. The identifying characteristic of an “element” is
that the energy of the system is a sum over the energies of the elements,
which are independent and noninteracting.

Each element can exist in a set of orbital states (we henceforth use the
term orbital state to distinguish the states of an element from the states of
the collective system). The energy of the ith element in its jth orbital
state is ¢,,. Each of the elements need not be the same, either in the
energies or the number of its possible orbital states. The total energy of the
system is the sum of the single-element energies, and each element is
permitted to occupy any one of its orbital states independently of the orbital
states of the other elements. Then the partition sum is

7 = Z e“ﬁ(fll beg, tey, ) (16.14)
70537
— Z e Bﬁ/e B‘Zie Bh/ ... (]6.15)
.47
LY e Y e B Y e B . (16.16)
J J 7”7
2z (16.17)

where z,, the “partition sum of the ith element,” is

z, =Y e P (16.18)
J

The partition sum factors. Furthermore the Helmholtz potential is additive
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over elements
—BF=mZ=Inz +Inz, + --- (16.19)

This result is so remarkably simple, powerful, and useful that we em-
phasize again that it applies to any system in which (a) the energy is
additive over elements and (b) each element is permitted to occupy any of
its orbital states independently of the orbital state of any other element.

The “two-state model” of Section 15.3 satisfies the above criteria,
whence

Z=:N=(1+ e_B‘)N (16.20)
and
F= —Nk,TIn(1 + e %) (16.21)

It is left to the reader to demonstrate that this solution is equivalent to
that found in Section 15.3. If the number of orbitals had been three rather
than two, the partition sum per particle z would merely have contained
three terms and the Helmholtz potential would have contained an ad-
ditional term in the argument of the logarithm.

The Einstein model of a crystal (Section 15.2) similarly yields to the
simplicity of the canonical formalism. Here the “elements” are the vibra-
tional modes, and the partition sum per mode is

o0
z=1+¢ Pl g 2Phoo 4 ... =} g bhw (16.22)
n=0

This “geometric series” sums directly to

PSR S (16.23)

1—e Phw

There are 3N vibrational modes so that the fundamental equation of the
Finstein model, in the canonical formalism, is

F = —ﬁ_llnzyv = 3Nk TlIn (l — e ~Bhug 1624)
B

Clearly Einstein’s drastic assumption that all modes of vibration of the
crystal have the same frequency is no longer necessary in this formalism.
A more physically reasonable approximation, due to P. Debye, will be
discussed in Section 16.7.
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PROBLEMS

16.2-1. Consider a system of three particles, each different. The first particle has
two orbital states, of energies ¢, and g;,. The second particle has permissible
energies &, and &,,, and the third particle has permissible energies e;; and &,,.
Write the partition sum explicitly in the form of equation 16.14, and by explicit
algebra, factor it in the form of equation 16.17.

16.2-2. Show that for the two-level system the Helmholtz potential calculated in
equation 16.21 is equivalent to the fundamental equation found in Section 15.3.

16.2-3. Is the energy additive over the particles of a gas if the particles are
uncharged mass points (with negligible gravitational interaction)? Is the partition
sum factorizable if half the particles carry a positive electric charge and half carry
a negative electric charge? Is the partition sum factorizable if the particles are
“fermions” obeying the Pauli exclusion principle (such as neutrinos)?

16.2-4. Calculate the heat capacity per mode from the fundamental equation
16.24.

16.2-5. Calculate the energy per mode from equation 16.24. What is the leading
term in U(T) in the regions of T = 0 and of T large?

16.2-6. A binary alloy is composed of N, atoms of type 4 and of N, atoms of
type B. Each A4-type atom can exist in its ground state or in an excited state of
energy e (all other states are of such high energy that they can be neglected at the
temperatures of interest). Each B-type atom similarly can exist in its ground state
of energy zero or in an excited state of energy 2. The system is in equilibrium at
temperature T.

a) Calculate the Helmholtz potential of the system.

b) Calculate the heat capacity of the system.

16.2-7. A paramagnetic salt is composed of 1 mole of noninteracting ions, each
with a magnetic moment of one Bohr magneton (pp = 9274 X 107%
joules/tesla). A magnetic field B, is applied along a particular direction; the
permissible states of the ionic moments are either parallel or antiparallel to this
direction.

a) Assuming the system is maintained at a temperature T =4 K and B, is
increased from 1 Tesla to 10 Tesla, what is the magnitude of the heat transfer
from the thermal reservoir?

b) If the system is now thermally isolated and the applied magnetic field B, is
decreased from 10 Tesla to 1 Tesla, what is the final temperature of the system?
(This process is referred to as cooling by adiabatic demagnetization.)

16-3 INTERNAL MODES IN A GAS

The excitations of the molecules of a gas include the three translational
modes of the molecules as a whole, vibrational modes, rotational modes,
electronic modes, and modes of excitation of the nucleus. For simplicity
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we 1nitially assume that each of these modes is independent, later return-
ing to reexamine this assumption. Then the partition sum factors with
respect to the various modes

Z= ZtransZwarotZelethnuc (1625)

and, further, with respect to the molecules

Zw=20, Z.,=2zN (16.26)
and similarly for Z., and Z__.

The “ideality” or “nonideality” of the gas is a property primarily of the
translational partition sum. The translational modes in any case warrant a
separate and careful treatment, which we postpone to Section 16.10. We
now simply assume that any intermolecular collisions do not couple to the
internal modes (rotation, vibration, etc.).

The N identical vibrational modes of a given type (one centered on
each molecule) are formally identical to the vibrational modes of the
Einstein model of a crystal; that is, they are just simple harmonic
oscillators. For a mode of frequency w,

Zy =z = (1 — e Phoo)™" (16.27)

and the contribution of this vibrational mode to the Helmholtz potential
is as given in equation 16.24 (with 3N replaced by N ) The contribution
of a vibrational mode to the heat capacity of the gas is then as shown in
Fig. 15.2 (the ordinate being ¢/R rather than ¢/3R). As described in
Section 13.1, the heat capacity “rises in a roughly steplike fashion” in the
vicinity of k,T =~ hw,, and it asymptotes to ¢ = R. Figure 13.1 was
plotted as the sum of contributions from two v1brat10nal modes, with
w, = 15w,.

The characteristic vibrational temperature hwy/k, ranges from several
thousand kelvin for molecules containing very light elements (= 6300 K
for H,) to several hundred kelvin for molecules containing heavier ele-
ments (= 309 K for Br,).

To consider the rotational modes of a gas we focus particularly on
heteronuclear diatomic molecules (such as HCI), which require two angu-
lar coordinates to specify their orientation. The rotational energy of such
heteronuclear diatomic molecules is quantized, with energy eigenvalues
given by

g,=C(¢+ 1)e ¢(=0,1,2,... (16.28)
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Each energy level is (2£ + 1)-fold degenerate. The energy unit & is equal to
1h?/(moment of inertia)®, or approximately 2 X 10 J for the HCl
molecule. The characteristic separation between levels is of the order of &,
which corresponds to a temperature e/kp = 15 K for HCl—larger for
lighter molecules and smaller for heavier molecules.

The rotational partition sum per molecule is

Zie = 2 (244 1)e PAcDe (16.29)
£=0

If k,T >> & the sum can be replaced by an integral. Then, noting that
2¢+ 1 is the derivative of ¢(¢+ 1), and writing x for the quantity
{6+ 1),

%0 kgT
Zrot :'/(; eﬁﬁ"dx = ‘1— = B

Be £

(16.30)

If kT i1s less than or of the order of ¢ it may be practical to calculate
several terms of the series explicitly, to some ¢’ such that £’(¢” + 1) >
kT, and to integrate over the remaining range (from ¢’ to infinity); see
Problem 16.3-2.

It is left to the reader to show that for k,T > ¢ the average energy is
kgT.

The case of homonuclear diatomic molecules, such as O, or H,, is
subject to quantum mechanical symmetry conditions into which we shall
not enter. Only the even terms in the partition sum, or only the odd terms,
are permitted (depending upon detailed characteristics of the atoms). At
high temperatures this restriction merely halves the rotational partition
sum per molecule.

The nuclear and electronic contributions can be computed in similar

fashion, but generally only the lowest energy levels of each contribute.
Then z__ is simply the “degeneracy” (multiplicity) of the lowest energy
configuration. Each of these factors simply contributes NkT In (multi-
Plicity) to the Helmholtz potential.
_ Itis of interest to return to the assumption that the various modes are
Independent. This assumption is generally a good (but not a rigorous)
approximation. Thus the vibrations of a diatomic molecule change the
Instantaneous interatomic distance and thereby change the instantaneous
Moment of inertia of rotation. It is only because the vibrations generally
are very fast relative to the rotations that the rotations sense only the
QUerage interatomic distance, and thereby become effectively independent
of the vibrations.
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PROBLEMS

16.3-1. Calculate the average rotational energy per molecule and the rotationa]
heat capacity per molecule for heteronuclear diatomic molecules in the region
kT > ¢.

16.3-2. Calculate the rotational contribution to the Helmholtz potential per
molecule by evaluating the first two terms of equation 16.29 explicitly and by
integrating over the remaining terms. For this purpose note that the leading terms
in the Euler—McLaurin sum formula are

S 10) = [ r(8)a0 + 210 = 5£(©) + -

=0
where f’ denotes the derivative of f(8).

16.3-3. A particular heteronuclear diatomic gas has one vibrational mode, of
frequency w, and its characteristic rotational energy parameter is & (equation
16.28). Assume no intermolecular forces, so that the gas is ideal. Calculate its full
fundamental equation in the temperature region in which T > e/k, but T =
ho/k,.

i6-4 PROBABILITIES IN FACTORIZABLE SYSTEMS

We may inquire as to the physical significance of the factor z associated
with a single element in the partition sum of a factorizable macroscopic
system. Following equation 16.17 we referred to z as the “partition sum
per element.” And in equation 16.19 we saw that —k T Inz is the
additive contribution of that element to the Helmholtz potential. It is
easily shown (Problem 16.4-1) that the probability of occupation by the
ith element of its jth orbital state, in a factorizable system, is

fl=ePuye, (16.31)

In all these respects the statistical mechanics of the single element 1S
closely analogous to that of a macroscopic system.

The polymer model of Section 15.4 is particularly instructive. Consider
a polymer chain with a weight suspended as shown in Fig. 15.4. The
magnitude of the weight is equal to the tension J applied to the chain.
The length of the chain is (equation 15.14)

L. =(N—=N)a (16.32)
and the total energy (of chain plus weight) in a given configuration is

E=(N'+N)e-JL,=(N*+ N )e+(N, — N)aT (16.33)
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The term —ZL_ is the potential energy of the suspended weight (the
potential energy being the weight .7 multiplied by the height, and the
height being taken as zero when L, = 0). According to equation 16.33 we
can associate an energy a with every monomer unit along —x, an
energy —agJ with every monomer unit along + x, and an energy & with

every monomer unit along either +y or —y. The partition sum factors
and the partition sum per monomer unit is

z=e P74 e*PoT 4 =B 4 o Pe (16.34)
The Helmholtz potential is given by
—BF=Nln: (16.35)
Furthermore the probability that a monomer unit 1s along —x is
px=eP%2 (16.36)
and the probability that it is along +x is
Pi=eP/z (16.37)
Consequently the mean length of the chain is
(L) =Mp..—p_Ja (16.38)
= 2Nasinh (BaT)/z (16.39)

It is Jeft to the reader to calculate the mean energy U from the fundamen-
tal equations (16.34 and 16.35) and to show that both the energy and the
length agree with the results of Section 15.4.

PROBLEMS

16.4-1. The probability that the ith element is in its jth orbital state is the sum of
"he probabilities of all microstates of the system in which the ith element is in its
Jth orbital state. Use this fact to show that for a “factorizable system” the

E’TObability of the ith element being in its jth orbital state is as given in equation
6.31.

16.4-2. Demonstrate the equivalence of the fundamental equations found in this
Section and in Section 15.4.
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16-5 STATISTICAL MECHANICS OF
SMALL SYSTEMS: ENSEMBLES

The preceding sections have demonstrated a far reaching similanty
between the statistical mechanics of a macroscopic system and that of ap
individual “element” of a factorizable system. The partition sum per
element has the same structure as the full partition sum, and 1t is subject
to the same probability interpretation. The logarithm of the partition sum
of an element is an additive contribution to the total Helmholtz potential,
Does this imply that we can simply apply the statistical mechanics to each
element? We can indeed, when the elements satisfy the factorizability
criteria of Section 16.2.

A further conclusion can be drawn from the preceding observations He
can apply the canonical formalism to small (nonmacroscopic) systems n
diathermal contact with a thermal reservoir.

Suppose that we are given such a small system. We can imagine it to be
replicated many times over, with each replica put into diathermal contact
with the reservoir and hence (indirectly) with all other replicas. The
“ensemble” of replicas then constitutes a thermodynamic system to which
statistical mechanics and thermodynamics apply. Nevertheless no prop-
erty of the individual element is influenced by its replicas, from which it 1s
“shielded” by the intermediate thermal reservoir. Application of statistical
mechanics to the individual element is isomorphic to its application to the
full ensemble.

Statistical mechanics is fully valid when applied to a single element in
diathermal contact with a thermal reservoir. In contrast, thermodynamuics,
with its emphasis on extensivity of potentials, applies only to an ensemble of
elements, or to macroscopic systems.

Example
An atom has energy levels of energies, 0,¢,¢€,,¢€;,... with degeneracies of
1,2,2,1,... The atom is in equilibrium with electromagnetic radiation which acts

as a thermal reservoir at temperature 7. The temperature 1s such that e #¢ 15
negligible (with respect to unity) for all energies €, with j > 4. Calculate the mean
energy and the mean square deviation of the energy from its average value

Solution
The partition sum is

z=1+42e P 4 2¢ P2 4 o= Fo>
The mean energy is

{(g) = (2ele“ﬂ" + 2e0e P + gie P) /2
and the mean squared energy is

(€% = (2efe Pa + 2ele Pri+ ede P0) /2
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The mean square deviation is () — (&)’ For such a small system the mean
square deviation may be very large. Only for macroscopic systems are the
fluctuations negligible relative to average or observed values.

It should be noted that an energy level with a two-fold degeneracy imphes rwo
states that have the same energy. The partition sum is over states, not over
«levels.”

PROBLEMS

165 1. The energies of the orbital states of a given molecule are such that
=0,e/kp =200 K, &/kp=300 K, &/kp =400 K and all other orbital

smtes have very high energy. Calculate the dispersion 0 = \(s Y — (&)? of the
energy if the molecule is in equilibrium at 7 = 300 K. What is the probability of
occupation of each orbital state?

16.5-2. A hydrogen atom in equilibrium with a radiation field at temperature T
can be in its ground orbital level (the “l-s” level, which is two-fold spin
degenerate), or it can be in its first excited energy level (eight-fold degenerate).
Neglect the probability of higher energy states. What 1s the probability that the
atom will be in an “orbital p-state”?

16.5-3. A small system has two normal modes of vibration, with natural frequen-
des w; and w, = 2w,. What is the probability that, at temperature 7, the system
has an energy less than 5w, /27 The zero of energy is taken as its value at 7 = 0.

Answer:
4+ xX1+ xH1 +x+2x%)  where x = exp(—Bhw,)

16.5-4. DNA, the genetic molecule > deoxyribonucleic acid, exists as a twisted pair

of polymer molecules, each with N monomer units. The two polymer molecules

are cross-linked by N “base pairs.” It requires energy ¢ to unlink each base pair,

and a base pair can be unlinked only if it has a neighboring base pair that is

already unlinked (or if it is at the end of the molecule). Find the probability that

" pairs are unlinked at temperature 7 1f

”) one end of the molecule is prevented from unlinking, so that the molecule
"unwinds” from one end only.

b) the molecule can unwind from both ends.

Reference: C. Kittel, Amer. J. Phys. 37, 917 (1969).

16.5-5. Calculate the probability that a harmonic oscillator of natural frequency
“y 15 in a state of odd quantum number (n = 1,3,5,...) at temperature 7. To
%hat values do you expect this probability to reduce in the limits of zero and
Nfinite temperature? Show that your result conforms to these limiting values.

Ind the dominant behavior of the probability P_,, near T = 0 and in the high
emperature region.
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16.5-6. A small system has two energy levels, of energies 0 and ¢ and of
degeneracies g, and g,. Find the entropy of this system at temperature T
Calculate the energy and the heat capacity of the system at temperature 7. Whyy
is the dominant behavior of the heat capacity at very low and at very high
temperature? Sketch the heat capacity. How would this sketch be affected by ap
increase in the ratio g, /g,? Explain this effect qualitatively.

16.5-7. Two simple harmonic oscillators, each of natural frequency w, are coupled
in such a way that there is no interaction between them if the oscillators have
different quantum numbers, whereas their combined energy is 2n + 1)hw + A if
the oscillators have the same quantum number n. The system is in thermal
equilibrium at temperature 7. Find the probability that the two oscillators have
identical quantum numbers. Find and interpret the zero-temperature limit of your
result, for all values of A.

16-6 DENSITY OF STATES AND
DENSITY OF ORBITAL STATES

We return to large systems, and we shall shortly demonstrate several
applications of the canonical formalism to crystals and to electromagnetic
radiation. These applications, and a wide class of other applications, call
on the concept of a “density of states function.” Because this concept lies
outside statistical mechanics proper, and because we shall find it so
pervasively useful, it is convenient to discuss it briefly in advance.

In the canonical formalism we repeatedly are called upon to compute
sums of the form

“sum” =) (---)e P& (16.40)
J

The sum is over all states j of the system, and E, is the energy of the Jth
state. If the quantity in the parenthesis is unity, the “sum” is the partition
sum Z. If the parenthetical quantity is the energy then the “sum” divided
by Z is the average energy U (equation 16.12). And similar situations hold
for other dynamical variables.

For macroscopic systems the energies E, are generally (but not always)
closely spaced, in the sense that B(E N1 — E)) < 1. Under these ar
cumstances the sum can be replaced by an integral

“sum” = wa (---)e P"D(E)dE (16.41)

mn

where E,_, is the energy of the ground state of the system (the minimuf®
possible energy) and D(E) is the “density of states” function defined by

number of states in interval dE = D(E) dE (16.42)



Density of States and Denstty of Orbutal States 363

In many systems the energy eigenstates are combinations of orbital
(single-element) states, the partition sum factors, and analogues of equa-
tions 16.41 and 16.42 can be applied to single elements. The quantity
analogous to D(E) is then a “density of orbital states”; we shall designate
it also by D(E).

Further, the orbital states are very commonly normal modes that are
wavelike in character. This is true of the vibrational modes of a crystal
and of the electromagnetic modes of a cavity containing electromagnetic
radiation. From the viewpoint of quantum mechanics it is even the case
for the translational modes of a gas, the waves being the quantum
mechanical wave functions of the molecules. The density of orbital states
function is then subject to certain general considerations, which we briefly
review.

Consider a system in a cubic “box” of linear dimension L (the results
are independent of this arbitrary but convenient choice of shape). A
standing wave parallel to an edge must have a wavelength A such that an
integral number of half wavelengths “fit” in the length L. That is, the
wave vector k = 27 /A must be of the form nz /L. For a wave of general
orientation, in three dimensions, we have similar restrictions on each of
the three components of k

k=(%)(n,,n2,n3)= (-T;T,—}*)(nl,nz,m) (16.43)

n,, n,, ny=1ntegers

We consider only isotropic media, for which the frequency is a function
only of the amplitude k of k

w = w(k), or inversely, k = k(w) (16.44)

Then the number of orbital states with frequency less than  is the
number of sets of positive integers for which

(16.45)

We can think of (n? + nZ + n)* as the radius in an abstract space in
which n,, n,, and n, are integral distances along the three coordinate
axes. The number of such integral lattice points with radii less than
Vik(w)/7 is the volume inside this radius. Only one octant of this
spherical volume is physically acceptable, because n,, n,, and n; in
equation 16.43 must be positive. Thus the number of orbital states with



364 The Canomcal Formalism. Statistical Mechamics in Helmholtz Representation

frequency less than w is

3
number of orbital states with frequency < w = (%)( 4377 ) [VV sk(w) ]

kit

(16.46)

Differentiating we find the number of orbital states D'(w)dw in the
interval dw

vV di*(w)
6n? dw

dk(w)

D'(w)dw = dw= 2( )y —— (16.47)

The quantity D’(w)dw then is analogous to D(E)dE in the “sum”
(equation 16.41); see Problem 16.6-1.

This is the general result we require. Because various models of interest
correspond to various functional relations w(k), we shall be able to
convert sums to integrals simply by evaluating the “density of orbital
states” function D’(w) by equation 16.41. So prepared, we proceed to
several applications of the canonical formalism.

PROBLEMS

16.6-1. Show that the number of orbital states in the energy interval de = hdw is
D(&) = D'(w)/h, where D’(w) dw is the number of orbital states in the frequency
interval de.

16.6-2. For the particles of a gas e = p?/2m = (h%/2m)k?, or w=¢/h =
hk?/2m. Find the density of orbital states function D'(w).

Answer:

D Flk m3/2V 2
D'(w) = —2—_2k /( ) = Sugan

m

16.6-3. For excitations obeying the spectral relation «w = Ak”", n > 0, find the
density of orbital states function D’(w).

167 THE DEBYE MODEL OF NONMETALLIC CRYSTALS

At the conclusion of Section 16.2 we reviewed the Einstein model of 4
crystalline solid, and we observed that the canonical formalism makes
more sophisticated models practical. The “Debye model” is moderately
more sophisticated and enormously more successful.
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FIGURE 16 1

Dispersion relation for vibrational modes, schematic. The shortest wave length is of the
order of the interatomic distance. There are N longitudinal modes and 2N transverse
modes. The Debye approximation replaces the physical dispersion relation with the linear
extrapolation of the long wave length region, or w = v, k and w = y,k for longitudinal
and transverse modes respectively.

Again consider N atoms on a lattice, each atom being bound to its
neighbors by harmonic forces (“springs”). The vibrational modes consist
of N longitudinal and 2N transverse normal modes, each ofswhich has a
sinusoidal or “wavelike” structure. The shortest wave lengths are of the
order of twice the interatomic distance. The very long wave length
longitudinal modes are not sensitive to the crystal structure and they are
identical to sound waves in a continuous medium. The dispersion curves
of w versus k(= 2w /A) are accordingly linear in the long wave length
limit, as shown in Fig. 16.1. For shorter wave lengths the dispersion curves
“flatten out,” with a specific structure that reflects the details of the
crystal structure. P. Debye!, following the lead of Einstein, bypassed the
mechanical complications and attempted only to capture the general
features in a simple, tractable approximation. The Debye model assumes
that the modes all lie on linear “dispersion curves” (Fig. 16.1), as they
Would in a continuous medium. The slope of the longitudinal dispersion
curve is v,, the velocity of sound in the medium. The slope of the
lransverse dispersion curve is v,.

. The thermodynamic implications of the model are obtained by calculat-
Ing the partition sum. The energy is additive over the modes, so that the
Partition sum factorizes. For each mode the possible energies are nhw(A)
With n = 1,2,3,..., where w(A) = 27»(A) is given by the dotted linear

'P. Debye, Ann. Phys. 39, 789 (1912).
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curves in Fig. 16.1. As in the Einstein model (equations 16.22 and 16.23)

1

z(}\) = 1 — ¢ Bhe™)

(16.48)

and

Z=[1:z0)= [] [1 - eBrev]! (16.49)

modes modes

where [1,.4., denotes a product over all 3N modes. The Helmholtz
potential is

F=k,T Y In(1—e Bhoh) (16.50)

modes
it is left to the reader to show that the molar heat capacity is

wzeﬂhw

c,=B*hhy Yy ——-—— (16.51)
Bmodcs (eﬂ'“" - 1)2

The summation over the modes is best carried out by replacing the sum by
an integral

2_Bhw

h? e e
¢, = D'(w)d 16.52
’ kBTzfo (ePre —1)° (o) de (16:52

where D'(w) dw is the number of modes in the interval dw. To evaluate
D’(w) we turn to equation 16.47. For the longitudinal modes the func-
tional relation k(w) 1s (Fig. 16.1)

k=uw/v, (16.53)

and similarly for the two polarizations of transverse modes. It follows.
from equation 16.47, that

D'(w) = Ll 2) (16.54)
27\ v, O]

The maximum frequency? w,,, is determined by the condition that the

ZIn the bterature w,,, 1 often speciied 1n terms of the “Debye temperature,” defined b
hw,../ky and conventonally devignated by 6,
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FIGURE 16 2
Vibrational heat capacity of a crystal according to the Debye approximation

total number of modes be 3N,
[TD(w)do = 3N, (16.55)
0

from which it follows that

3 3
UL U,

w =

18N, 72 !
3= l;‘” (1 2) (16.56)

Inserting D’(w) in the integral 16.52 and changing the integration variable
from w to u(= Bhw)

€y

ONk, (i et
= 2 "f L (16.57)
0

u?n (eu — 1)2
The molar heat capacity, computed from this equation, is shown schemati-
cally in Fig. 16.2.

At high temperature (kT > how_,,) the behavior of ¢, is best explored
by examining equation 16.51. In this limit u%"/(e* — 1)2 > 1. Hence
each mode contributes k, to the molar heat capacity (a result of much
more general validity, as we shall see subsequently). The molar heat
Capacity in the high temperature limit is 3N,k 5, or 3R.

_ At low temperature, where Bhw,, = u,, > 1, the upper limit in the
Integral in equation 16.57 can be replaced by infinity; the integral is then
simply a constant, and the temperature dependence of ¢, arises from the
u) in the denominator. Hence ¢, ~ T? in the low temperature region, a
result in excellent agreement with observed heat capacities of nonmetallic
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crystals. The detailed shape of the heat capacity curve in the intermediate
region is less accurate of course. The qualitative shape is similar to that of
the Einstein model, Fig. 15.2, except that the sharp exponential rise at low
temperature is replaced by the more gentle 7> dependence.

PROBLEMS

16.7-1. Calculate the energy of a crystal in the Debye approximation. Show that
the expression for U leads, in turn, to equation 16.57 for the molar heat capacity

16.7-2. Calculate the entropy of a crystal in the Debye approximation, and show
that your expression for S leads to equation 16.57 for the molar heat capacity.

16.7-3. The frequency w(A) of the vibrational mode of wave length A is altered if
the crystal is mechanically compressed. To describe this effect Gruneisen intro-
duced the “Gruneisen parameter”

¥V de(}A)

VST e(h)  av
Taking vy as a constant (independent of A,¥,T,...) calculate the mechamcal
equation of state P(7,V, N) for a Debye-Gruneisen crystal.
Show that for a Debye—Gruneisen crystal
Ve = YK€,

16-8 ELECTROMAGNETIC RADIATION

The derivation of the fundamental equation (3.57) of electromagnetic
radiation is also remarkably simple in the canonical formalism. Assume
the radiation to be contained within a closed vessel, which we may think
of as a cubical cavity with perfectly conducting walls. Then the energy
resides in the resonant electromagnetic modes of the cavity. As in the
Einstein and Debye models, the possible energies of a mode of frequency
w are nhw, with n=0,1,2,... . Equations 16.48 and 16.49 are again
valid, and

F=k,T Y In(l - e Fhotn) (16.58)

modces

The sum can be calculated by replacing the sum by an integral (the modes
are densely distributed in energy)

F=keT[ In(l - e %) D'(w)dw (16.59)
0

The sole new feature here is that there is no maximum frequency (such as
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that in the Debye model). Whereas the shortest wavelength (and therefore
the largest frequency) of vibrational modes in a solid is determined by the
interatomic distance, there is no minimum wavelength of electromagnetic
waves. The dispersion relation is again linear, as in the Debye model, and
as there are two polarization modes

.
D'(w) = = w? (16.60)

where c is the velocity of light (2.998 X 10® m/s). Then the fundamental
equation is

Vk,T
F=—% fwzln(1~e'ﬁ"“)dw (16.61)
0

7%c?

To calculate the energy we use the convenient identity (recall equation
16.13)

dF  3(BF)

U=F+TS=F-—T—8?= B (16.62)
from which
Vh > e B
U= 'n'zc3-[0 e de (16.63)

The integral [x’(e* — 1)"1dx is 3(4) = n*/15, where { is the Rie-
mann zeta function’, whence
vrzk;_?3

- 15h%3

U VT (16.64)

This is the “Stefan-Boltzmann Law,” as introduced in equation 3.52. By a
simple statistical mechanical calculation we have evaluated the constant b
of equation 3.52 in terms of fundamental constants.

PROBLEMS

16.8-1. Show that including the “zero-point energies” of the electromagnetic
modes (i.e., E, = (n + 1/2)hw) leads to an infinite energy density U/V'! This
infinite energy density is presumably constant and unchangeable and hence
Physically unobservable.

%¢f. M. Abromowitz and 1. A. Stegun, Handbook of Mathematical Functions, National Bureau of
Standards Applied Mathematics Series, No 55, 1964. [See equation 23.2.7 §
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16.8-2. Show that the energy per unit volume of electromagnetic radiation in the
frequency range dw is given by the “Planck Radiation Law”

Uw —_ _hfl.)_ﬁ Bhw -1
 do = 'n'lc’(e ~-1) dw

and that at high temperature (kz7 » hw) this reduces to the “Rayleigh-Jeans
Law”
U, w?
Ve
16.8-3. Evaluating the number of photons per unit volume in the frequency range
dw, as

kpTdw

(N/V)dw = (U,/V)dw/ o

where U, is given in problem 16.8-2, calculate the total number of photons per
unit volume. Show that the average energy per photon (U/N) is approximately
2.2k ,T. Note that the integral encountered can be written in terms of the
Riemann zeta function, as in the preceding footnote.

16.8-4. Since radiation within a cavity propagates isotropically with velocity c,
the flux of energy impinging on unit area of the wall (or passing in one direction
through an imaginary unit surface within the cavity) is given by the
“Stefan-Boltzmann Law™:

1
Energy flux per unit area = ZC(U/V) = %ch“ =g,T*

The factor of c/4 arises as (c/2); the factor of 4 selecting only the radiation
crossing the imaginary area from “right” to “left” (or vice versa), and the factor
of ¢/2 representing the average component of the velocity normal to the area
element. The constant og (= cb/4) is known as the “Stefan-Boltzmann constant.”
As an exercise in elementary kinetic theory, derive the Stefan-Boltzmann law
(explicitly demonstrating the averages described).

16-9 THE CLASSICAL DENSITY OF STATES

The basic algorithm for the calculation of a fundamental equation 1n
the canonical formalism requires only that we know the energy of each of
the discrete states of the system. Or, if the energy eigenvalues are reasona-
bly densely distributed, it is sufficient to know the density of orbital states.
In either case discreteness (and therefore countability) of the states 1S
assumed. This fact raises two questions. First, how can we apply statistical
mechanics to classical systems? Second, how did Willard Gibbs invent
statistical mechanics in the nineteenth century, long before the birth of
quantum mechanics and the concept of discrete states?
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As a clue we return to the central equation of the formalism—the
equation for the partition sum, which, for a wavelike mode, is (equation
16.47)

z=¢ FF= fe"B‘D’(w)dw = fe"“z—:zkz(w) dk(w) (16.65)

We seek to write this equation in a form compatible with classical
mechanics, for which purpose we identify hk with the (generalized)
momentum

hk = p (16.66)

whence

2=

2h3 f ~Pepp? gp (16.67)
To treat the coordinates and momenta on an equal footing the volume can
be written as an integral over the spatial coordinates. Furthermore, the
role of the energy E in classical mechanics is played by the Hamiltonian
function #(x, y, z, p,, p,, p,)- And finally we shift from 47rp2dp to
dp,dp,dp, as the ° ‘volume element in the momentum subspace,” whence
the partition function becomes

- L e B*¥dxdydzdp dp, dp, (16.68)
h3 oy

Except for the appearance of the classically inexplicable prefactor (1 /A43),
this representation of the partition sum (per mode) is fully classical. It was
in this form that statistical mechanics was devised by Josiah Willard
Gibbs in a series of papers in the Journal of the Connecticut Academy
between 1875 and 1878. Gibbs’ postulate of equation 16.68 (with the
introduction of the quantity &, for which there was no a priori classical
Justification) must stand as one of the most inspired insights in the history
of physics. To Gibbs, the numerical value of A was simply to be de-
lermined by comparison with empirical thermophysical data.

The expression 16.68 is written as if for a single particle, with three
Position coordinates and three momentum coordinates. This is purely
Symbolic. The x, y, and z can be any “generalized coordinates”
(41, 4,,...), and the momenta P.» P,» and p, are then the “conjugate
Momenta.” The number of coordinates and momenta is dictated by the
Structure of the system, and more generally we can write

z= [ Bf]‘[(dqf dpf) (16.69)

h1/2 h1/2

This is the basic equation of the statistical mechanics of classical systems.
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Finally we take note of a simple heuristic interpretation of the “classical
density of orbital states” function. In the classical phase space (coordi-
nate—momentum space) each hypercube of “linear dimension” ht corre-
sponds to one quantum mechanical state. It is as if the orbital states are
“squeezed as closely together” in phase space as is permitted by the
Heisenberg uncertainty principle Aq,Ap, > h.

Whatever the interpretation, and qune 1ndependently of the plausibility
arguments of this section, classical statistical mechanics is defined by
equation 6.68 or 6.69.

16-10 THE CLASSICAL IDEAL GAS

The monatomic classical ideal gas provides a direct and simple applica-
tion of the classical density of states and of the classical algorithm (16.69)
for the calculation of the partition function.

The model of the gas is a collection of N (= NN,) point mass “atoms”
in a container of volume ¥V, maintained at a temperature 7 by diathermal
contact with a thermal reservoir. The energy of the gas is the sum of the
energies of the individual atoms. Interactions between molecules are
disbarred (unless such interactions make no contribution to the
energy—as, for instance, the instantaneous collisions of hard mass points)

The energy is the sum of one-particle “kinetic energies,” and the
partition sum factors. We undertake to calculate z, .. the one-particle
translational partition sum, and from the classical formulation (16.69) we
find directly that

Ziranst = fffdx dy dzf f f dp.dp.dp.e B(p: tpl v p]r/2m

4
= ;;[27”71.1<BT]3/2 (16.70)

It is of interest to note that we could have obtained this result by
treating the particle quantum mechanically, by summing over its discrete
states, and by approximating the summation by an integral. This exercise
is left to the reader (Problem 16.10-4).

Having now calculated z we might expect to evaluate Z as zV, and
thereby to calculate the Helmholtz potential F. If we do so we find 4
Helmboltz potential that is not extensive! We could have anticipated this
impending catastrophe, for the one-particle partition function z is exten-
sive (equation 16.70) whereas we expect it to be intensive (F =
— Nk 4T In z). The problem lies not in an error of calculation, but in a
fundamental principle. To identify Z as z" is to assume the particles to be
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distinguishable, as if each bears an identifying label or number (like a set
of billiard balls). Quantum mechanics, unlike classical mechanics, gives a
profound meaning to the concept of indistinguishability. Indistinguish-
ability does not imply merely that the particles are “identical” —it re-
quires that the identical particles behave under interchange in ways that
have no classical analogue. Identical particles must obey either Fermi—
Dirac or Bose—FEinstein “permutational parity”; concepts with statistical
mechanical consequences which we shall study in greater detail in Chapter
17. Now, however, we seek only a classical solution. We do so by
recognizing that z" is the partition sum of a set of distinguishable
particles. We therefore attempt to correct this partition sum by division by
N!. The rationale is that all N! permutations of the “labels” among the N
distinguishable particles should be counted as a single state for indis-
tinguishable particles. Thus we finally arrive at the partition sum for a
classical monatomic ideal gas

Z=Q1/N)z8 (16.71)

with z,., ., as calculated in equation 16.70.
The Helmholtz potential is
_ V{2amk ;T\ .
F= —k,TInZ= —Nk,Tln [N(TL) ~ Nk ,T

(16.72)

where we have utilized_the Stirling approximation (In N! = NIn N — N)
which holds for large N.
To compare this equation with the fundamental equation introduced in
f(ifhapter 3 we make a Legendre transform to entropy representation,
nding

S = Nk, % - %m (3nH*m){ + NkpIn(U*V/N>*) (16.73)
This is precisely the form of the monatomic ideal gas equation with which
we have become familiar. The constant s,, undetermined in the thermody-
hamic context, has now been evaluated in terms of fundamental constants.

Reflection on the problem of counting states reveals that division by N!
1s a rather crude classical attempt to account for indistinguishability. The
frror can be appreciated by considering a model system of two identical
Particles, each of which can exist in either of two orbital states (Fig. 16.3).
Classically we find four states for the distinguishable particles, and we
then divide by 2! to “correct” for indistinguishability. If the particles are
fermions only one particle is permitted in a single one-particle state, so
that there is only one permissible state of the system. For bosons, in
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of states =
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FIGURE 16 3
States of a two-particle system according to classical, Fermi and Bose counting,

contrast, any number of particles are permitted in a one-particle state;
consequently there are three permissible states of the system (Fig. 16.3).
“Corrected classical counting” is incorrect for either type of real particle!

At sufficiently high temperature the particles of a gas are distributed
over many orbital states, from very low to very high energies. The
probability of two particles being in the same orbital state becomes very
small at high temperature. The error of classical counting then becomes
insignificant, as that error is associated with the occurrence of more than
one particle in a one-particle state. All gases approach ideal gas behavior at
sufficiently high temperature.

Consider now a mixture of two monatomic ideal gases. The partition
sum is factorizable and, as in equation 16.71

1 + 1 5
Z = ZIZZ = N—I!ZIN‘N—Z!ZQII (1674)

The Helmholtz potential is the sum of the Helmholtz potentials for the
two gases. The volume appearing in the Helmholtz potential of each gas 18
the common volume occupied by both. The temperature is, of course, the
common temperature. The fundamental equation so obtained is equiv-
alent to that introduced in Section 3.4 (equation 3.40), but again we have
evaluated the constants that were arbitrary in the thermodynamic context.

PROBLEMS

16.10-1. Show that the calculation of Z = z¥, with z given by equation 16.70, IS
correct for an ensemble of individual atoms each in a (different) volume V. Show
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that the fundamental equation obtained from Z = 2N is properly extensive when
so interpreted.

16.10-2. Show that the fundamention equation of a “multicomponent simple
idea! gas,” which follows from equation 16.74, is identical to that of equation
3.40.

16.10-3. The factors (1/N,")(1/N,!) in equation 16.74 give an additive contribu-
tion to the Helmholtz potential that does not depend 1n any way on the forms of
z, and z,. Show that these factors lead to a “mixing” term in the entropy (not in
the Helmholtz potential!) of the form

Smxng = (—xl Inx, ~ x,Inx;)ky

This mixing term appears in fluids as well as in ideal gases. It accounts for the
fact that the mixing of two fluids is an irreversible process (recall Example 2 of
Section 4.5).

16.10-4. Consider a particle of mass m in a cubic container of volume V. Show
that the separation of successive energy levels is given approximately by AE =
n2h%/2mV' %73, and roughly evaluate AE for helium atoms in a container of
volume one m3. Show that, for any temperature higher than = 10 & K, the
quantum mechanical partition sum can be approximated well by an integral.
Show that this “approximation” leads to equation 16.70.

16.10-5. A single particle is contained in a vessel of volume 23 which is divided
into two equal sub-volumes by a partition with a small hole in it. The particle
carries an electric charge, and the hole in the partition is the site of a localized
electric field; the net effect 1s that the particle has a potential energy of zero on
one side of the partition, and of &, on the other side. What is the probability that
the particle will be found in the zero-potential half of the vessel, if the system is
maintained in equilibrium at temperature 77 How would this result be affected
by internal modes of the particles? How would the result be affected if the
dispersion relation of the particles were such that the energy was proportional to
the momentum, rather than to its square? If the container were to contain one
mole of an ideal gas (non-interacting particles despite the electric charge on each!)
what would be the pressure in each sub-volume?

16-11 HIGH TEMPERATURE PROPERTIES —
THE EQUIPARTITION THEOREM

The evaluation of z,,,,, in equation 16.70, in which z,,,, was found to
be proportional to T;, is but a special case of a general theorem of wide
applicability. Consider some normal mode of a system—the mode may be
translational, vibrational, rotational, or perhaps of some other more
abstract nature. Let a generalized coordinate associated with the mode be
7 and let the associated (or “conjugate””) momentum be p. Suppose the
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energy (Hamiltonian) to be of the form
E = Aq” + Bp*® (16.75)

Then the classical prescription for calculating the partition function will
contain a factor of the form

M B(4q*+ Bp?)
z ff E e (16.76)

or, as in equation 16.70,if 4 # 0 and B # 0

( wk T )1/2( kaT)‘ﬂ
z ~

A B (16.77)

If either 4 or B is equal to zero the corresponding integral is a (bounded)
constant determined by the limits on the associated integral. The integra-
tion over x in equation 16.70 is an example of such a case, and the
corresponding integral is 43

The significant result in 16.77 is that, at sufficiently high temperature (so
that the classical density of states is applicable) every quadratic term in the

energy contributes a factor of T: 1o the partition function.

Equivalently, at sufficiently high temperature every quadratic term in
the energy contributes aterm (3N InT') to —BForaterm (— jNkzTInT)
to the Helmholtz potential F, or a term Nk T(1 + InT) to the entropy.

Or finally, the result in its most immediately significant form is: A7
sufficiently high temperature every quadratic term in the energy contributes a
term 3Nk to the heat capacity. This is the “equipartition theorem” of
classical statistical mechanics.

A gas of point mass particles has three quadratic terms in the energ)y:
(pl + p2 + p?)/2m. The heat capacity at constant volume of such a gas.
at high temperature, is 3 Nk ;, or 2R per mole.

Application of the equipartition theorem to a gas of polyatomic mole-
cules is best illustrated by several examples. Consider first a heteronuclear
diatomic molecule. It has three translational modes; each such mode has a
quadratic kinetic energy but no potential energy; these three modcs
contribute 3k to the high temperature molar heat capacity. In additon
the molecule has one vibrational mode; this mode has both kinetic and
potential energy (both quadratic) and the mode therefore contributes 5k -
Finally the molecule has two rotational modes (i.e., it requires two anglcs
to specify its orientation). These rotational modes have quadratic kineti¢
energy but no potential energy terms; they contribute 7k ;. Thus the heat
capacity per molecule 1s 7k, at high temperature (or 3R per mole).
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In general the total number of modes must be three times the number
of atoms in the molecule. This is true because the mode amplitudes are a
substitute set of coordinates that can replace the set of cartesian coordi-
nates of each atom in the molecule. The number of the latter clearly is
triple the number of atoms.

Consider a heteronuclear triatomic molecule. There are nine modes. Of
these, three are translational modes: each contributes 1k, to the heat
capacity. There are three rotational modes, corresponding to the three
angles required to orient a general object in space. Each rotational mode
has only a kinetic energy term, and each contributes 3k, to the heat
capacity. By subtraction there remain three vibrational modes, each with
kinetic and potential energy, and each contributing 3k ;. Thus the high
temperature heat capacity is 6k, per molecule.

If the triatomic molecule is linear there is one less rotational mode and
therefore one additional vibrational mode. The high temperature heat
capacity is increased to 5k ;. Note that the shape of the molecule can be
discerned by measurement of the heat capacity of the gas!

In all of the preceding discussion we have neglected contributions that
may arise from the internal structure of the atoms. These contributions
generally have much higher energy and they contribute only at enor-
mously high temperature.

If the molecules are homonuclear (indistinguishable atoms), rather than
heteronuclear, additional quantum mechanical symmetry requirements
again complicate the counting of states. Nevertheless, the analogous form
of the equipartition theorem emerges at high temperature. The classical
partition function simply contains a factor of (4)” to account for the
mdlstmgumhabllny of the two atoms within each of the N molecules, and
it contains a factor of 1/N" to account for the indistinguishability of the
N molecules.






ENTROPY AND DISORDER:
GENERALIZED CANONICAL
FORMULATIONS

17-1 ENTROPY AS A MEASURE OF DISORDER

In the two preceding chapters we have considered two types of physical
situations. In one the system of interest is isolated; in the other the system
is in diathermal contact with a thermal reservoir. Two very different
expressions for the entropy in terms of the state probabilities { f;} result.

If the system is isolated it spends equal time in each of the permissible
states (the number of which is §2):

1
f= Q (17.1)
and the entropy is

S =kyInQ (17.2)

If the system is in diathermal contact with a thermal reservoir, the
fraction of time that it spends in the state j is

5= 7z Z=)e# (17.3)
J

and the entropy is (U/T + F/T) which we write in the form
S=kgBYfE +kslnZ (17.4)
J

We now pause to inquire as to whether these results reveal some
underlying significance of the entropy. Are they to be taken purely

379
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formally as particular computational results, or can we infer from them
some intuitively revealing insights to the significance of the entropy
concept?

In fact the conceptual framework of “information theory,” erected by
Claude Shannon® in the late 1940s, provides a basis for interpretation of
the entropy in terms of Shannon’s measure of disorder.

The concept of “order” (or its negation, “disorder”) is qualitatively
famihar. A neatly built brick wall is evidently more ordered than a heap
of bricks. Or a “hand” of four playing cards is considered to be more
ordered if it consists of four aces than if it contains, for instance, neither
pairs nor a straight. A succession of groups of letters from the alphabet is
recognized as more ordered if each group concords with a word listed in
the dictionary rather than resembling the creation of a monkey playing
with a typewriter.

Unfortunately the “heap of bricks” may be the pnized creation of a
modern artist, who would be outraged by the displacement of a single
brick! Or the hand of cards may be a winning hand in some unfamiliar
game. The apparently disordered text may be a perfectly ordered, but
coded, message. The order that we seek to quantify must be an order with
respect to some prescribed criteria; the standards of architecture, the rules
of poker, or the corpus of officially recognized English words. Disorder
within one set of criteria may be order within another set.

In statistical mechanics we are interested in the disorder in the distribu-
tion of the system over the permissible microstates.

Again we attempt to clarify the problem with an analogy. Let us
suppose that a child is told to settle down in any room of his choice, and
to wait in that room until his parents’ return (this is the rule defining
order!). But of course the child does not stay in a single room—he
wanders restlessly throughout the house spending a fraction of time f, in
the jth room.

The problem solved by Shannon is the definition of a quantitative
measure of the disorder associated with a given distribution { f,}.

Several requirements of the measure of disorder reflect our qualitative
concepts:

(a) The measure of disorder should be defined entirely in terms of the
set of numbers { f }.

(#) If any one of the f is unity (and alf the rest consequently are zero)
the system 1is completely ordered. The quantitative measure of
disorder should then be zero.

{¢) The maximum disorder corresponds to each f, being equal to 1 /Q
—that is, to the child showing no preference for any of the rooms in
the house, among which he wanders totally randomly.

'C E Shannon and W Weaver, The Mathemancal Theory of Communicattons (Univ of Ilinois
Press Uirbana 19040\
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(d) The maximum disorder should be an increasing function of €
(being greater for a child wandering randomly through a large house
rather than through a small house).

(e) The disorder should compound additively over “partial disorders.”
That is, let f be the fraction of time the child spends on the first
floor, and let Disorder) be the disorder of his distribution over the
first floor rooms. Similarly for f® and Disorder'”. Then the total
disorder should be

Disorder = f x Disorder™ + f@ x Disorder® (17.5)

These qualitatively reasonable attributes uniquely determine the mea-
sure of disorder?, Specifically

Disorder = —k}.f, In f, (17.6)
J

where k 1s an arbitrary positive constant.

We can easily verify that the disorder vanishes, as required, if one of the
f, is unity and all others are zero. Also the maximum value of the disorder
(when each f =1/Q) is kInQ (see Problem 17.1-1), and this does
increase monotonically with  as required in (d) above.

The maximum value of the disorder, kIn€2, is precisely the result
(equation 17.1) previously found for the entropy of a closed system.
Complete concurrence requires only that we choose the constant & to be
Boltzmann’s constant kg. For a closed system the entropy corresponds to
Shannon’s quantitative measure of the maximum possible disorder in the
distribution of the system over its permissible microstates.

We then turn our attention to systems in diathermal contact with a
thermal reservoir, for which f, = exp(—BE,)/Z (equation 17.3). Inserting
this value of the f, into the definition of the disorder (equation 17.6), we
find the disorder to be

Disorder = kzB) f E, + kyInZ (17.7)
J

Again the disorder of the distribution is precisely equal to the entropy
(recall equation 17.4).

This agreement between entropy and disorder is preserved for all other
boundary conditions—that is for systems in contact with pressure
reservoirs, with particle reservoirs, and so forth.

Thus we recognize that the physical interpretation of the entropy is that
the entropy is the quantitative measure of the disorder in the relevant
distribution of the system over its permissible microstates.

2For a proof see A 1 Khinchin, Mathematical Foundations of Fnformation Theory (Dover
Publications, New York. 1957)
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It should not be surprising that this result emerges. Our basic assump-
tion in statistical mechanics was that the random perturbations of the
environment assure equal fractional occupation of all microstates of a
closed system—that is, maximum disorder. In thermodynamics the en-
tropy enters as a quantity that is maximum in equilibrium. Identification
of the entropy as the disorder simply brings these two viewpoints into
concurrence for closed systems.

PROBLEMS

17.1-1. Consider the quantity x In x in the imit x — 0. Show by L’Hopital’s rule
that xInx vanishes in this limit. How 1s this related to the assertion after
equation 17.6, that the disorder vanishes when one of the f, is equal to unity?

17.1-2. Prove that the disorder, defined in equation 17.6, is nonnegative for all
physical distributions.

17.1-3. Prove that the quantity —kY f, In f, is maximum if all the f, are equal by
applying the mathematical inequality valid for any continuous convex function

(x)
d’lzn:a <-1—§:¢)(a)
et e

Give a graphical interpretation of the inequality.

17-2 DISTRIBUTIONS OF MAXIMAL DISORDER

The interpretation of the entropy as the quantitative measure of dis-
order suggests an alternate perspective in which to view the canonical
distribution. This alternative viewpoint is both simple and heuristically
appealing, and it establishes an approach that will be useful in discussions
of other distributions.

We temporarily put aside the perspective of Legendre transformations
and even of temperature, returning to the most primitive level, at which a
thermodynamic system is described by its extensive parameters U, V,
Ny, ..., N,. We then consider a system within walls restrictive with respect
to V, N,,...,N,, but nonrestrictive with respect to the energy U. The
values of V, N, ..., N, restrict the possible microstates of the system, but
it is evident that states of any energy consistent with ¥V, N,,..., N, are
permitted. Nevertheless a thermodynamic measurement of the energy
yields a value U. This observed value is the average energy, weighted by
the (as yet unknown) probability factors f,

U=Y/E, (17.8)
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As a “matter of curiosity” let us explore the following question: What
distribution {f|} maximizes the disorder subject only to the requirement that
it yields the observed value of U (equation 17.8)?

The disorder is

Disorder = ~k,) f Inf, (17.9)
s

and if this is to be maximum

8(Disorder) = ~kz} (Inf, + 1) 8f = 0 (17.10)
J

Now if the f, were independent variables we could equate each term in
the sum separately to zero. But the factors f, are not independent. They
are subject to the auxiliary condition (17.8) and to the normalization
condition

Yf=1 (17.11)

The mathematical technique for coping with these auxiliary conditions is
the method of Lagrange multipliers®. The prescription is to calculate the
differentials of each of the auxiliary conditions

y 8f, =0 (17.12)
Y E8f =0 (17.13)

to multiply each by a “variational parameter” (A, and A,), and to add
these to equation 17.10

—kpX(Inf, + 1+ X +X,E)f =0 (17.14)

J

The method of Lagrange multipliers guarantees that each term in equation
17.14 then can be put individually and independently equal to zero,
Providing that the variational parameters are finally chosen so as to satisfy
the two auxiliary conditions 17.8 and 17.11.

Thus, for each j

Inf+1+A +M,E =0 (17.15)

3. G. Arfken, Mathemanical Methods for Physicists (Academic Press, New York, 1960} or any
similar reference on mathemaucal methods for scientists
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or

f,=e AT hE) (17.16)

We now must determine A; and A, so as to satisfy the auxiliary condi-
tions. That is, from 17.11

e~ MY e Rk = (17.17)
J

and from 17.8

e (WY Ee Mb=U (17.18)
J

These are identical in form with the equations of the canonical distribu-
tion! The quantity A, is merely a different notation for

1
AN, =B=—"% 17.19
2 kBT ( )
and then, from 17.18 and 16.12
1 1
e U+M) = _Z—;’E == (17.20)
J

That is, except for a change in notation, we have rediscovered the canonical
distribution.

The canonical distribution is the distribution over the states of fixed
V, Ny, ..., N, that maximizes the disorder, subject to the condition that the
average energy has its observed value. This conditional maximum of the
disorder is the entropy of the canonical distribution.

Before we turn to the generalization of these results it may be well to
note that we refer to the fj as “probabilities.” The concept of probability
has two distinct interpretations in common usage. “Objective probability”
refers to a frequency, or a fractional occurrence; the assertion that “the
probability of newborn infants being male is slightly less than one half” is
a statement about census data. “Subjective probability” is a measure of
expectation based on less than optimum information. The (subjective) prob-
ability of a particular yet unborn child being male, as assessed by «
physician, depends upon that physician’s knowledge of the parents’ family
histories, upon accumulating data on maternal hormone levels, upon the
increasing clarity of ultrasound images, and finally upon an educated, but
still subjective, guess.
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The “disorder,” a function of the probabilities, has two corresponding
interpretations. The very term disorder reflects an objective interpretation,
based upon objective fractional occurrences. The same quantity, based on
the subjective interpretation of the f’s, is a measure of the uncertainty of
a prediction that may be based upon the f’s. If one f is unity the
uncertainty is zero and a perfect prediction is possible. If all the f, are
equal the uncertainty is maximum and no reliable prediction can be made.

There is a school of thermodynamicists® who view thermodynamics as a
subjective science of prediction. If the energy is known, it constrains our
guess of any other property of the system. If only the energy is known the
most valid guess as to other properties is based on a set of probabilities
that maximize the residual uncertainty. In this interpretation the maximi-
zation of the entropy is a strategy of optimal prediction.

To repeat, we view the probabilities fj as objective fractional occur-
rences. The entropy is a measure of the objective disorder of the distribu-
tion of the system among its microstates. That disorder arises by virtue of
random interactions with the surroundings or by other random processes
(which may be dominant).

PROBLEMS

17.2-1. Show that the maximum value of the disorder, as calculated in this
section, does agree with the entropy of the canonical distribution (equation 17.4).

17.2-2. Given the identification of the disorder as the entropy, and of f, as given
in equation 17.16, prove that A, = 1/(kzT) (equation 17.19).

17-3 THE GRAND CANONICAL FORMALISM

Generalization of the canonical formalism 1is straightforward, merely
‘substituting other extensive parameters in place of the energy. We il-
lustrate by focusing on a particularly powerful and widely used formalism,
known as the “grand canonical” formalism.

Consider a system of fixed volume in contact with both energy and
particle reservoirs. The system might be a layer of molecules adsorbed on
a surface bathed by a gas. Or it may be the contents of a narrow necked
but open bottle lying on the sea floor.

Considering the system plus the reservoir as a closed system, for which
every state is equally probable, we conclude as in equation 16.1, that the
fractional occupation of a state of the system of given energy E , and mole

9¢f. M. Tribus, Thermostatistics and Thermodynarmics (D. Van Nostrand and Co , New York, 1961)
E T Yaynes, Papers on Probability, Statistics, and Statistical Physies, Edited by R. D. Rosenkrantz,
(D. Reidel, Dordrecht and Boston, 1983).
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number N, is

f — Qres(Etonal - Ep Ntotal - N/) (17 21)
! Qtoml(Etotal’ Nto!al) .

But again, expressing £ in terms of the entropy

1) e 1)cw
f; = exp [(k_B)Sr (Etotal - Ej,Nlolal - N/) _(k_B)S[ ‘(Elotal’ Ntotal)]

(17.22)
Expanding as in equations 16.3 to 16.5
f} = BYe~B(E,—pN) (17’23)
where ¥ is the “grand canonical potential”
V=U-TS—puN=U|[T,p] (17.29)
The factor e?¥ plays the role of a normalizing factor
ef¥ = 2 (17.25)
where Z, the “grand canonical partition sum,” is
Z=Y e AE 1Y) (17.26)

J

The algorithm for calculating a fundamental equation consists of
evaluating the grand canonical partition sum Z as a function of 7 and p
(and implicitly as a function also of V). Then BV is simply the logarithm
of Z. This functional relationship can be viewed in two ways, summarized
in the mnemonic squares of Fig. 17.1.

The conventional view is that ¥(T,V, p) is the Legendre transform of
U, or ¥(T,V,p) = U(T, p). The thermodynamics of this Legendre trans-
formation is exhibited in the first mnemonic square of Fig. 17.1. It is
evident that this square is isomorphic with the familiar square, merely
replacing the extensive parameter ¥ by N and reversing the correspond-
ing arrow.

The more fundamental, and far more convenient view, is based on
Massieu functions, or transforms of the entropy (Section 5.4). The second
and third squares exhibit this transform; the third square merely alters the
scale of temperature from T to kT, or from 1/T to B. The logarithm of
the grand canonical partition sum Z is the Massieu transform S¥.
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Mnemonic squares of the grand canonical potential.

A particularly useful identity which follows from these relationships is

U dBY) _ _( aan)ﬁ (17.27

B B

This relationship also follows directly from the probability interpretation
of the f, (see Problem 17.3-1). In carrying out the indicated differentiation
(after having calculated Z or 8¥) we must pair a factor 8 with every
factor p, and we then maintain all such Bu products constant as we
differentiate with respect to the remaining 8’s.

_ Before illustrating the application of the grand canonical formalism it is
Interesting to corroborate that it, too, can be obtained as a distribution of
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maximal disorder. We maximize the disorder (entropy)

= —kgy . fInf (17.28)
’
subject to the auxiliary conditions that
Yf=1 (17.29)
J
YfE=E (17.30)
J
and
YN =N (17.31)
J
Then
8S = —kyzy (Inf +1)8f, =0 (17.32)

7

Taking differentials of equations 17.29 to 17.31, multiplying by Lagrange
multipliers A, A,, and A;, and adding

Y(nf+1+X+XE +AN)=0 (17.33)

J

Each term then may be equated separately to zero (as in equation 17.15).
and

f=e A4 XH40E £ 05N, (17.34)

The Lagrange multipliers must now be evaluated by equations 17.29 to
17.31. Doing so identifies them in terms of B8 (= A,), Bu (= —A;), and
BY¥ (= —1 — A,), again establishing equation 17.23.

It should be noted that the mole number N, can be replaced by the
particle number N {where N N, X Avagadro s number). In that case p.
the Gibbs potenual per mole lS replaced by the Gibbs potential per
particle. Although a rational notation for the latter quantity would be fi.
we shall henceforth write p for either the Gibbs potential per mole or the
Gibbs potential per particle, permitting the distinction to be established b)
the context.

Example: Molecular Adsorption on a Surface
Consider a gas in contact with a solid surface. The molecules of the gas can
adsorb on specific sites on the surface, the sites being determined by the
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molecular structure of the surface. We assume, for simplicity, that the sites are
sparsely enough distributed over the surface that they do not directly interact.
There are N such sites, and each can adsorb zero, one, or two molecules. Each site
has an energy that we take as zero if the site is empty, as g, if the site is singly
occupied, and as &, if the site is doubly occupied. The energies ¢, and &, may be
either positive or negative; positive adsorption energies favor empty sites, and
negative adsorption energies favor adsorption. The surface is bathed by a gas of
temperature 7" and pressure P, and of sufficiently large mole number that it acts
as a reservoir with respect to energy and particle number. We seek the “fractional
coverage” of the surface, or the ratio of the number of adsorbed molecules to the
number of adsorption sites.

The solution of this problem by the grand canonical potential permits us to
focus our attention entirely on the surface sites. These sites can be populated by
both energy and particles, which play completely analogous roles in the for-
malism.

The gaseous phase which bathes the surface establishes the values of T and p,
being both a thermal and a particle reservoir. The given data may be (and
generally is) unsymmetric, specifying 7 and P of the gas rather than T and p. In
such a case p, the Gibbs potential per particle of the gas, must first be evaluated
from the fundamental equation of the gas, if known, or from integration of the
Gibbs—-Duhem relation if the equations of state are known. We assume that this
preliminary thermodynamic calculation has been carried out and that 7 and p of
the gas are specified. Thenceforth the analysis is completely symmetric between
energy and particles.

Because the surface sites do not interact, the grand partition sum factors

F=g"

The grand partition sum for a single site contains just three terms, correspond-
ing to the empty, the single occupied, and the doubly occupied states

g=1+ e*ﬁ(ﬁ*ﬂ-) + 6_3(1’2*2#)

Each of the three terms in £, divided by 2, is the probability of the
corresponding state. Thus the mean number of molecules adsorbed per site is

e -B(e —p) + 26*302*2#)

n =
£

and the mean energy per site is

€€ -Ble —p) + eze’B(Ez -u)

£ =
£

An alternative route to these latter two results, and to the general thermody-
namics of the system, is via calculation of the grand canonical potential, ¥ =



390 Entropy and Disorder: Generalized Canonical Formulations

- kgTlog Z (equation 17.25).
V= —NkBTlog (1 + e Bla-m 4 e‘ﬂ(tz"zﬂ))
The number N of adsorbed atoms on the N sites is obtained thermodynamically
by differentiation of ¥
v
o
and, of course, such a differentiation is equal to N with 7 as previously found.
Similarly the energy of the surface system is found by equation 17.27, and this

gives a result identical to N&.
The reader is strongly urged to do Problem 17.3-4.

= -

PROBLEMS

17.3-1. Calculate (dlog Z /98), directly from equation 17.26 and show that the
result is consistent with equation 17.27.

17.3-2. A system is contained in a cylinder with diathermal impermeable walls,
fitted with a freely moveable piston. The external temperature and pressure are
constant. Derive an appropriate canonical formalism for this system. Identify the
logarithm of the corresponding partition sum.

17.3-3. For the surface adsorption model of the preceding Example, investigate
the mean number of molecules adsorbed per site (#) in the limit T — 0, for all
combinations of signs and relative magnitudes of (g + py) and (&, + 2pg)
where p, is the value of the p of the gas at T = 0. Explain these results
heuristically.

17.3-4. Suppose the adsorption model to be augmented by assuming that two
adsorbed molecules on the same site interact in a vibrational mode of frequency
w. Thus the energy of an empty site is zero, the energy of a singly occupied site is
g;, and the energy of a doubly occupied site can take any of the values &, + n'hw,
with n’ = 0,1,2,... Calculate

a) The grand canonical partition sum

b) The grand canonical potential

¢) The mean occupation number, as computed directly from (a)

d) The mean occupation number, as computed directly from (b)

e) The probability that the system is in the state with n = 2 and n’ = 3

Answer: Denoting €, — p by ¢,

- B¢,
= Y - Bey _——e
b ¥ NkBTln(l ey eﬂ"w)

(1 — e Pre)e= B 4 20 Ben
(1 —e~Broy(1 + e Ber) + o Fen
(e) fas= e Pleat2he) /g

(c,d) n=
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17.3-5. Calculate the fundamental equation of the polymer model of Section 15.4
in a formalism canonical with respect to length and energy. Note that the
“weight” in Fig. 15.4 plays the role of a “tension reservoir.” Also recall Problem
17.3-2, the results of which may be helpful if the volume there is replaced by the
length as an extensive parameter (as if the two transverse dimensions of the
system are formally taken as constant).

17.3-6. A system contains N sites and N electrons. At a given site there is only
one accessible orbital state, but that orbital state can be occupied by zero, one, or
two electrons (of opposite spin). The site energy is zero if the site is either empty
or singly occupied, and it is ¢ if the site is doubly occupied. In addition there is an
externally applied magnetic field which acts only on the spin coordinates.

a) Calculate the chemical potential g as a function of the temperature and the
magnetic field.

b) Calculate the heat capacity of the system.

¢) Calculate the initial magnetic susceptibility of the system (i.e., the magnetic
susceptibility in small magnetic field).

17.3-7. Carbon monoxide molecules (CO) can be adsorbed at specific sites on a
solid surface. The oxygen atom of an adsorbed molecule is immobilized on the
adsorption site; the axis of the adsorbed molecule thereby is fixed perpendicular
to the surface so that the rotational degree of freedom of the adsorbed molecule is
suppressed. In addition the vibrational frequency of the molecule is altered, the
effective mass changing from the “reduced mass” memg/(me + mg) to me.
Only one molecule can be adsorbed at a given site. The binding energy of an
adsorbed molecule is E,. The surface is bathed by CO gas at temperature 7" and
pressure P. Calculate the fraction ( f) of occupied adsorption sites if the system is
in equilibrium. Assume the temperature to be of the order of one or two hundred
Kelvin, and assume the pressure to be sufficiently low that the CO vapor can be
regarded as an ideal diatomic gas.

Hint: Recall the magnitudes of characteristic rotational and vibrational frequen-
cies, as expressed in equivalent temperatures, in Section 16.3.






QUANTUM FLUIDS

18-1 QUANTUM PARTICLES: A “FERMION PRE-GAS MODEL”

At this point we might be tempted to test the grand canonical for-
malism on the ideal gas, not to obtain new results of course, but to
compare the analytic convenience and power of the various formalisms.
Remarkably, the grand canonical formalism proves to be extremely
uncongenial to the classical ideal gas model! The catastrophe of nonexten-
sivity that plagued the calculation in the canonical formalism becomes
even more awkward in the grand canonical formalism®.

As so often happens in physics, the formalism points the way to reality.
The awkwardness of the formalism is a signal that the mode! is unphysical
—that there are no classical particles in nature! There are only fermions
and bosons, two types of quantum mechanical particles. For these the
grand canonical formalism becomes extremely simple!

Fermions are the quantum analogues of the material particles of classi-
cal physics. Electrons, protons, neutrons, and a panoply of more esoteric
particles are fermions. The nineteenth century “law of impenetrability of
matter” is replaced by an antisymmetry condition on the quantum mecha-
nical wave function®. This condition implies (as the only consequence of
which we shall have need) that only a single fermion can occupy a given
orbital state.

Bosons are the quantum analogues of the “waves” of classical physics.
Photons, the quanta of light, are typical bosons. Just as waves can be
freely superposed classically, so an arbitrary number of bosons can occupy a
single orbital state. Furthermore, there exist bosons with zero rest
mass—such bosons, like classical waves, can be freely created or annihi-

"The root of the difficulty lies in the fact that the grand canonical formalism focusses not on the
Particles, but on the orbital states. There is then no natural way to count the states “as if the particles
had labels™ (later to be corrected by division by N?).

2 The wave function must be antisymmetric under interchange of two fermions, thereby interposing
4 node between the fermions and preventing two fermions (of the same spin state) from occupying the
Same spatial position.

202
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lated. The radiation of electromagnetic waves by a hot body is described
in quantum terminology as the creation and emission of photons.

The fundamental particles in nature possess intrinsic angular momen-
tum, or “spin.” The (immutable) magnitude of this intrinsic angular
momentum 1s necessarily a multiple of h/2; those particles with odd
multiples of #/2 are fermions, and those with even mulitiples of h/2 are
bosons.

The orientation of the intrinsic angular momentum is also quantized.
For fermions of “spin 1” (angular momentum = #/2) the angular
momentum can have either of two orientations (along any arbitrarily
designated axis). These two orientations are designated by up and down,
or by the two values m_ = } and m, = — } of the “magnetic quantum
number” m .

Finally, an orbital state of a quantum particle is labeled by the
quantum numbers of its spatial wave function and by the magnetic
quantum number m_ of its spin orientation. For a particle in a cubic
container the three spatial quantum numbers are the three components of
the wave vector k (recall equation 16.37), so that an orbital state is
completely labeled by k and m .

Preparatory to the application of the grand canonical formalism to
Fermi and Bose ideal gases, it is instructive to consider a simpler model
that exhibits the physics in greater clarity. This model has only three
energy levels, so that all summations over states can be exhibited ex-
plicitly. Except for this simplification, the analysis stands in strict step by
step correspondence with the analysis of quantum gases to be developed
in the following sections; hence the name pre-gas model.

We consider first the spin- 4 fermion pre-gas model. The model system
is such that only three spatial orbits are permitted; particles in these
spatial orbits have energies ¢,, ¢,, and &,. The model system is in contact
with a thermal reservoir and with a reservoir of spin- 3 Fermi particles,
the reservoirs impose fixed values of the temperature T and of the molar
Gibbs potential p (which, for fermion systems, is also known as the Ferm:
level).

Each spatial orbit corresponds to two orbital states, one of spin up and
one of spin down. There are therefore six orbital states, which can be
numbered (n,m ) with n =1,2,3and m, = — 5, + L.

The grand canonical partition sum factors with respect to the six orbital
states

Z =1, \pZiap22 1 p%21073 21228302 (18.1)

and each orbital state partition sum has two terms, corresponding to the
state being either empty or occupied. In the absence of a magnetic field,

Zym =14 BB (18.2)

n,
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Alternatively we can pair the two orbital states with the same n but
withm_ = 4+ 3

Zy1s2 21 = [1 + ¢ Ble #)]2 =14 2e Bt ») 4 o 2Ben-w)

(18.3)

This product can be interpreted in terms of the four states of given n: the
empty state, two singly occupied states, and one doubly occupied state.

The probability that the orbital state (n, m,) i1s empty is 1/z, ,,, and
the probability that it is occupied is
e Ble. 1) 1
o= = e a8

The fundamental equation follows directly from equations 18.1 to 18.3
e"ﬁ‘,’ = F= [1 + e—B(k‘x‘ﬂ-)]z[l + e ’B(Cz‘#)lz[l + e’B(EJ’#)]Z(lg.S)
We can find the mean number of particles in the system by differentia-

tion (N = —3¥/dp). Alternatively we can sum the probability of oc-
cupation f, , over all six orbital states

. 2 2 2
= Lfom= gyt mam Y TP
n.m e +1 e + e +

(18.6)

The entropy of the system can be obtained by differentiation of the
fundamental equation (S = —d¥ /dT). Alternatively it can be calculated
from the occupation probabilities (Problem 18.1-1).

The energy is found thermodynamically by difterentiation: U =
(dBY /3B)p, (equation 17.27). Alternatively, from the probabihty inter-
pretation of f,

n,m

2¢, 2e, 2¢,
+ +
eB(E;‘F) + 1 eﬂ(fz‘ ») +1 eﬁ(e; —p) +1

U = Z en,mfn,m =

n,m

(18.7)

If the system of interest is actually in contact with T and p reservoirs,
these results are in convenient form. But it may happen that the physical
system that we wish to describe is enclosed in nonpermeable walls that
impose constancy of the particle number N rather than of p. Nevertheless
the fundamental equation is an attribute of the thermodynamic system,
independent of boundary conditions, so that the preceding formalism re-
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FIGURE 181

The probability of occupation, by a fermion, of an orbital state of energy ¢ at temperature
T.

mains valid. However, the Fermi level u is not a known quantity. Instead
the value of u adjusts to a change in temperature in such a way as to
maintain N constant—a response governed by equation 18.6.

Unfortunately equation 18.6 does not lend itself easily to explicit
solution for p as a function of T and N. However the solution can be
obtained numerically or by series expansions in certain temperature
regions, as we shall soon see. It is instructive first to reconsider the
preceding analysis in more pictorial terms.

The occupation probability f of an orbital state of energy € (as given by
equation 18.4) is shown in Fig. 18.1. This occupation probability is more
general than the present model, of course. It applies to any orbital state of
a fermion. In the limit of zero temperature, any state of energy ¢ < p is
occupied and any state of energy £ > p is empty. As the temperature is
raised the states with energies slightly less than u become partially
depopulated, and the states with energies slightly greater than p become
populated. The range of energies within which this population transfer
occurs is of the order of 4k ;T (see Problems 18.1-4, 18.1-5, 18.1-6).

The probability of occupation of a state with energy equal to u is always
one half, and a plot of f(e,t) as a function of € (such as in Fig. 18.1) is
symmetric under tnversion through the point € = pu, f= 3 (see Problem
18.1-6).
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FIGURE 182

The Bose mean occupation number 7 of an orbital state of energy e, at given 7 and p.
The insert is schematic, for 7, < 7} and p, < p,.

With these pictorial insights we can explore the dependence of p on T
for the fermion pre-gas model. For definiteness suppose the system to
contain four fermions. Furthermore, suppose that two of the energy levels
coincide, with ¢ = ¢,, and with &; > ¢,. At T = 0 the four fermions fill
the four orbital states of energy ¢ (= ¢,), and the two states of energy e,
are empty. The Fermi level must lie somewhere between &, and ¢, but the
precise value of p must be found by considering the limiting value as
T — 0. For very low T

il

f

1 {e'ﬁ(f“’ fore>pand T =0 (18.8)

ePle B 41 |1+ Pl fore<pand T =0
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Thus, if € = &, < &, and N =4, equation 18.6 becomes, for 7 = 0

4= 4(1 — ePlamm) 4 2 Blom) (18.9)
or

+
p= 2 . = —;—kBTan S (18.10)

In this case p is midway between ¢ and &; at 7= 0, and p increases
linearly as 7 increases.

It is instructive to compare this result with another special case, in
which ¢ < ¢, = &;. If we were to have four fermions in the system the
Fermi level (p) would coincide with €, at 7 = 0. More interesting is the
case in which there are only two fermions. Then at 7 = 0 the Fermi level
lies between ¢ and ¢, (= £;). We proceed as previously. Equation 18.9 is
replaced, for 7 = 0, by

=2(1 — eBla M) 4 4o Blesm (18.11)

and

_£1+£3_l
) 2

kyTIn2 + --- (18.12)

In each of the cases the Fermi level moves away from the doubly
degenerate energy level. The reader should visualize this effect in the
pictorial terms of Fig. 18.1, recognizing the centrality of the inversion
symmetry of f relative to the point at ¢ = p.

From these several special cases it now should be clear that the general
principles that govern the temperature dependence of u (for a system of
constant N) are:

(a) The occupation probability departs from zero or unity over a region
of Ae = +2kgT around p.

(b) As T increases, the Fermi level p is “repelled” by high densities of
states within this region.

PROBLEMS

18.1-1. Obtain the mean number of particles in the fermion pre-gas model by
differentiating ¥, as given in equation 18.5. Show that the result agrees with N as
given in equation 18.6.

18.1-2. The entropy of a system is given by S = —k X f In f, where f is the
probability of a microstate of the system. Each microstate of the fermion pre-gas
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model is described by specifying the occupation of all six orbital states.

a) Show that there are 2% = 64 possible microstates of the model system, and
that there are therefore 64 terms in the expression for the entropy.

b) Show that this expression reduces to

S = _kB anm lnfnm

and that this equation contains only six terms. What special properties of the
model effect this drastic reduction?

18.1-3. Apply equation 17.27 for U to the fundamental equation of the fermion
pre-gas model, and show that this gives the same result for U as in equation 18.7.

18.1-4. Show that df/de = — B/4 at € = p. With this result show that f falls to
f=0.25 at approximately € = p + kT and that f rises to f = 0.75 at approxi-
mately € = p — k gT (check this result by Fig. 18.1). This rule of thumb gives a
qualitative and useful picture of the range of ¢ over which f changes rapidly.

18.1-5. Show that Fig. 17.2 [of f(e,T) as a function of €] is symmetric under
inversion through the point € = p, f = 3. That is, show that f(e, T') is subject to
the symmetry relation

f(e+ A8, T)=1~f(n—4,T)
or

f(e.T)=1-fQ2p—eT)

and explain why this equation expresses the symmetry alluded to.

18.1-6. Suppose f(e, T) is to be approximated as a function of & by three linear
regions, as follows. In the vicinity of € = u, f(e, p) is to be approximated by a
straight line going through the point (¢ = p, f = }) and having the correct slope
at that point. For low ¢, f(&, p) is to be taken as unity. And at high €, f(e, p) is to
be taken as zero.

What is the slope of the central straight line section? What is the “width,” in
energy units, of the central straight line section? Compare this result with the
“rule of thumb™ given in Problem 18.1-4

182 THE IDEAL FERMI FLUID

We turn our attention to the “ideal Fermi fluid,” a model system of
wide applicability and deep significance. The ideal Fermi fluid is a
Quantum analogue of the classical ideal gas; it is a system of fermion
Particles between which there are no (or negligibly small) interaction
forces.

Conceptually, the simplest ideal Fermi fluid is a collection of neutrons,
and such a fluid is realized in neutron stars and in the nucleus of heavy
atoms (as one component of the neutron-proton “two-component fluid”).
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Composite “particles,” such as atoms, behave as fermion particles if
they contain an odd number of fermion constituents. Thus helium-three
(®He) atoms (containing two protons, one neutron, and two electrons)
behave as fermions. Accordingly, a gas of *He atoms can be treated as an
“ideal Fermi fluid.” In contrast, *“He atoms, containing an additional
neutron, behave as bosons. The spectacular difference between the proper-
ties of *He and *He fluids at low temperatures, despite the fact that the
two types of atoms are chemically indistinguishable, is a striking con-
firmation of the statistical mechanics of these quantum fluids.

Electrons in a metal are another Fermi fluid of great interest, to which
we shall address our attention in Section 18.4.

We first consider the statistical mechanics of a general idea Fermi fluid.
The analysis will follow the pattern of the fermion pre-gas model of the
preceding section. Since the number of orbital states of the fluid is very
large, rather than being the mere six orbital states of the pre-gas model,
summations will be replaced by integrals. But otherwise the analyses stand
in strict step by step correspondence.

To calculate the fundamental relation of an ideal fermion fluid we
choose to consider it as being in interaction with a thermal and a particle
reservoir, of temperature 7 and electrochemical potential u. We stress
again that the particular system being studied in the laboratory may have
different boundary conditions—it may be closed, or it may be in di-
athermal contact only with a thermal reservoir, and so forth. But thermo-
dynamic fundamental relations do not refer to any particular boundary
condition, and we are free to choose any convenient boundary condition
that facilitates the calculation. We choose the boundary conditions ap-
propriate to the grand canonical formalism.

The orbital states available to the fermions are specified by the wave
vector k of the wave function (recall equation 16.43) and by the orienta-
tion of the spin (“up” or “down” for a spin- } fermion). The partition
sum factors over the possible orbital states

Z= [Tz, (18.13)

k, m,

where m can take two values, m, = 3 implying spin up and m, = — }
1mplymg spin down. Each orbital state can be either empty or smgly
occupied. The energy of an empty orbital state is zero, and the energy of
an occupied orbital state k, m is

P h%?

E =
km, — Im Zm

so that the partition sum of the orbital state k, m_ is

(independent of m,) (18.14)

i, = 1 + € PURIRE/Zm ) (18.15)

It is conventional to refer to the product z,,,-z, ,, as z,, the
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“partition sum of the mode k”

Z=T1 Zym, = I;[Zk.x/zzk.—l/z

k, m
- n[l 4 2o BURK 2m)—p) 4 e—ﬁ((zhzkzxszzp)] (18.16)
A

The three terms refer then to the totally empty mode, to the singly
occupied mode (with two possible spin orientations), and to the doubly
occupied mode (with one spin up and one down).
Each orbital state (k, m ) is independent, and the probability of occupa-
tion is
e BURK? /2m)—p) 1

Tiom = - = (18.17)
k, m, e BURRT /2my—p) 4 4

This function is shown in Fig. 18.1.

At this point we can proceed by either of two routes. The fundamental
algorithm instructs us to calculate the grand canonical potential ¥
(= —kgzT In Z), thereby obtaining a fundamental relation. Alternatively,
we can calculate all physical quantities of interest directly from equation
18.17. We shall first calculate the fundamental relation and then return to
explore the (parallel) information available from knowledge of the
“orbital-state distribution function” f, . .

The grand canonical potential is ’

V= —kyTY 2z, = —kyTY ln[l + e*B«"“Z/Z"')"#)]Z (18.18)
k k

The density of orbital states (of a single spin orientation) is D(e) de,
which has been calculated in Equation 16.47.

v, ,dk V (2m\*?
D(e)d£=-2—ﬂ2-kzggd£=z;(?) e'?de (18.19)

Inserting a factor of 2 to account for the two possible spin orientations, ¥
can then be written as

¥ = —2,T[ In(1+ e P P)D(e) de
0

VvV [2m\¥? o
= —kBTF(—hT) f el/zln(l + eiB(E_p))dE (1820)
T 0

Unfortunately the integral cannot be evaluated in closed form. Quantities
of direct physical interest, obtained by differentiation of ¥, must also be
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expressed in terms of integrals. Such quantities can be calculated to any
desired accuracy by numerical quadrature or by various approximation
schemes. In principle the statistical mechanical phase of the problem is
completed with equation 18.20.

It is of interest to calculate the number of particles N in the gas. By
differentiation of ¥

N -
N= —B_u_zfo D0 de

V [ 2m\/? o £/2
_F(ﬁ) fomdf (18.21)

The first form of this equation reveals most clearly that it is identical to a
summation of occupation probabilities over all states. Similarly the energy
obtained by differentiation is identical to a summation of ef over all states

v= ), = 2 e

V {2m 37 372
_—2?(?) fomdf (18.22)

A flow-chart for the statistical mechanics of quantum fluids is shown in
Table 18.1. Bose fluids are included, aithough we shall consider them
explicitly only in later sections. The analysis differs only in several
changes in sign, as will emerge in Section 18.5.

Before exploring these general results in specific detail it 1s wise to
corroborate that for high temperature they do reduce to the classical ideal
gas, and to explore the criterion that separates the classical from the
quantum mechanical regime.

PROBLEMS

18.2-1. Prove equations ¢, g, h, i, and j of Table 18.1 (for fermions only).

18-3 THE CLASSICAL LIMIT AND THE QUANTUM CRITERION

The hallmark of the quantum regime is that a fermion particle is not
free to occupy any arbitrarily chosen orbital state, for some states may
already be filled. However at low density or high temperature the prob-
ability of occupation of each orbital state is small, thereby minimizing the
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TABLE 18.1

Statistical Mechanics of Quantum Fluids. The upper sign refers to fermions and the lower
to bosons.

(a) The partition sum factors. The number of spin orientations is g, = 28 + 1 (g, = 1 for
bosons of spin zero; g, = 2 for fermions of spin 1, etc.)

(b) z, is the partition sum of a single orbital state (of definite k and m,).

(€) fi. . is the mean occupation number (or “occupation probability”) of the orbital state
k, m,.

(d, e, and f) D(e) is the density of orbital states of a single spin orientation.

(g) ¥(7,p) is a fundamental relation.

(h, i, and j) P = P(U,V) is an equation of state, common to both fermion and bosons.

2= T[]z, =Tl (a)
h,m, k
= [1 + e_ﬁ(‘k_l‘)]il (b)
1
fk‘ m, = eBlar) 4 (C)
—BY=mIZ=gY Inz, = +g,) In[l + e Al "M] (d)
k k
= +gof In[l+e FP]D(e) de (o)
0
3/2
D(e) = Vz(z—’:) & (0
(2n)"\ A

Integrating by parts

% 32 3,2
V= — 2 & (Z_m) fw —_— e (Fundamental Equation)  (g)
0

3 (2,”)2 h2 P11 1
2w 2
Note = - 5/0 ef (¢) gD(e) de = — T U (v)
Also ¥ = — PV (for simple systems) ()
P= % LV] (equation of state) )

effect of the fermion prohibition against multiple occupancy. All gases
become classical at low density or high temperature, in which conditions
relatively few particles are distributed over many states.

The probability of occupancy of a state of energy & is [e~#) +1]71,
and this is small (for all €) if e~ #* is large, or if the fugacity e®* is small:

ePt <1 (classical regime) (18.23)
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In this classical regime the occupation probability reduces to
frm, = eMe (18.24)

In terms of Fig. 18.1, the classical region corresponds to the recession of
the Fermi level p to such large negative values that all physical orbitals lie
on the “tail” of the f(¢, T) curve.

We first corroborate that the occupation probability of equation 18.24
does reproduce classical results, and we then explore the physical condi-
tion that leads to a small fugacity.

The number of particles N is expressed by equation 18.21 which, for
small fugacity, becomes

_ vV (2m\*¥? %0 vV

N = 8o 5 (-—’?) eﬂ“f e Bl de = &la——eﬁ“ (18.25)
Q#) \ A 0 N

where A, (a quantity to be given a physical interpretation momentarily) is

defined by

h

A= ——————
T VZWMkBT

(18.26)

and where g, = 2S + 1 is the number of permissible spin orientations

(equal to two for the spin 3 case). Similarly the energy, as expressed in

equation 17.62, becomes

2V (Zm

32 I~ V
= Rz )2 -h—z) eﬂ“f e P de = —B—kBT%\O:‘—eﬁ" (18.27)
T o]

2 T
Dividing
U= 3}Nk,T (18.28)

This is the well-known equation of state of the classical ideal gas. In
addition the individual equations 18.25 and 18.27 can be corroborated as
valid for the classical ideal gas.

With the reassurance that the Fermi gas does behave appropriately in
the classical limit, we may inquire as to the criterion that divides the
quantum and classical regimes. It follows from our discussion that this
division occurs when the fugacity is of the order of unity

efr =1 (classical -quantum boundary) (18.29)
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or, from equation 18.25

| 4
)\37/( &N—) =1  (classical-quantum boundary) (18.30)

This “quantum criterion” acquires a revealing pictorial interpretation
when we explore the significance of A,. In fact A, is the quantum
mechanical wave length of a particle with kinetic energy k ;7 (see Problem
18.3-2), whence A, is known as the “thermal wave length.” From equa-
tion 18.25 we see that in the classical limit the fugacity is the ratio of the
“thermal volume™ N to the volume per particle (of a single spin orien-
tation) V/(N/g,). The system is in the quantum regime if the thermal
volume is larger than the actual volume per particle (of a single spin
orientation) either by virtue of large N or by virtue of low T (and conse-
quently of large \ ;).

PROBLEMS

18.3-1. Calculate the definite integrals appearing in equations 18.25 and 18.26 by
letting € = x? and noting that each of the resulting integrals is the derivative
(with respect to B) of a simpler integral.

18.3-2. Validate the interpretation of A, as the “thermal wavelength” by identi-
fying the wavelength with the momentum p by the quantum mechanical defini-
tion p = h/A, and by comparing the energy p2/2m to kgT.

18-4 THE STRONG QUANTUM REGIME:
ELECTRONS IN A METAL

The electrons in a metal would appear, at first thought, to be a very
poor example of an ideal Fermi fluid, for the charges on the electrons
ostensibly imply strong interparticle forces. However the background
positive charges of the fixed ions tend to neutralize the negative charges of
the electrons, at least on the average. And the very long range of the
Coulomb force ensures that the average effect is the dominant effect, for
the potential at any point is the resultant of contributions from enor-
mously many electrons and positive ions—some nearby and many further
removed in space. All of this can be made quantitative, and the accuracy
of the approximation can be estimated and controlled by the methodology
of solid state physics. We proceed by simply accepting the model of
electrons in a metal as an ideal fermion gas, on the basis of the slender
plausibility of these remarks.
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An estimate of the Fermi level (to be made shortly) will reveal that for
all reasonable temperatures p > k,T. Thus electrons in a metal are an
example of an ideal Fermi gas in the strong quantum regime. The analysis
of this section is simply an examination of the Fermi gas in this strong
quantum regime, with the allusion to electrons in a metal only to provide
a physical context for the more general discussion.

Consider first the state of the electrons at zero temperature, and denote
the value of the Fermi level at T = 0 as p, (the “Fermi energy”). The
occupation probability f is unity for € < p, and is zero for € > p, so that
(from equation 18.21)

. 2mY ko (2m)3/2V
N= 72k’ -[()El/2d£= 372k’ i (18.31)
or
B2 NACE
P = ﬁ(3w 7) (18.32)

The number of conduction electrons per unit volume in metals is of the
order of 102 to 10 electrons/cm® (corresponding to one or two elec-
trons per ion and an interionic distance of =5 A). Consequently for
electrons in metals the Fermi energy p, (or the “Fermi temperature”
to/kg) 1s of the magnitude

o 10 Kt010°K (18.33)
kB

For other previously cited Fermi fluids the Fermi temperature may be
even higher— of the order of 10° K for the electrons in white dwarf stars
or 10!? K for the nucleons in heavy atomic nuclei and in neutron stars.
The enormously high Fermi temperature implies that the energy of the
electron gas is correspondingly high. The energy at zero temperature is

wlw

U(T = 0) = 2 "eD(e) de = % N, (18.34)

Thus the energy per particle is 3p,, or approximately 10* K in equivalent
temperature units.

As the temperature rises, the Fermi level decreases (being “repelled” by
the higher density of states at high energy, as we observed in the “fetmion
pre-gas model” of Section 18.1). Furthermore some electrons are “pro-
moted” from orbitals below p to orbitals above p, increasing the energy of
the system. To explore these effects quantitatively it is convenient to
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mvoke a general result for integrals of the form [¢(e)f(¢, T) de, where
¢(¢) i1s an arbitrary function and f(eg, T) 1s the Fermi occupation prob-
ability. This integral can be expanded in a power series in the temperature
by invoking the step-function shape of f(e, T) at low temperatures
(Problem 18.4-2), giving

f e)feT)de—fcb(s)de-P 6 (k,T)Y¢'(1)

+7L4(k TY o (p) + - - (18.35)
360 8t ) @K :

where ¢’ and ¢ "’ are the first and third derivatives of ¢ with respect to e,
evaluated at ¢ = p. It should be noted that p is the temperature depen-
dent Fermi level (not the zero-temperature Fermi energy p,).

We first find the dependence of the Fermi energy on the temperature.
The Fermi energy is determined by equation 18.21

- © V [2m\"/? (o
N = 2[0 f(e, T)D(e) de = 5;2—(—’12—) fo &/2f(e,T) de
(18.36)
Then taking ¢(&) = ¢/? in equation 18.35

-V (2m\"? 72k T\?
N=§;r_2(—h—2—) y./21+—8—‘( " ) + .- (18.37)

At zero temperature we recover equation (18.32) for p,. To carry the
solution to second order in T 1t is sufficient to replace p by p, in the
second-order term, whence

u(T) =y.0[1 - ;’—;(k::) + } (18.38)

This result corroborates our expectation that the Fermi level decreases
with increasing temperature. But for a typical value of p/k, (on the
order of 10* K) the Fermi level at room temperature is decreased by only
around 0.1% from its zero-temperature value!
The energy is given in an identical fashion, merely replacing &'/? by
?, giving

Vo (2m\** 5 [ kgT\?
= 2L _fm /2 2.2 %8
U 5772(’?2) p Y + 877( p ) + (18.39)
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Comparison with equation 18.32 corroborates that at 7 = 0 we recover

the relationship U = 2Ny, (equation 18.34). This suggests dividing equa-
tion 18.39 by equation 18.37, giving

- kpT\?
U= %Np[l + %wl(%) + ] (18.40)

Replacing p(7T) by equation 18.38 we finally find

T PR Y LY A
U= 5Np0[1 + g ( |t (18.41)
and the heat capacity is
- 2 k,T
C= %NkB(% 52+ 0(7?) (18.42)

The prefactor 2Nk is the classical result, and the factor in parentheses is
the “quantum correction factor” due to the quantum properties of the
fermions. The quantum correction factor is of the order of §, at room
temperature (for p,/kp = 10* K). This drastic reduction of the heat
capacity from its classically expected value is in excellent agreement with
experiment for essentially all metals.

In order to compare the observed heat capacity of metals with theory it
must be recalled (Section 16.6) that the lattice vibrations also contribute a
term proportional to T3, in addition to the linear and cubic terms
contributed by the electrons

C=AT + BT*+ --- (18.43)

The coefficient A4 is equal to the coefficient in equation 18.42 whereas B
arises both from the cubic terms in equation 18.42 and (predominately)
from the coefficient in the Debye theory. It is conventional to plot
experimental data in the form C/T versus T2, so that the coefficient 4 is
obtained as the T = 0 intercept and the coefficient B is the slope of the
straight line. In fact such plots of experimental data do give excellent
straight lines, with values of 4 and B in excellent agreement with
equation 18.42 and the Debye theory (16.51).

The heat capacity (18 42) can be understood semiquantitatively and
intuitively. As the temperature rises from 7T = 0, electrons are “ promoted”
from energies just below p, to energies just above p,. This population
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transfer occurs primarily within a range of energies of the order of 2k, T
(recall Fig. 18.1 and Problem 18.1-7). The number of electrons so pro-
moted is then of the order of D(p )2k T, and each increases its energy by
roughly k7. Thus the increase in energy is of the order of

U= Uy=2D(po)(kpT)’ (18.44)
But D(p,) = 3N/2p,, so that
AN(k,T)’
U-U, = 3N(ksT) (18.45)
Bo
and
5 k,T
C = gNkB(Z 5 ) (18.46)
2 Ko

This rough estimate is quite close to the quantitative result calculated in
equation 18.42, which merely substitutes #2/3 for the factor 2 in the
parentheses of equation 18.46.

PROBLEMS

18.4-1. Show that equation 18.32 can be interpreted as p, = h*k;/2m where k,
is the radius of the sphere in k-space such that one octant contains 2N particles
(recall Section 16.6). Why 2 N rather than N particles?

18.4-2. Derive equation 18.35 by the following sequence of operations:

a) Denoting the integral in equation 18.35 by /I, first integrate by parts and let
® = [fp(e) de’. Then expanding @(¢) in a power series in (¢ — p) to third order,
show that

with

b) Show that only an exponentially small error is made by taking the lower limit
of integration as — oo, and that then all terms with m odd vanish.

¢) Evaluate the first two nonvanishing terms and show that these agree with
equation 18.35.
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18-5 THE IDEAL BOSE FLUID

The formalism for the ideal Bose fluid bears a strikingly close similarity
to that for the ideal Fermi fluid. As was anticipated in Table 18.1, and as
we shall validate here, the formalisms differ only in several changes in
sign. But the consequences are dramatically different. Whereas fermions at
low temperatures tend to “saturate” orbital states up to some specific
Fermi energy, bosons all tend to “condense” into the single lowest orbital
state. This condensation happens precipitously, at (and below) a sharply
defined “condensation temperature.” The resultant phase transition leads
to superfluidity in “*He (a phenomenon not seen in *He, which is a
fermion fluid) and it leads to superconductivity in lead and in various
other metals.

We consider an ideal Bose fluid, composed of particles of integral spin.
The number of spin orientations is then g, = 2§ + 1, where S is the
magnitude of the spin.

The possible orbital states of the bosons in the flud are labeled by k
and m_, precisely as in the fermion case, and again the grand canonical
partition sum factors with respect to the orbital states (as in line a of
Table 18.1).

The partition sum of a single orbital state is independent of m_, and is,
for each value of m

=1+e Ble—p) + e*/"(zﬁ 2#)_,_ e”ﬁ(3€t 3u) + -

3

k= 2k m

1
- (18.47)

This validates line (b) of Table 18.1.
The average number of bosons in the orbital state k. m is

Fh = [e Bles 1) 4 9o B2e 20) 4 3, BOu 3m) 4 "']/Zu,m(

9
= ka3, Iz, (18.48)

which is just the analogue of the relation SN = d/duln Z, but is now
applied to a single orbital state. Carrying out the differentiation we find

1

ePla—m (1849)

ﬁk,m_, = fl(,m3 =

and this is the result listed in line ¢ of Table 18.1. It is important to note
that, in contrast to the fermion case, f, ,, is not necessarily less than (or
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equal to) unity. The quantrty Jx.m, 18 frequently referred to asan*® occupa-
tion probabrlrty, but it is more properly identified as a “mean occupation
number” n, m,

A moment’s reﬂectron on the form of n, , reveals that for a gas of
material Bose particles the molar Gibbs function must be negative. For if
p were positive the orbital state with €, equal to p would have an infinite
occupation number! We thus conclude that for a gas with a bounded
number of particles (and with a choice of energy scale in which the lowest
energy orbital has zero energy) the molar Gibbs potential p is always
negative.

The form of 7 as a function of B(e — p) is shown in Fig. 18.2. The
occupation number falls from an infinite value at € = p to unity at

= p + 0.693k,T. In the insert of Fig. 18.2, the orbital occupation
number is shown schematically as a function of & for two different
temperatures (7, > T,) and for two choices of p.

If the system of interest is in contact with a particle reservoir, so that u
is constant, then the curve of n(e, T,) in the insert should be shifted to the
right. The number of particles in such a system increases with tempera-
ture. If the system of interest is maintained at constant particle number,
the integral of n(e, T)D(¢) is conserved. As is evident from the figure, the
molar Gibbs potential p then must decrease with increasing temperature
(Just at it does in the Fermi gas).

The grand canonical potential W is the logarithm of £ which, in turn, is
the product of the z, ,, given in equation 18.47. Thus, as in Table 18.1
(lines d to g),

BY = go.[)w In[1 — e Ae=m] D(e) de (18.50)

or, integrating by parts

Vv 3/2 oo 3,2
v= -2 % 2(2_’") f — e (18.51)
3 (2,”) h? o efler)

and again the mechanical equation of state is P = 2U/3V (lines i and j of
Table 18.1).

For a system of particles maintained at constant p by a particle
reservoir the thermodynamics follows in a stralghtforward fashion. But for
a system at constant N the apparently innocuous formalism conceals
some startling and dramatic consequences, with no analogues in either
fermion or classical systems. As a preliminary to such considerations it is
useful to turn our attention to systems in which the particle number is
physically nonconserved.
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18-6 NONCONSERVED IDEAL BOSON FLUIDS:
ELECTROMAGNETIC RADIATION REVISITED

As we observed in Section 18.1, bosons are the quantum analogues of
the “waves” of classical physics. A residue of this classical significance is
that, unlike fermions, bosons need not be conserved. In some cases, asin a
fluid of *He atoms, the boson particles are conserved; in other cases, as in
a “photon gas” (recall Section 3.6), the bosons are not conserved. There
exist processes, for instance, in which two photons interact through a
nonlinear coupling to produce three photons. How then are we to adapt
the formalism of the ideal Bose fluid to this possibility of nonconserva-
tion?

We recall the reasoning in Sections 17.2 and 17.3, leading to the grand
canonical formalism. We there maximized the disorder subject to auxiliary
constraints on the energy (equation 17.30) and on the number of particles
(equation 17.31). These constraints introduced Lagrange parameters X\,
and A, (equation 17.33), which were then physically identified as A, = 8
and as A, = Bu. Treatment of nonconserved particles simply requires that
we omit the constraint equation on particle number. Omission of the
parameter A, is equivalent to taking A; = 0, or to taking p = 0. We thus
arrive at the conclusion that the molar Gibbs potential of a nonconserved
Bose gas is zero.

For p =0 the grand canonical formalism becomes identical to the
canonical formalism. Hence the grand canonical analysis of the photon
gas simply reiterates the canonical treatment of electromagnetic radiation
as developed in Section 16.7. The reader should trace this parallelism
through in step by step detail. referring to Table 18.1 and Section 16.7 (see
also Problem 18.6-2).

It is instructive to reflect on the different viewpoints taken in Section
16.7 and in this section. In the previous analysis our focus was on the
normal modes of the electromagnetic field, and this led us to the canonical
formalism. In this section our focus shifted to the quanta of the field, or
the photons, for which the grand canonical formalism is the more natural.
But the nonconservation of the particles requires p to vanish and thereby
achieves exact equivalence between the two formalisms. Only the language
changes!

The number of photons of energy ¢ is (e#¢ — 1) 7!, where the permitted
energies are given by

€= hw=hc~ =+ (18.52)

Here ¢ is the velocity of light and A is the quantum mechanical wave-
length of the photon (or the wavelength of the normal mode, in the mode
language of Section 16.7). The population of bosons of infinitely long
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wavelength is unbounded®. The energy of these long wavelength photons
vanishes, so that no divergence of the energy is associated with the formal
divergence of the boson number,

To recapitulate, electromagnetic radiation can be conceptualized either
in terms of the normal modes or in terms of the quanta of excitation of
these modes. The former view leads to a canonical formalism. The latter
leads to the concept of a nonconserved Bose gas, to the conclusion that
the molar Gibbs potential of the gas is zero, and to an unbounded
population of (unobservable) zero energy bosons in the lowest orbital
state.

All of this might appear to be highly contrived and formally baroque
were it not to have a direct analogy in conserved boson systems, giving
rise to such startling physical effects as superfluidity in *He and supercon-
ductivity in metals, to which we now turn.

PROBLEMS

18.6-1. Calculate the number of photons in the lowest orbital state in a cubic
vessel of volume 1 m?® at a temperature of 300 K. What is the total energy of these
photons? What is the number of photons in a single orbital state with a
wavelength of 5000 A, and what is the total energy of these photons?

18.6-2.

(a) In applying the grand canonical formalism to the photon gas can we use the
density of orbital states function D(e) as in equation (f) of Table 18.1? Explain.
(b) Denoting the velocity of light by ¢, show that writing ¢ = (wavelength/period)
implies @ = ck. From this relation and from Section 16.5 find the density of
orbital states D(e).

(¢) Show that the grand canonical analysis of the photon gas corresponds
precisely with the theory given in Section 16.7.

18-7 BOSE CONDENSATION

Having the interlude of Section 18.6 to provide perspective, we focus on
a system of conserved particles enclosed in impermeable walls. Then, as
we saw in Fig. 18.2 and the related discussion, the molar Gibbs potential
i must increase as the temperature decreases (just as in the fermion case).
Assuming the bosons to be material particles of which the kinetic
energy is € = p2/2m, the density of orbital states is proportional to &/?

3Of course such infimite-wavelength photons can be accommodated only in a infinitely large
container, but the number of photons can be increased beyond any preassigned bound in a finite
container of sufficiently large size
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(equation f of Table 18.1) and the number of particles is

o gV [2m\P e g2
N, = z(m) [ g de (18.53)
(27) o £ leF -1

where ¢ is the fugacity

£ = o (18.54)

and where the subscript e is affixed to N, for reasons that will become

understandable only later; for the moment N is simply another notation
for N. The molar Glbbs potential is always negative (for conserved
particles) so that the fugacity lies between zero and unity.

0<é¢<1 (18.55)

This observation encourages us to expand the integral in equation 18.53 in
powers of the fugacity, giving

Fyz(&) (18.56)

"__

gV [2m 32 ['n'_ 32 _
T

where A, is the *“thermal wavelength” (equation 18.26) and

}\3

+
ri/? \/' 33

At high temperature the fugacity is small and F; ,,(£) can be replaced by £
(its leading term), in which case equation 18. 5/6 reduces to its classical
form 18.25.

Similarly

= )of & L8 (18.57)

_ _§‘£_2_ _2—’;1 32 3\/_ Tk, T)S/ZF5/2(§) k T803 Fm(é)
(2m)?\ A A

(18.58)

where

2 3
F;,(§) = E 5/2 = 432_ + 9%/3‘ + .- (18.59)



Bose Condensation 415

37 T T 1 I T I

2612

Fyo@="2 a8 / /134
]

B /% Fop@®= 30— 2% ]

§kBTKOV
/ ‘
o 1 1 1 1 1 1 | ! 1
0 0.1 0.2 03 04 05 06 07 08 09 10
& —>
FIGURE 183

The functions F, ,(§) and K ,(§) that characterize the particle number and the energy
(equations 18.57-18.60) of a gas of conserved bosons.

Again the equation for U reduces to its classical form 18.27 if F; ,(§) is
replaced by £, the leading term in the series.
Dividing 18.58 by 18.56

. _F
v =ik, rie)

277N R, (8)

(18.60)

so that the ratio F /2(5 )/ F; ,,(§) measures the deviation from the classical
equation of state.

For both F3/2(£) and F; ,(£) all the coefficients in their defining series
are positive, so that both functions are monotonically increasing functions
of §, as shown in Fig. 18.3. Each function has a slope of unity at £ = 0. At
£ = 1 the functions F;,, and F;,, have the value 2.612 and 1.34, respec-
tively.

The two functions satisfy the relation

B = £RA0) (18.61)

from which it follows that the slope of F; ,(£) at £ = 1 is equal to F; (1),
or 2.612. The slope of F, ,(§) at § = 1 is infinite (Problem 18.7-2).
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The formal procedure in analyzing a given gas is now explicit. Let us
suppose that N,, V, and T are known. Then F; ,(§) = NA}/g.V is
known, and the fugacity £ can be determined directly from Fig. 18.3.
Given the fugacity all thermodynamic functions are determined in the
grand canonical formalism. The energy, for example, can be evaluated by
Fig. 18.3 and equations 18.58 or 18.60.

All of the previous discussion seems to be reasonable and straightfor-
ward until one suddenly recognizes that given values of N,, ¥, and T may
result in the quantity N X%, /g, being greater than 2.612. Then Fig. 18.3
permits no solution for the fugacity £! The analysis fails in this “extreme
quantum limit”! )

A moment’s reflection reveals the source of the problem. As N\/g V
(= F,,,(£)) approaches 2.612 the fugacity approaches unity, or the molar
Gibbs potential p approaches zero. But we have noted earlier that at
p = 0 the occupation number n of the orbital state of zero energy
diverges. This pathological behavior of the ground-state orbital was lost in
the transition from a sum over orbital states to an integral (weighted by
the density of orbital states that vanishes at p = 0). This formalism is
acceptable for g,V /N,A} < 2.612, but if this quantity is greater than
2.612 we must treat the replacement of a sum over states by an integral
with greater care and delicacy.

We postpone briefly the corrections to the analysis that are required if
goV/N A > 2.612, to first evaluate the temperature at which the failure
of the “integral analysis” (as opposed to the “summation analysis™)
occurs. Setting gV /N, Xy = 2.612 we find

C2em*( 1 N\
om (2612 gV

kT

(4

(18.62)

where T, is called the Bose condensation temperature. For temperature
greater than T, the “integral analysis” is valid. At and below T, a “Bose
condensation” occurs, associated with an anomalous population of the
orbital ground state. :

If the atomic mass m and the observed number density N, /g V' of
liquified “He are inserted in equation 18.62 one finds a condensation
temperature reasonably close (= 3 K) to the temperature (2.17 K) at
which superfluidity and other nonclassical effects occur. This agreement is
reasonable in light of the gross approximation involved in treating “He
liquid as an ideal noninteracting gas.

To explore the population of the orbital ground state, and of other
low-lying excited orbital states, we récall that the total number of
particles is

Ne= 2 ﬁ(ek)=gu):[€’3“" " — 1]71 (18.63)

k,m,
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and the allowed values of ¢, are

p?  R? ( 111 ) h?
= + ==+ | =
XN N gmp¥3

(ni +n?+ n?)

(18.64)

where we have again invoked the quantum mechanical relationship be-
tween momentum and wavelength (p = h/\), assumed a cubic “box” of
length V'3, and required that an integral number of half wavelengths
“fit” along each axis (3n,A, = V!/3 etc). The energies of the discrete
quantum mechanical states are precisely those from which we inferred the
density of orbital states function in Section 16.5. The ground state energy
is that in which n, =n,=n, =1 (and we normally choose the energy
scale relative to this state). The first excited state has two of the n’s equal
to unity and one equal to two—this state is three-fold degenerate. The
difference in energy is €5, — €,, = 6h?/mV*/>. For a container of volume
1 liter (¥ =10 °m’), and with m taken as the atomic mass of “He
(= 6.6 X 10~ Kg), the energy of the first excited state (relative to the
ground state energy is)

€11 — E11q = 6hY/mV*? =25x%x10 ¥]
or

(egy — €111)/kp =2 X 10 ¥ K (18.65)

Thus the discrete states are indeed very closely spaced in energy—far
closer than k7T at any reasonable temperature. We might well have felt
confident in replacing the sum by an integral!

But let us examine more closely the population of each state as the
chemical potential approaches ¢,,, from below. In particular we inquire as
to the value of p for which the population of the orbital ground state
alone is comparable to the entire number of particles in the gas. Let n, be
the number of particles in the ground state orbital, so that [exp (e, — p)
~ 11 ' = ng. Then if ny>> 1 it follows that B(e,; — p) << 1 and we
can expand the exponential to first order, so that n, ~ kzT/(e;,, — p).
Thus the population of the orbital ground state becomes comparable to
the entge number of particles in the system (say n, = 10%) if B(e;;, — 1)
~10-%

What, then, is the population of the first excited orbital state? The
energy difference (e, — p)/kg is =10 2! K (for T = 10 K) whereas
(€317 — €111)/kg = 1071 K (equation 18.65). It follows that n,,,/n, =
107, The population of higher states continues to fall extremely rapidly.
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As the temperature decreases in a Bose gas the molar Gibbs potential
increases and approaches the energy of the ground state orbital. The
population of the ground state orbital increases, becoming a nonnegligible
fraction of the total number of bosons in the gas at the critical tempera-
ture 7,. The occupation number of any individual other state is relatively
negligible.

As the temperature decreases further p cannot approach closer to
the ground state energy than B(p — g,,) = 1/N = 10 # (at which value
the ground state alone would host all N particles in the gas!). Hence the
ground state shields all other states from too close an approach of y, and
each other state individually can host only a relatively small number of
particles. Together, of course, the remaining states host all the particles
not in the ground state.

With this understanding of the mechanism of the Bose condensation it
is a simple matter to correct the analysis. All orbital states other than the
ground state are adequately represented by the integral over the density of
orbital states function. The ground state energy must be separately and
explicitly listed in the sum over states.

The number of particles is, then

N=n,+N, (18.66)
where n, is the number of particles in the ground state orbital
= = Br -1 £
n, = (e + 1) = m (1867)

and where N, is the number of particles in “excited states” (i.e., in all
orbital states other than the ground orbital state). The number of “excited
particles” N, is as given in equation 18.54.

The expression 18.59 for the energy remains correct, since the popula-
tion of the zero energy orbitals makes no contribution to the energy. Thus
the entire correction to the theory consists of the reinterpretation of Ne as the
number of excited particles, and the adjuncture of the two additional
equations 18.67 and 18.68.

Equivalently, we can simply add the ground state term to our previous
expression for the grand canonical potential (equation 18.51), giving the
fundamental relation

V
¥ =gkpgTIn(l — §) — gOkBTA—JTFS/z(g) (18.68)

where, of course, £ is the fugacity ef*.

With equations 18.56 to 18.60 and 18.66 to 18.67, we can explore a
variety of observable properties of Bose fluids. These properties ar€
summarized in Table 18.2 and illustrated schematically in Fig. 18.4.
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TABLE 18.2
Properties of the Ideal Bose Fluid

419

Fundamental equation
¥ =kyTln(l ~ £) — kyT(V/N) F ,(£)

Condensation temperature

IR AN
B m 612 g,V
Condensed and excited bosons
. _ 3 .
N=n,+N, "0_1~£’ ezﬁﬁ/z(g)

A T\?
T<T- nO/N—-1~N,/N=(l—7)
Energy
- _FK,¢
T>T: Us=2RkyT 52(8)
2 F,(8)
_ F. 1 3/2 - 5/2
T<T: Us=32fk,T 2 )(1) =0.76Nk57:(—r—)
2 B\ T T.

Heat capacity ¢, (per particle)

3 5 F5p(8) 3 Fp(f)
T>T: =ckgl = -z
T %) "[2 B8 2F,(0)
7\?

T<T: U=19k8(?)

Entropy

5 Vv -
T>T: S=xkg—Fp(8)— Nkglng
2 ’\31

5,V Vv
T<T: S=zZkpg—F,(l)=335ks—
2 )‘3T ’\BT
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FIGURE 18 4
Properties of an ideal Bose fluid. The energy and heat capacity for 7 > T, are schematic

First, consider the temperature dependence of the number of bosons 1n
the orbital ground state. For T < T, the maximum number of bosons that
can be accommodated in excited states is

gV
M= 5}?—3-— (1), T<T, (18.69)
T

=5 F (1) (18.70)
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where A is the value of A, at T = T,. Dividing

N“ A‘ 3 T 3/2
ﬁ=($\—) 2(7) (18.71)
T c
The number of particles in the ground state is then
N 32
%=1—1—V‘1=1—(~TZ) (18.72)

This dependence is sketched in Fig. 18.4.

The energy of the system is also of great interest as its derivative is the
heat capacity, an easily observable quantity. For T > T, the energy is
given by equation 18.60. For T < T, equation 18.58 can be written in the
form

3 3 N,
= 36,8k y——
U k 5/2( ) sz F3/2(l)

2 )\'l E/Z(l)

)3/2

5/2
) . T<T (18.73)

= %NkBT

Fs/z(l) N, 3 -
- = =Nk T(O.Sl)(
Fa/z(l) N 2 g

=N

= 0.761\7kBT((

For T > T, the energy is given by equation 18.60, or U
= 3Nk T[F5/2(£)/F3/2(£)] so that the energy is always less than its
classical value. The fugacity is determined as a function of T by Fig. 18.2.

Calculation of the molar heat capacity for 7 < T, follows directly by
differentiation of equation 18.73

3 32
¢, = 1.9N1<B( ) , T < T, (18.74)

N

It is of particular interest that ¢, = 1.9Nk, at T = T, a value well above
the classical value 1.5Nk which is approached in the classical regime at
high temperature.

Calculation of the heat capacity at 7 > 7, requires differentiation of
€quation 18.60 at constant N, and elimination of (d§/dT) ;. by equatlon
18.56. The results are indicated schematically in Fig. 18.4 and given in
Table 18.2.

The unique cusp in the heat capacity at 7= T is a signature of the
Bose condensation. A strikingly similar discontinuity is observed in “He
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fluids; its detailed shape appears to be in agreement with the renormaliza-
tion group predictions for the universality class of a two-dimensional
order parameter (recall the penultimate paragraph of Chapter 12).

Finally we note that the Bose condensation in *He is accompanied by
striking physical properties of the fluid. Below 7, the fluid fiows freely
through the finest capillary tubes. It runs up and over the side of breakers.
It is, as its name denotes, “superfiuid.” The explanation of these proper-
ties lies outside the scope of statistical mechanics. It is sufficient to say
that it is the “condensed phase,” or the ground state component, that alone
flows so freely through narrow tubes. This component cannot easily
dissipate energy through friction, as it is already in the ground state. More
significantly, the condensed phase has a quantum coherence with no
classical analogue; the bosons that share a single state are correlated in a
fashion totally different from the excited particles (which are randomly
distributed over enormously many states).

A similar Bose condensation occurs in the electron fluid in certain
metals. By an interaction involving phonons, pairs of electrons bind
together in correlated motion. These electron pairs then act as bosons. The
Bose condensation of the pairs leads to superconductivity, the analogue of
the superfluidity of *He.

PROBLEMS

18.7-1. Show that equations 18.56 and 18.58, for N, and U, respectively, ap-
proach their proper classical limits in the classical regime.

18.7-2. Show that F; (1), F;,,(1), and F; (1) are all finite, whereas F; (1) 15
infinite. Here F; /,(1) denotes the derivative of F; ,,(x), evaluated at x = 1.
Hinr: Use the integral test of convergence of infinite series, whereby X f(1)
converges or diverges with [°f(x)dx (f 0 < f,,, < f, for all n).

18.7-3. Show that the explicit inclusion of the orbital ground state contributes

8ok pT In(1 — £) to the grand canonical partition sum, thereby validating equa-
tion 18.68.



FLUCTUATIONS

19-1 THE PROBABILITY DISTRIBUTION OF FLUCTUATIONS

A thermodynamic system undergoes continual random transitions
among its microstates. If the system is composed of a subsystem in
diathermal contact with a thermal reservoir, the subsystem and the
reservoir together undergo incessant and rapid transitions among their
joint microstates. These transitions lead sometimes to states of high
subsystem energy and sometimes to states of low subsystem energy, as the
constant total energy is shared in different proportions between the
subsystem and the reservoir. The subsystem energy thereby fluctuates
around its equilibrium value. Similarly there are fluctuations of the
volume of a system in contact with a pressure reservoir.

The “subsystem” may, in fact, be a small portion of a larger system, the
remainder of the system then constituting the “reservoir.” In that case the
fluctuations are local fluctuations within a nominally homogeneous system.

Both the volume and the energy simultaneously fluctuate in a system
that is in open contact with pressure and thermal reservoirs. If the
microstates of small volume tend to have relatively large (or small) energy
the fluctuations of volume and energy will be negatively (or positively)
correlated.

Gross macroscopic observations of an open system generally reveal only
the thermodynamic values of the extensive parameters. Only near the
critical point do the fluctuations become so large that they become evident
to simple macroscopic observations, as by the “critical opalescence”
alluded to in Section 10.1. Farther from the critical point the fluctuations
can be observed, with increasing difficulty, using increasingly sophisti-
cated instruments of high temporal and spatial resolving power. Further-
more, as we shall see shortly, theory reveals interesting relationships
between the fluctuations and thermodynamic quantities such as the heat
capacities. These relationships are exploited by materials scientists to

423
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provide a convenient method of calculation of the heat capacities and of
similar properties.

The statistical mechanical form of the probability distribution for a
fluctuating extensive parameter is now familiar. If the subsystem is 1n
diathermal contact with a thermal reservoir the probability that the system
occupies a particular microstate of energy E is ePF~PE_If the subsystem is
in contact with both a pressure and a thermal reservoir the probabulity
that the system occupies a particular microstate of energy E and volume V
is exp[BG ~ B(E + PV)]. And, more generally, for a system in contact
with reservoirs corresponding to the extensive parameters X, X,, ..., X, the
probability that the system occupies a particular microstate with parameters
Xos Xpp-ony X, 0

fi’o.i’l. ,ig:e)‘p{ k S[ . ]* (FOXO-F'-'-FFX)}
(19.1)

Here S[F,,..., F,] is the Massieu function (the Legendre transform of the
entropy) and F,..., F, are the entropic intensive parameters (with values
equal to those of the reservoirs).

19-2 MOMENTS OF THE ENERGY FLUCTUATIONS

Let us suppose (temporarily) that the energy E is the only fluctuating
variable, all other extensive parameters being constrained by restrictive
walls. The deviations (E — U) of E from its average value (E) = U is
itself a fluctuating variable, of average value zero. The mean square
deviation ((E — U)?), or the “second central moment,” is a measure of
the width of the energy fluctuations. A full description of the energy
fluctuations requires knowledge of all the central moments ((£ — U)").
with n = 2,3,4,.

The second central moment of the fluctuations follows directly from the
form of the canonical probability distribution, for

(E- Uy =Y (E - U)'efF B (19.2)

7

But we recall that

d
a—B(BF) =U (19.3)
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so that equation 19.2 can be written as

I

(E-U)y=~-X(E - U)%ef”"v’ (19.4)

= _%Z(EJ~ U)eB(F I{/)—g—g (195)
J

The first central moment vanishes, and the derivative dU/dp is related to
the heat capacity, whence

(E— Uy = - ﬁ% — k,T?Ne, (19.6)

There are several attributes of this result that should be noted. Most
important is the fact that the mean square energy fluctuations are propor-
tional to the size of the system. Therefore, the relative root mean square
dispersion ((E — U)*)/?/U, which measures the amplitude of the
fluctuations relative to the mean energy’, is proportional to N ~'/%. For
large systems (N — o0) the fluctuation amplitudes become negligible relatzue
to the mean values, and thermodynamics becomes precise.

For systems in which a large amount of heat is required to produce an
appreciable change in temperature (c, large) the fluctuations in energy are
correspondingly large. Furthermore the energy fluctuations in all systems
become very small at low temperatures (where ¢, — 0). Finally we recall
that both the heat capacity and the fluctuation amplitudes diverge at the
critical point, consistent with equation 19.6.

Calculation of higher moments of the energy fluctuations recapitulates
equations 19.4 to 19.6.

(E=0)" ") = ~ L (B, = U)" gpentr 4
J

a n a n
) (E,— U)"e B(F“Jrfj_:eﬁ‘rb)aB(EJ-U)

3 A n e n laU
= ~5E((E— U)"y + nfj_:eB(F ENE, - U) B

a 7 n n a
— — 55 ((E~ U)") + n((E - V) ‘>—3% (19.7)

!For defimteness, the energy U 1s here taken as zero mn the T = 0 state of the system
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The higher-order moments of the energy fluctuations can be generated
from the lower-order moments by the recursion relation 19.7. In particular
the third moment is

(19 8)

. de,
-_ 3 = '2 2
((E - Uy = NKIT (2Tc + T

PROBLEMS

19.2-1. A molecule has a vibrational mode of natural frequency w. The molecule
i1s embedded in a macroscopic system of temperature 7. Calculate the second
central moment (£2) — (EY of the energy of the vibrational mode, as a
function of w, 7, and fundamental constants.

19.2-2. Calculate the third central moment for the molecule in the preceding
problem.

19.2-3. Calculate the mean square deviation of the energy contained within a
fixed volume ¥ in a radiation field (recall Section 3.6). Assume the volume V' to
be small compared to the volume ¥V of the radiation, and assume the radiation to
be in equilibrium at temperature 7. Note that the product (Nc¢,) in equation 19.6
is the total heat capacity of the sample considered.

19-3 GENERAL MOMENTS AND CORRELATION MOMENTS?

In the general case we are interested not only in the fluctuation moment
of variables other than the energy, but also in combined moments that
measure the correlation of two or more fluctuating variables. We consider
first the general second moments of the form

<AXJAX’<> = Z (X; - X;)(Xk - Xk)ff(g.f(l, X, (19-9)

states

where f5 5 ,x_1s given by equation 19.1. This second moment measures
the correlation of the fluctuations of the two variables X and X, in a
system in contact with reservoirs of constant Fy, Fj,..., FJ.

To carry out the summation over the microstates we first observe that,
because of the form of f (equation 19.1)

of _1( g _ 9 -
aFk—kB( i aFkS[FO"“’FS])f‘

kLB(X" - Xk)f

(19.10)

20On the Formalism of Thermodynamic Fluctuation Theory, R. F Greene and H B Callen, Phys
Rev 85, 16 (1956).
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so that

(AX,AK) = —kg (X — X,);—ka (19.11)

3 . 9 .
= kg (X, - X) + kB<§FA(XJ - X,)> (19.12)

k g AX %
= - B‘(ﬁ( ]> - kBa_Fk (19.13)

The first term vanishes because (Aﬁ(]) vanishes independently of the
value of F,, so that

X
-y ]
(AKX AKX = —kB(—aFk (19.14)

)"Z) By B - FaXye X

This equation is the most significant general result of the theory of
thermodynamic fluctuations.

Particular note should be taken of the variables to be held constant in
the derivative in equation 19.14. These are precisely the variables held
constant in the physical system; the intensive parameters F, ..., F, of the
reservoirs {except for F;) and the extensive parameters X ,..., X, which
are constrained by the walls. It should also be noted that the right-hand
side of equation 19.14 is symmetric in j and k by virtue of a Maxwell
relation.

If X and X, in equation 19.14 are each taken as the energy we recover
equation 19.6 for the fluctuations of energy in a system in contact with a
thermal reservoir. But consider the same system in contact simultaneously
with thermal and pressure reservoirs, so that both the energy and the
volume can fluctuate. Then

U )
a(1/T) P/T. NNy,

(BEY) = k|

= kyT*Ncy — kgT?PVa + k ;TP Vi, (19.15)

av

———— =k . T?Va — k. TPVk
a(l/T))m,N, ? ? r

(AEAVY = —kB(

(19.16}
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and

14

(ary’y = *"B(W/“T‘S)VT_N,‘

v
= —k, (813)“«“ =k TV, (19.17)

The energy fluctuations are indeed quite different from those given in
equation 19.6. Furthermore the energy and the volume fluctuations are
correlated, as expected.

Finally we can obtain a recursion relation relating higher order correla-
tion moments to lower order moments. fully analogous to equation 19.7.
Consider the moment (¢AX} where ¢ is a product of the form
AX AX Then equations 19.9 to 19.12 can be repeated, with ¢

replacmg AX so that
If
N <¢ )

_ 9
= BaF (¢) + Kk <8F> (19.18)

<¢'AX/I<>

which permits generation of successively higher correlation moments.
As an example of this procedure take ¢ as AX,AX, to obtain the third
moment

A s J AR . 90X X,
(AX,AX AX,) = —ksgﬁ;<AX,Af\’,) ~hBX) FE he(BK) 8F7
(19.19)

but (AKX,) = (AX)) =0, so that

(AX,AX AX,) = s (AXAK)
92X,

2 « 0
AB&F,HFA (19.20)

Again, the variables to be held constant in the differentiation reflect the
boundary conditions of the fluctuating system.

Finally it should be noted that the fluctuations we have calculated ar€
thermodynamuc fluctuations. There are additional quantum mechanical
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fluctuations that can be nonzero even for a system in a single quantum
state. For normal macroscopic systems (excluding “quantum systems”
such as superconductors or superfluids) the thermodynamic fluctuations
totally dominate the quantum mechanical fluctuations.

PROBLEMS

19.3-1. An ideal gas is in contact with a thermal and a pressure reservoir.
Calculate the correlation moment (AEAV ) of its energy and volume fluctuations.

19.3-2. Repeat Problem 19.3-1 for a van der Waals gas (recall Problem 3.8-3).

19.3-3. A conceptual subsystem of N moles in a single-component simple ideal gas
systemn undergoes energy and volume fluctuations. The total system is at a
temperature of 0°C and a pressure of 1 atm. What must be the size of N for the
root mean square deviation in energy to be 1% of the average energy of the
subsystem?

19.3-4. What is the order of magnitude of the mean square deviation of the
volume of a typical metal sample of average volume equal to 1 cm*? The sample is
at room temperature and pressure.

19.3-5. Consider a small volume V' within a two-component simple system. Let
x, = N, /(N + N,), in which N, and N, are the mole numbers within V. Show
that

Nz(Ail)z = x%(ANl)Z - lexz(AﬂlAﬂz) + "12(13’</2)2
and compute the mean square deviation of concentration {(A%;)?).

19.3-6. Consider a small quantity of matter consisting of a fixed number N moles
i a large fluid system. Let p, be the average density of these N moles: the mass
divided by the volume. Show that equation 19.17 implies that the density
fluctuations are

N 2
<(APN) ) . kgTky
2 =ty
Y
in which V is the average volume of the N moles.
19.3-7. Show that the density fluctuations of an ideal gas are given by

RV
((Aby)") = N1

PN
That is, the relative mean square density deviation 1s the reciprocal of the number
of molecules in the subsystem.

19.3-8. Show that the relative root mean square deviation in density of 10 g of air
at room temperature and pressure is negligible. Consider air as an ideal gas. Show
that the relative rms deviation in density of 10 g of air at room temperature and
pressure is approximately 19%. Show that the average volume of the samples is



approximately Imm’ in the first case and smaller than the cube of the wavelength
of visible light in the second case.

19.3-9. The dielectric constant & of a fluid varies with the density by the relation

in which A is a constant. Show that the fluctuations in dielectric constant of a
small quantity of N moles of matter in a large system are

((88)*y =

in which ¥V is the average volume of N moles.

T"T( 1)*(e + 2)°

19.3-10. If light of intensity /; is incident on a region of volume V, which has a
difference 8% of dielectric constant from its average surroundings, the intensity of
light I, scattered at an angle § and at a distance r is

szz(AE)ZI 1+ cos’8

1 =
? 2 0 2

in which A, is the vacuum wavelength of the incident light. This is called
Rayleigh scattering.

In a fluid each small volume ¥V scatters incoherently, and the total scattered
intensity is the same as the scattered intensities from each region.

From problem 19.3-9 we have

VA (A)Y = Sk T (e — (e +2)°V

and summing this quantity over the total fluid we find

Z V2<(AE')2> = likBTKT(E - 1)2(5 + 2)2Vtmal

where V,_,,; is the total volume of the fluid. Consequently, the total scattered
intensity at an angle § and at a distance r from the scattering system is

? kBTKT( 1 + cos?@
) = 1rcesy

1) (E + 2) 1 total 2
AL r
By integrating over the surface of a sphere, show that the total scattered
intensity is

8

Iscattered 27}\4 k TKT(E - 1) (E + 2) IO total

Discuss the relevance of this result to critical opalescence (Section 10.1).

It is interesting to note that, because of the A,* dependence of the scattering.
blue light 1s much more strongly scattered than red. The sun appears red when 1t
is low on the horizon because the blue light is selectively scattered, leaving the
direct rays from the sun deficient in blue. On the other hand, the diffuse light of
the daytime sky, composed of the indirectly scattered sunlight, is predommnantlv
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blue. The color of the sky accordingly is everyday evidence of the existence of
thermodynamuc fluctuations.

19.3-11. The classical theory of fluctuations, due to Einstein, proceeds from
equation 19.1 which, in general form, is

1. ]

Can kST LER

fix, =€ e ’
Expanding S around its equilibrium value S, in powers of the deviations
AX, = X, — X, and keeping terms only to second order

1 5 s
fi. 5. =Aexp m[zo: ZO:S_/k AX/AXI(]

where S, = 9°S/3X,dX, and there A is a normalizing constant. This is a
multidimensional Gaussian probability distribution. By direct integration calcu-
late the second moments and show that they are correctly given. (The third and
higher moments are not correct!)






VARIATIONAL PROPERTIES,
PERTURBATION EXPANSIONS,
AND MEAN FIELD THEORY

20-1 THE BOGOLIUBOV VARIATIONAL THEOREM

To calculate the fundamental equation for a particular system we must
first evaluate the permissible energy levels of the system and then, given
those energies, we must sum the partition sum. Neither of these steps is
simple, except for a few “textbook models.” In such models, several of
which we have studied in preceding chapters, the energy eigenvalues
follow a simple sequence and the partition sum is an infinite series that
can be summed analytically. But for most systems both the enumeration
of the energy eigenvalues and the summation of the partition sum pose
immense computational burdens. Approximation techniques are required
to make the calculations practical. In addition these approximation tech-
niques provide important heuristic insights to complex systems.

The strategy followed in the approximation techniques to be described
is first to identify a soluble model that is somewhat similar to the model of
interest, and then to apply a method of controlled corrections to calculate
the effect of the difference in the two models. Such an approach is a
statistical ““ perturbation method.”

Because perturbation methods rest upon the existence of a library of
soluble models, there is great stress in the statistical mechanical literature
on the invention of new soluble models. Few of these have direct physical
relevance, as they generally are devised to exploit some ingenious
mathematical trick of solution rather than to mirror real systems (thereby
giving rise to the rather abstract flavor of some statistical mechanical
literature).

The first step in the approximation strategy is to identify a practical
criterion for the choice of a soluble model with which to approximate a
given system. That criterion is most powerfully formulated in terms of the
Bogolisbov variational theorem.

433
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Consider a system with a Hamiltonian 5#, and a soluble model system
with a Hamiltonian 5. Let the difference be 5, so that "= 5] + .
It is then convenient to define

H(X) = H, + AH#, (20.1)

where A 1s a parameter inserted for analytic convenience. By permitting A

to vary from zero to unity we can smoothly bridge the transition from the

soluble model system () to the system of interest; (1) = 2} + .
The Helmholtz potential corresponding to #(A) is F(A), where

~BF(A)=1n) e PEX = Intre A¥N (20.2)
J

Here the symbol tre #*™ (to be read as the “trace” of e A is
defined by the second equality; the trace of any quantity is the sum of s
quantum eigenvalues. We use the notation “tr” simply as a convenience.

We now study the dependence of the Helmholtz potential on A. The
first derivative is'

dF(X) B [r)i”le'mf“”‘“*”

and the second derivative 1s
2 Trorle BCH+AH) trofe BGH A% |2
ar ri#e [ uHe o (20.4)
d)\z tre B(o#g t A tre” B(H+ M)
= =B8R2y - ()] (20.5)
= —B(H — (H))* (20.6)

where the averages are taken with respect to the canonical weighting
factor e A*™ . The operational meaning of these weighted averages will
be clarified by a specific example to follow

An immediate and fateful consequence of equation 20.6 is that d*F/dN
1s negative (or zero) for all A

——==<0 (forall A) (20.7)

In the quantum mechanical context the operators %, and ) are here assumed to commute
The result is independent of this assumption For the noncommutative case, and for an elegant general
discussion sec R. Feynman, Stanstical Mechanics— A Set of Lectures (W A Benjamin, Inc , Reading.
Massachusetts, 1972).
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Consequently a plot of F(X) as a function of A is everywhere concave. It
follows that F(A) lies below the straight line tangent to F(A) at A = 0;

F(A) < F(0) + AN(dF/d\) o (20.8)
and spectfically, taking A = 1
F< Fy + (), (20.9)

The quantity (), is as defined in equation 20.3, but with A = 0; it is
the average value of %, in the soluble model system. Equation 20.9 1s the
Bogoliubov inequality. It states that the Helmholtz potential of a system
with Hamiltonian 3= 3, + 3, is less than or equal to the *“ unperturbed
Helmholtz potential (corresponding to J,) plus the average value of the
“perturbation” X, as calculated in the unperturbed (or soluble model)
system.

Because the quantity on the right of equation 20.9 is an upper bound to
the Helmholtz potential of the (*perturbed”) system, it clearly is desirable
that this bound be as small as possible. Consequently any adjustable
parameters in the unperturbed system are best chosen so as to mininmize the
quantity Fy + ().

This 1s the criterion for the choice of the “best” soluble model system.
Then F, is the Helmholtz potential of the optimum model system, and
() 1s the leading correction to this Helmholtz potential.

The meaning and the application of this theorem are best illustrated by
a specific example, to which we shall turn momentarily. However we first
recast the Bogoliubov inequality in an alternative form that provides an
important insight. If we write F,, the Helmholtz potential of the unper-
turbed system, explicitly as

Fo= (K)o — TS, (20.10)
then equation 20.9 becomes
F< (%))0 + (9?1>0 - TS, (20-“)
or
F < (), - TS, (20.12)
That is, the Helmholtz potential of a system with Hamiltonian 3+ 3, + 3,
is less than or equal to the full energy 3 averaged over the state probabilities

of the unperturbed system, minus the product of T and the entropy of the
unperturbed system.
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Example 1

A particle of mass m 1s constrained to move in one dimension in a quartic
potential of the form V(x) = D(x/a)*, where D > 0 and where a is a measure of
the linear extension of the potential. The system of interest is composed of N
such particles in thermal contact with a reservoir of temperature 7. An extensive
parameter of the system is defined by X = Na, and the associated intensive
parameter is denoted by P. Calculate the equations of state U = U(T, X, N) and
P=P(T, X, N), and the heat capacity cp(T, X, N).

To solve this problem by the standard algorithm would require first a quantum
mechanical calculation of the allowed energies of a particle in a quartic potential,
and then summation of the partition sum. Neither of these calculations is
analytically tractable. We avoid these difficulties by seeking an approximate
solution. In particular we inquire as to the best quadratic potential (i.e., the best
simple harmonic oscillator model) with which to approximate the system, and we
then assess the leading correction to account for the difference in the two models.

The quadratic potential that, together with the kinetic energy, defines the
“unperturbed Hamiltonian” is

Volx) = ymegx? (a)

where w, is an as-yet-unspecified constant. Then the “perturbing potential,” or
the difference between the true Hamiltonian and that of the soluble model system,
is
x\* 1
.#1=D(;) —Emwéxz (b)

The Helmbholtz potential of the harmonic oscillator model system is (recail
equations 16.22 to 16.24)?

Fy= ~NkgTlnz, = NB~"In(ePhoo/2 — g=Fhwu/2) (<)
and the Bogoliubov inequality states that

FS NBil ln(e‘"""ofz — e’Bh”n/Z)

+1VD<(§~)4>0 (N)mw()(xz)o (@)

Before we can draw conclusions from this result we must evaluate the second and
third terms. It is an elementary result of mechanics (the “ virial theorem™) that the
value of the potential energy (1mwlx?) in the nth state of a harmonic oscillator 15
one half the total energy, so that

(meéxz)n(hstale = %(n + 5)’“"0 (C)

2But note that the zero of energy has been shifted by huwg/2, the so-called zero point energy The
allowed energics are (n + 3)hwg
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and a similar quantum mechanical calculation gives

(X th srme = ( 3 2)(n2 +n+ %) ()

2
2m wy

With the values of these quantities in the nth state we must now average over all
states n. Averaging equation (e) in the unperturbed system

l 2,2\ — l[ l] _ l _ l eBhwo 4 17
< 5 muwpx >0 =3 (ny + 3 howy = ) U = 4hw0—————eﬁhw0 - (2)
and we also find

D, , D 3, U

T A\X = —Z——>=IKn) + —

aa< Jo a* 2m*w} L< ? hw,

- ,l_)_ 3K? [ efhes 4 1 . eBhen 41
a* 2mPaf | (eBheo — 17 2(efre 1)

3IDK? [ ePre + 1)
( ) (h)

da’miol \ ePrev — 1

Inserting these last two results (equations g and h) into the Bogoliubov inequality
(equation d)

F < NB’ 1 ln(eﬁh“’u/z — e B"Wo/z)

3NDR? (PP + 1\1 1o efhet
ehrev — 1 27

da*m?w} eBhes 1 ®

The first term is the Helmholtz potential of the unperturbed harmonic oscilla-
tor system, and the two remaining terms are the leading correction. The inequality
states that the sum of all higher-order corrections would be positive, so that the
right-hand side of equation (1) is an upper bound to the Helmholtz potential.

The frequency w, of the harmonic oscillator system has not yet been chosen.
Clearly the best approximation is obtamed by making the upper bound on F as
small as possible. Thus we choose w, so as to nunmmuze the right-hand side of
equation t, which then becomes the best available approximation to the Helmholtz
potential of the system. Denote the value of w, that minimizes F by &, (a function
of T, X (= Na), and N). Then «, in equation (i) can be replaced by &, and the
“less than or equal” sign (<) can be replaced by an “approximately equal” sign
(=). So interpreted, equation (i) is the (approximate) fundamental equation of the
system.
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The mechanical equation of state is, then,

B ME) ) ()
T N\da)rx N\da)zne, N\9& |, z,\ 9a]rw

At this point the algebra becomes cumbersome, though straightforward in princi-
ple. The remaining quantities sought for can be found in similar form. Instead we
turn our attention to a simpler version of the same problem.

Example 2

We repeat the preceding Example, but we consider the case in which the
coefficient D/a* is small (in a sense to be made more quantitative later),
permitting the use of classical statistics. Furthermore we now choose a square-well
potential as the unperturbed potential

0 if—-%<x<5
Vo(x)=

o0 if{x|>%

The optimum value of L is to be determined by the Bogoliubov criterion.
The unperturbed Helmholtz potential is determined by

e PFo = tre~P%o = ff__d":f’x ¢~ BLpL/am s Vot

]

1 cL2 0o 2
- dx dp. e Bp:/2m
il L f,w Px

]

-,1;(2'nkaT)l/2L

We have here used classical statistics (as in Sections 16.8 and 16.9), tentatively
assuming that L and T are each sufficiently large that k7 is large compared to
the energy differences between quantum states.

The quantity (J3#)), is, then,

tr[Da~%x* ~ Vy(x)] e P%

W =
( l>0 tre_ﬂ_,(po

Furthermore V,(x) = 0 for |x| < L/2, whereas e #*° = 0 for |x| > L/2, so that
the term involving ¥;,(x) vanishes. Then

= Day o D2 _2(5)4
(‘Wl>0 a4<x )0_ a°L —L/2x dx = 80\ a
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The Bogoliubov inequality now becomes

F< —k,TI [l(Zwmk T)'/’L] + ip(£)4
s 0% 5 80 \a

Minimizing with respect to L
L/a = [20k,T/D]"*

This result determines the optimum size of a square-well potential with which to
approximate the thermal properties of the system, and it determines the corre-
sponding approximate Helmholtz potential.

Finally we return to the criterion for the use of classical statistics. In Section
16.6 we saw that the energy separation of translational states is of the order of
h*/2mL?, and the criterion of classical statistics is that kg7 > h*/2mlL?. In
terms of D the analogous criterion is

For larger values of D the procedure would be similar in principle, but the
calculation would require summations over the discrete quantum states rather
than simple phase-space integration.

Finally we note that if the temperature is high enough to permit the use of
classical statistics the original quartic potential problem is itself soluble! Then
there is no need to approximate the quartic potential by utilizing a variational
theorem. It is left to the reader (Problem 20.1-2) to solve the original quartic
potential problem in the classical domain, and to compare that solution with the
approximate solution obtained here.

PROBLEMS

20.1-1. Derive equation (h) of Example 1, first showing that for a harmonic
oscillator

1 dz'
0 = = 5 (Bhe)
and
1 9%z’
(n?y =5 —
z 3([3’"-"0)
where
o0

z' = eﬂhuo/2 = E e*ﬂhuon

ne0
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20.1-2. Solve the quartic potential problem of Example 2 assuming the tempera-
ture to be sufficiently high that classical statistics can be applied. Compare the
Helmholtz potential with that calculated 1n Example 2 by the vanational theorem.

20.1-3. Complete Example 2 by writing the Helmholtz potential F(T,a) ex-
plicitly. Calculate the “tension” J conjugate to the “length” a. Calculate the
compliance coefficient a (da/d7 ).

20.1-4. Consider a particle in a quadratic potential ¥(x) = Ax?/2a? Despite the
fact that this problem is analytically solvable, approximate the problem by a
square potential. Assume the temperature to be sufficiently high that classical
statistics can be used in solving the square potential. Calculate the “tension™ .7
and the compliance coefficient a” (da/0.9 ).

20-2 MEAN FIELD THEORY

The most important application of statistical perturbation theory 1s that
in which a system of interacting particles is approximated by a system of
noninteracting particles. The optimum noninteracting model system 1s
chosen in accordance with the Bogoliubov inequality, which also yields
the first-order correction to the noninteracting or “unperturbed”
Helmholtz potential. Because very few interacting systems are soluble
analytically, and because virtually all physical systems consist of inter-
acting particles, the “mean field theory” described here is the basic tool of
practical statistical mechanics.

It is important to note immediately that the term mean field theory
often is used in a less specific way. Some of the results of the procedure
can be obtained by other more ad hoc methods. Landau-type theories
(recall Section 11.4) obtain a temperature dependence of the order param-
eter that is identical to that obtained by statistical mean field theory.
Another approximation, known as the “random phase approximation,”
also predicts the same equation of state. Neither of these provides a full
thermodynamic fundamental equation. Nevertheless various such ap-
proximations are referred to generically as mean field theories. We use the
term in the more restrictive sense.

Certainly the simplest model of interacting systems, and one that has
played a key role in the development of the theory of interacting systems,
is the “two-state nearest-neighbor Ising model.” The model consists of a
regular crystalline array of particles, each of which can exist in either of
two orbital states, designated as the “up” and ‘“down” states. Thus the
states of the particles can be visualized in terms of classical spins, each of
which is permitted only to be either up or down; a site variable o, takes
the value o, = +1 if the spin at site j is up or o, = — 1 if the spin at site J
is down. The energies of the two states are — B and + B for the up and
down states respectively. In addition nearest neighbor spins have an
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interaction energy —2J if they are both up or both down, or of +2.J if
one spin is up and one spin is down. Thus the Hamiltonian is

- Z.I,]o,o, ~ B} o, (20.13)
[ J

where J, , = 0 if 7 and j are not nearest neighbors, whereas J, ,=J if i
and j are nearest neighbors. It should be noted that a specific pair of
neighbors (say spins #5 and #8) appears twice in the sum (i = 5, j = 8
and i =8, j=15).

Quite evidently the problem is an insoluble many-body problem, for
each spin is coupled indirectly to every other spin in the lattice. An
approximation scheme is needed, and we invoke the Bogoliubov in-
equality. A plausible form of the soluble model system is suggested by
focussing on only the jth spin in the Hamiltonian (20.13); the Hamilto-

nian is then simply linear in 6,. We correspondingly choose the “un-
perturbed” model Hamiltonian to be
Hy=—Y Bo — BY o (20.14)
J J

where B is to be chosen according to the Bogoliubov criterion. We
ant1c1pate that B will be independent of j (B = B), for all spins are
equivalent. Thus

H#Hy=—(B+B)Yo,=-B*) o, (20.15)
J J

~

where we define B*=B+ B (20.16)
Accordingly the “unperturbed” Helmholtz potential is
F,= —kyTintre 5% = — Nk, TIn{e*F?" + ¢ FB"} (20.17)

where N is the number of sites in the lattice. The Bogoliubov inequality
assures us that F < Fy + (#— ), or

F<Fy— YJ (00, + BN(o), (20.18)

i, 7

and we procede to calculate (o), and (0,0,),. In the unperturbed system
the average of products centered on different sites simply factors;

(0,0 )0 <°>0<°>0 (oY% (20.19)
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so that F < Fy— NJz, (o)t +(B* — B)N(o), (20.20)

where z,, is the number of nearest neighbors of a site in the lattice
(z,,= 6 for a simple cubic lattice, 8 for a body-centered cubic lattice,
etc). Furthermore

ﬂB. _ e_ﬂB.

(0) = ZM_ — 7 = tanh (8B) (20.21)

We must minimize F with respect to B. But from equations 20.20, 20.17
and 20.21 we observe that B appears in F only in the combination
B + B = B*. Hence we can mimimize F with respect to B*, giving the
result that

B* — B=B =2z Jo), (20.22)

This is a self-consistent condition, as (o), is expressed in terms of B* by
equation 20.21.

Prior to analyzing this self-consistent solution for {o),, we observe its
significance. If we were to seek (o) in mean field theory we might proceed
by differentiation (with respect to B) of the Helmholtz potential F (as
calculated in mean field theory; equation 20.20). The applied field B
appears explicitly in eq’'n 20.20, but it is also implicit in (o). Fortunately
however, (o), depends on B only in the combination B + B = B*, and
we have imposed the condition that dF/dB* = 0. Thus, in differentia-
tion, only the explicit dependence of F on B need be considered. With
this extremely convenient simplifying observation we immediately corrob-
orate that differentiation of F (equation 20.20) with respect to B does give
(o). The “spontaneous moment” (o) in mean field theory is gwen properly
by its zero-order approximation.

Returning then to equation 20.21 for (o), (and hence for {g)) the
solution is best obtained graphically, as shown in Fig. 20.1. The abscissa
of the graph is 8B*, or from equation 20.22

x = BB* = B(2z,,J{0) + B) (20.23)

nn
so that equation 20.21 can be written as

kT B
(=2, 75" 2, 7

nn

= tanh (x) (20.24)

A plot of (o) versus x from the first equality is a straight line of slope
kzT/2z,,J and of intercept — B/2z,,J. A plot of (o) versus x from the
second equality is the familiar tanh(x) curve shown in Fig. 20.1. The
intersection of these two curves determines (o).
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The qualitative behavior of {a(T, B)) is evident. For B = 0, the straight
line passes through the origin, with a slope ky;T/2z,,.J. The curve of
tanh(x) has an initial slope of unity. Hence, if k,7/2z, ,J >0 the
straight line and the tanh(x) curve have only the trivial intersection at
(o) = 0. However, if k,T/2z,,J <1 there is an intersection at a positive
value of (o) and another at a negative value of (a), as well as the
persistent intersection at (o) = 0. The existence of three formal solutions
for (o) is precisely the result we found in the thermodynamic analysis of
first-order phase transitions in Chapter 9. A stability analysis there
revealed the intermediate value (o) = 0 to be intrinsically unstable. The
positive and negative values of (o) are equally stable, and the choice of
one or the other is an “accidental” event. We thus conclude that the
system exhibits a first-order phase transition at low temperatures, and that
the phase transition ceases to exist above the “Curie” temperature 7T,
given by

koT, =2z,,] (20.25)

“We can also find the “susceptibility” for temperatures above T,. For
small arguments tanh y = y, so that equation 20.24 becomes, for 7 > T,

(o) = B(2z,,J(c) + B), T>T. (20.26)
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or the “susceptibility” is

B k,T—-2:,J T-T~ r>1, (20.27)

c

This agrees with the classical value of unity for the critical exponent vy, as
previously found in Section 11.4.

To find the temperature dependence of the spontaneous moment (o)
for temperatures just below T, we take B = 0 in equation 20.21 and 20.22,
and we assume (o) to be very small. Then the hyperbolic tangent can be
expanded in series, whence

<U> = 2ﬂznn"<o - %(2!;2"".](0'))3 + -

or
(o) = (%)m X(T,=T) + - (20.28)

We thereby corroborate the classical value of 1 for the critical exponent a.

It is a considerable theoretical triumph that a first-order phase transi-
tion can be obtained by so simple a theory as mean field theory. But it
must be stressed that the theory is nevertheless rather primitive. In reality
the Ising model does not have a phase transition in one dimension, though
it does in both two and three dimensions. Mean field theory, in contrast,
predicts a phase transition without any reference to the dimensionality of
the crystalline array. And, of course, the subtle details of the critical
transitions, as epitomized in the values of the critical exponents, are quite
incorrect.

Finally, it is instructive to inquire as to the thermal properties of the
system. In particular we seek the mean field value of the entropy S =
—(8F/dT),. We exploit the stationarity of F with respect to B* by
rewriting equation 20.20, with B* rewritten as (k ,73B*)

F= —Nk,Tln[ef? + e %] — NJz, (o)
+ Nk ,T(BB*){0) — NB{o) (20.29)

Then in differentiating F with respect to T we can treat SB* as a constant

oF _ )
_ | — — ﬂB' ’ﬂB‘ _ *
S (BT)ﬂn-.m Nkgln[e#®" + e #7°] — Nk ,(BB*)(0)

(20.30)
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The first term is recognized as — F,/T (from equation 20.17), and the
second term is simply (J4,) /T. Thus

S = ((%))0 - F())/T= So (20.31)

The mean field value of the entropy, like the induced moment (o), 1s
given correctly in zero order.
The energy U is given by

U=F+ TS = (Fy+ (H#~H),) + TS = (#), (2032)

The energy is also given correctly in zero order, if interpreted as in 20.32
—but note that this result is quite different from ( 5,),!

A more general Ising model permits the spin to take the values
-5, -5S+1,-8+2,...,8 -2,5 - 1,8, where § is an integer or half
integer (the “ value of the spin”). The theory is identical in form to that of
the “ two-state Ising model” (which corresponds to S = 1), except that the
hyperbolic tangent function appearing in {(g), is replaced by the
“Brnllouin function”:

1

(0)o = SBy(BB) = (S + —i)coth(zs +1

1 BB
ﬁB) —5 coth 35

(20.33)

The analysis follows step-by-step in the pattern of the two-state Ising
model considered above — merely replacing equation 20.21 by 20.33. The
corroboration of this statement is left to the reader.

In a further generalization, the Heisenberg model of ferromagnetism
permits the spins to be quantum mechanical entities, and it associates the
external “field” B with an applied magnetic field B,. Within the mean
field theory, however, only the component of a spin along the external
field axis is relevant, and the quantum mechanical Heisenberg model
reduces directly to the classical Ising model described above. Again the
reader is urged to corroborate these conclusions, and he or she is referred
to any introductory text on the theory of solids for a more complete
discussion of the details of the calculation and of the consequences of the
conclusions.

The origin of the name “mean field theory” lies in the heuristic
reasoning that led us to a choice of a soluble model Hamiltonian in the
Ising (or Heisenberg) problem above. Although each spin interacts with
oth€r spins, the mean field approach effectively replaces the bi-linear spin
interaction o,0, by a linear term B,o,. The quantity B, plays the role of an
eflective magnellc field acting on o "and the optlmum choice of B, is (o).
Equivalently. the product o,0, is “linearized,” replacing one factor by its
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average value. A variety of recipes to accomplish this in a consistent
manner exist. However we caution against such recipes, as they generally
substitute heuristic appeal for the well-ordered rigor of the Bogoliubov
inequality, and they provide no sequence of successive improvements.
More immediately, the stationarity of F to variations in B* greatly
simplifies differentiation of F (required to evaluate thermodynamic quan-
tities; recall equation 20.30), and the analogue of this stationarity has no
basis in heuristic formulations. But most important, there are applications
of the “mean field” formalism (as based on the Bogoliubov inequality) in
which products of operators are not simply “linearized.” For these the
very name ‘“mean field” is a misnomer. A simple and instructive case of
this type is given in the following Example.

Example

N Ising spins, each capable of taking three values (6 = —1,0, +1) form a planar
triangular array, as shown. Note that there are 2N triangles for N spins, and that
each spin is shared by six triangles. We assume N to be sufficiently large that edge
effects can be ignored.

NN NANNNANN/
/NONINININNNINA
NAANNNNNNN/
JAVAVAVAVAVAVAVAVA

The energy associated with each triangle (a three-body interaction) is

—¢ if two spins are “up”
— 2¢ if three spins are “up”
0 otherwise

Calculate (approximately) the number of spins in each spin state if the system is
in equilibrium at temperature 7.

Solution

The problem differs from the Ising and Heisenberg prototypes in two respects; we
are not given an analytic representation of the Hamiltonian (though we could
devise one with moderate effort), and a “mean field” type of model Hamiltonian
(of the form BY ,0,) would not be reasonable. This latter observation follows
from the stated condition that the energies of the various possible configurations
depend only on the populations of the “up” states, and that there is no
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distinction in energy between the o = 0 and the o6 = —1 states. The soluble
model Hamiltonian should certainly preserve this symmetry, which a mean-field
type Hamiltonian does not do. Accordingly we take as the soluble model
Hamiltonian one in which the energy —& is associated with each “up” spin in the
lattice (the o = 0 and —1 states each having zero energy). The energy & will be
the variational parameter of the problem.

The “unperturbed” value of the Helmholtz potential is determined by

e P = (B + 2)"

and the probability that a spin is up, to zero order, is

eBE 1 2 - B: -1
fOT (eB’ 2) ( + Ze )
1~
whereas h,=l.= —(——%Z

Within each triangle the probability of having all three spins up is f&,, and the
probability of having two spins up is 3]02T (1 = f51)- We can now calculate (),
and (), directly:

(Hodo = —Nify
whereas (#)q = 2Ne{ =2/, — 34 (1 = fo,)} = 2Ne{ /S, — 313}
The variational condition then is
F < —NkpTin(ef +2) + 2N{ef, — 3efd, } + Nefy,

It is convenient to express the argument of the logarithm in terms of f;
2
F< —NkyTln|—— 1+ 2N[ef, — 3/ ] + Nefo,
(1 -sor)

The variational parameter & appears explicitly only in the last term, but it is also
implicit in f,,. It is somewhat more convenient to minimize F with respect to fo,
(inverting the functional relationship f; , () to consider & as a function of f,)

dF  —Nk,T di
0= = +6N£f2 — 12 Nef,, + N + Nf, (———*)
%o (l“for) o o1 *"\dfo,
The last term is easily evaluated to be NkzT[f5{ + (1 — fo;) '], so that the
vanational condition becomes

2/,
6B5f037 - 12B£f02? +f07 ln[_(—l—TT)] + 1 _ 0
ot
This equation must be solved numerically or graphically. Given the solution for

for (as a function of the temperature) the various physical properties of the
system can be calculated in a straightforward manner.
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PROBLEMS

20.2-1. Formulate the exact solution of the two-particle Ising model with an
external “field” (assume that each particle can take only two states; ¢ = —1 or
+1). Find both the “magnetization” and the energy, and show that there is no
phase transition in zero external field. Solve the problem by mean field theory,
and show that a transition to a spontaneous magnetization in zero external field is
predicted to occur at a non-zero lemperature T.. Show that below T, the
spontaneous moment varies as (T — T,)# and find T, and the critical exponent 8
(recall Chapter 11).

20.2-2. Formulate mean field theory for the three state Ising model (in which the
variables o, in equation 20.13 can take the three values —1,0, +1). Find the
*“Curie” temperature T, (as in equation 20.25).

20.2-3. For the Heisenberg ferromagnetic model the Hamiltonian is
H= - Z"l/sl.sl - (.uBBe)ZS/z
LR J

where p g is the Bohr magneton and B, is the magnitude of the external field,
which is assumed to be directed along the z axis. The z-components of S, are
quantized, taking the permitted values § = —S, -8+ 1,...,8 - 1, S. Show
that for § = 4 the mean field theory is identical to the mean field theory for the
two-state Ising model if 25 is associated with ¢ and if a suitable change of scale is
made in the exchange interaction parameter J, . Are corresponding changes of
scale required for the S = 1 case (recall Problem 20.2-1), and if so, what is the
transformation?

20.2-4. A metallic surface is covered by a monomolecular layer of N organic
molecules in a square array. Each adsorbed molecule can exist in two steric
configurations, designated as oblate and prolate. Both configurations have the
same energy. However two nearest neighbor molecules mechanically interfere if,
and only if, both are oblate. The energy associated with such an oblate-oblate
interference is e (a positive quantity). Calculate a reasonable estimate of the
number of molecules in each configuration at temperature 7.

20.2-5. Solve the preceding problem if the molecules can exist in three steric
configurations, designated as oblate, spherical and prolate. Again all three con-
figurations have the same energy. And again two nearest-neighbor molecules
interfere if, and only if, both are oblate; the energy of interaction is e. Calculate
(approximately) the number of molecules in each configuration at temperature 7.

Answer
N/10 at kT /e = 0.266; N/Sat kgT/e = 1.15
N/4 at kyT/e = 2.47, 3N/10at kT e = 7.78

N/3at kT — oo



Mean Field in Generalized Representation: The Binury Alloy 449

20.2-6. In the classical Heisenberg model each spin can take any orientation in
space (recall that the classical partition function of a single spin in an external
field B is z = [e™BBScsb 5in §df d¢. Show that, in mean field theory,

s
[8(B + B)S]

20.2-7. 2N two-valued Ising spins are arranged sequentially on a circle, so that
the last spin is a neighbor of the first. The Hamiltonian is

classical

(S,) = Scoth [B(B + B)S] -

2N

H=2) Joo ., — BZo/
=1 J

where J, = J, if j is even and J, = J; if j is odd. Assume J, > J,.

There are two options for carrying out a mean field theory for this system. The
first option is to note that all spins are equivalent. Hence one can choose an
unperturbed system of 2N single spins, each acted on by an effective field (to be
evaluated variationally). The second option is to recognize that we can choose a
pair of spins coupled by J, (the larger exchange interaction). Each such pair is
coupled to two other pairs by the weaker exchange interactions J,. The unper-
turbed system consists of N such pairs\

Carry out each of the mean field theories described above. Discuss the relative
merits of these two procedures.

20.2-8. Consider a sequence of 2N alternating 4 sites and B sites, the system
being arranged in a circle so that the (2NV)™ site is the nearest neighbor of the
first site. Even numbered sites are occupied by two-valued Ising spins, with
o, = +1. Odd numbered sites are occupied by three-valued Ising spins, with
o, = —1,0, +1. The Hamiltonian is

/
H=-2JY 00, — BY o
J 7

a) Formulate a mean field theory by choosing as a soluble model system a
collection of independent A sites and a collection of independent B sites, each
acted upon by a different mean field.

b) Formulate a mean field theory by choosing as a soluble model system a
collection of N independent A-B pairs, with the Hamiltonian of each pair being

H e = — 20,440 en + BogaOoad + BeverD.

par ven even-even

¢) Are these two procedures identical? If so, why? If not, which procedure would
you judge to be superior, and why?

20-3 MEAN FIELD IN GENERALIZED
REPRESENTATION: THE BINARY ALLOY

Mean field theory is slightly more general than it might at first appear
from the preceding discussion. The larger context is clarified by a particu-
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lar example. We consider a binary alloy (recall the discussion of Section
11.3) in which each site of a crystalline array can be occupied by either an
A atom or a B atom. The system is in equilibrium with a thermal and
particle reservoir, of temperature T and of chemical potentials (i.e., partial
molar Gibbs potentials) p, and p,. The energy of an 4 atom in the
crystal is ¢4, and that of a B atom is €. In addition neighboring 4 atoms
have an interaction energy ¢, neighboring B atoms have an interaction
energy &5, and neighboring A-B pairs have an interaction energy &,p.
We are interested not only in the number of 4 atoms in the crystal, but
in the extent to which the 4 atoms either segregate separately from the B
atoms or intermix regularly in an alternating ABAB pattern. That is, we
seek to find the average numbers N, and N, of each type of atom, and the
average numbers N, ,, N,p, and Ny, of each type of nearest neighbor
pair. These quantities are to be calculated as a function of 7, p, and p .
The various numbers N,, N g, ... are not all independent, for

N+ Ny=N (20.34)

and by counting the number of “bonds” emanating from A4 atoms

2N,,+ N,p,=z,,N, (20.35)
Similarly

2Ngp + Ny =2, Ng (20.36)

nn
where we recall that z,  is the number of nearest neighbors of a single
site. Consequently all five numbers are determined by two, which are
chosen conveniently to be N, and N,,.

The energy of the crystal clearly is
E=NA£A +N8£8+NAA€AA +NAB€AB+NBB€BB (20.37)

If we associate with each site an Ising spin such that the spin is “up”
(o = +1) if the site is occupied by an A atom, and the spin is “down”

(o ; —1) if the spin is occupied by a B atom, then
H=C-Y, ZJ,]o,o - BY o, (20.38)
where
J = 445~ §€44 ~ tpp (20.39)
B = 3(epp— €44) + 52,244 + €55) (20.40)
C=1LN(de, +deg+z,,6,, + 22,65+ Z,,655)  (20.41)
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These values of J, B, and C can be obtained in a variety of ways. One
simple approach is to compare the values of E (equation 20.37) and of 3
(equation 20.38) in the three configurations in which (a) all sites are
occupied by A atoms, (b) all sites are occupied by B atoms, and (c¢) equal
numbers of A and B atoms are randomly distributed.

Except for the inconsequential constant C, the Hamiltonian is now that
of the Ising model. However, the physical problem is quite different. We
must recall that the system is in contact with particle reservoirs of
chemical potentials p, and p,, as well as with a thermal reservoir of
temperature 7. The problem is best solved in a grand canonical for-
malism.

The essential procedure in the grand canonical formalism is the calcu-
lation of the grand canonical potential ¥(7, p,, ;) by the algorithm’

e BY = tre B BuN—iaNp) (20.42)

This is isomorphic with the canonical formalism (on which the mean field
theory of Section 20.2 was based) if we simply replace the Helmholtz
potential F by the grand canonical potential ¥, and replace the
Hamiltonian > by the “grand canonical Hamiltonian” 3#— ji,N, —
i V.

In the present context we augment the Hamiltonian 20.38 by terms
of the form — j[(fi, + fig) + (i, — fig)X,0,]. The grand canonical
Hamiltonian is then

- Z ZJUo,o B’ZO, (20.43)

where

C'=C~ jN(ji, + fig) (20.44)
and

B'=8B- 2By — Bp) (20.45)

The analysis of the Ising model then applies directly to the binary alloy
problem (with the Helmholtz potential being reinterpreted as the grand
canonical potential). Again mean field theory predicts an order-disorder
phase transition. Again that prediction agrees with more rigorous theory
in two and three dimensions, whereas a one-dimensional binary cr_y_stal
should not have an order-disorder phase transition. And again the critical
exponents are incorrectly predicted. ) )

More significantly, the general approach of mean field theory is appli-
cable to systems in generalized ensembles, requiring only the reinterpreta-
tion of the thermodynamic potential to be calculated, and of the effective
“Hamiltonian™ on which the calculation is to be based.

iy (= p 4/ Avogadro’s number) is the chemical potential per particle
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POSTLUDE: SYMMETRY AND THE
CONCEPTUAL FOUNDATIONS

OF THERMOSTATISTICS

21-1 STATISTICS

The overall structure of thermostatistics now has been established—of
thermodynamics in Part I and of statistical mechanics in Part I1. Although
these subjects can be elaborated further, the logical basis is essentially
complete. It is an appropriate time to reconsider and to reflect on the
uncommon form of these atypical subjects.

Unlike mechanics, thermostatistics 1s not a detailed theory of dynamic
response to specified forces. And unlike electromagnetic theory (or the
analogous theories of the nuclear “strong” and *“weak” forces), thermosta-
tistics is not a theory of the forces themselves. Instead thermostatistics
characterizes the equilibrium state of microscopic systems without refer-
ence either to the specific forces or to the laws of mechanical response.
Instead thermostatistics characterizes the equilibrium state as the state
that maximizes the disorder, a quantity associated with a conceptual
framework (“information theory”) outside of conventional physical the-
ory. The question arises as to whether the postulatory basis of thermosta-
tistics thereby introduces new principles not contained in mechanics,
electromagnetism, and the like or whether it borrows principles in unrec-
ognized form from that standard body of physical theory. In either case,
what are the implicit principles upon which thermostatistics rests?

There are, in my view, two essential bases underlying thermostatistical
theory. One is rooted in the statistical properties of large complex systems.
The second rests in the set of symmetries of the fundamental laws of
physics. The statistical feature veils the incoherent complexity of the atomic
dynamics, thereby revealing the coherent effects of the underlying physical
symmetries.

455
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The relevance of the statistical properties of large complex systems is
universally accepted and reasonably evident. The essential property is
epitomized in the “central limit theorem”' which states (roughly) that the
probability density of a variable assumes the “Gaussian” form if the
variable is itself the resultant of a large number of independent additive
subvariables. Although one might naively hope that measurements of
thermodynamic fluctuation amplitudes could yield detailed information as
to the atomic structure of a system, the central limit theorem precludes
such a possibility. It is this insensitivity to specific structural or mechani-
cal detail that underlies the universality and simplicity of thermostatistics.

The central limit theorem is illustrated by the following example.

Example

Consider a system composed of N “elements,” each of which can take a value of
X in the range — § < X < 1. The value of X for each element is a continuous
random variable with a probability density that is uniform over the permitted
region. The value of X for the system is the sum of the values for each of the
elements. Calculate the probability density for the system for the cases N = 1,2,3.
In each case find the standard deviation o, defined by

ol = ff(X)deX

where f(X) is the probability density of X (and where we have given the
definition of o only for the relevant case in which the mean of X is zero). Plot the
probability density for N = 1, 2, and 3, and in each case plot the Gaussian or
“normal” distribution with the same standard deviation.

Note that for even so small a number as N = 3 the probability distribution
f(X) rapidly approaches the Gaussian form! It should be stressed that in this
example the uniform probability density of X is chosen for ease of calculation; a
similar approach to the Gaussian form would be observed for any nitial probabiltty
density.

Solution ;
The probability density for N=11is fi(X)=1 for — 3 < X < %, and zero

otherwise. This probability density is plotted in Fig. 21.1a. The standard devia-
tion is 0, = 1/(2 - V3). The corresponding Gaussian

fo(X) = (27) l/ztl“exp( —Xz)

202
with 0 = g, is also plotted in Fig. 21.1a, for comparison.

Y¢f. any standard reference on probability, such as L G Parratt, Probabiity and E xperimental
Errors in Science (Wiley, New York, 1961) or E. Parzen, Modern Probabulity Theory and Its
Apphcations (Wiley, New York, 1960)
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FIGURE 21 1

Convergence of probability density 1o the Gaussian form. The probability density for
systems composed of one, two and three elements, each with the probabibty density shown
in Figure 21.1a In each case the Gaussian with the same standard deviation 1s plotted In
accordance with the central it theorem the probabulity density becomes Gaussian for
large M.

To calculate the probability density f,( X), for N =2, we note (problem
21.1-1) that

fr (X)) = foc JilX = X)), (X")dX”
or, with f;(X) as given
fvil )= [ f(x - X ax”

That is, fy,,(X) is the average value of f,(X*) over a range of length unity
centered at X.

This geometric interpretation easily permits calculation of f,( X) as shown mn
Fig. 21.1b. From f,( X). m turn, we find

f;?——xz if | X< 4
LX) ={3-3x+ix? ofd<ixt<i
1 0 if X > )
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The values of ¢ are calculated to be o, = 1/V12, 0, = 1/V6 and o, = 1.
These values agree with a general theorem that for N identical and independent
subsystems, oy = VN 0,. The Gaussian curves of Fig. 21.1 are calculated with
these values of the standard deviations. For even so small a value of N as 3 the
probability distribution is very close to Gaussian, losing almost all trace of the
initial shape of the single-element probability distribution.

PROBLEMS

21.1-1. The probability of throwing a “seven” on two dice can be viewed as the
sum of a) the probability of throwing a “one” on the first die multiplied by the
probability of throwing a “six™ on the second, plus b) the probability of throwing
a “two” on the first die multiplied by the probability of throwing a “five” on the
second, and so forth. Explain the relationship of this observation to the expres-
sion for fz,(X) in terms of fy(X — X’) and f,(X") as given in the Example,
and derive the latter expression.

21.1-2. Associate the value +1 with one side of a coin (“head”) and the value
— 1 with the other stde (“tail””). Plot the probability of finding a given “value”
when throwing one, two, three, four, and five coins. (Note that the probabulity 1s
discrete—for two coins the plot consists of just three points, with probability = §
for X = +1 and probability = } for X = 0.) Calculate o for the case n = 5, and
roughly sketch the Gaussian distribution for this value of o.

21-2 SYMMETRY?

As a basis of thermostatistics the role of symmetry is less evident than
the role of statistics. However, we first note that a basis in symmetry does
rationalize the peculiar nonmetric character of thermodynamics. The
results of thermodynamics characteristically relate apparently unlike
quantities, yielding relationships such as (dT/dP), = (dV/dS),, but
providing no numerical evaluation of either quantity. Such an emphasis
on relationships, as contrasted with quantitative evaluations, is appropri-
ately to be expected of a subject with roots in symmetry rather than in
explicit quantitative laws.

Although symmetry considerations have been seen as basic in science
since the dawn of scientific thought, the development of quantum mechan-
ics in 1925 elevated symmetry considerations to a more profound level of
power, generality, and fundamentality than they had enjoyed in classical
physics. Rather than merely restricting physical possibilities, symmetry
was increasingly seen as playing the fundamental role in establishing the

2H. Callen, Foundations of Physics 4, 423 (1974)
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form of physical laws. Eugene Wigner, Nobel laureate and great modern
expositor of symmetry laws, suggested” that the relationship of symmetry
properties to the laws of nature is closely analogous to the relationship of
the laws of nature to individual events; the symmetry principles “provide
a structure or coherence to the laws of nature just as the laws of nature
provide a structure and coherence to the set of events.” Contemporary
“grand unified theories” conjecture that the very existence and strength of
the four basic force fields of physical theory (electromagnetic, gravita-
tional, “strong,” and “weak”) were determined by a symmetry genesis a
mere 10~ * seconds after the Big Bang.

The simplest and most evident form of symmetry is the geometric
symmetry of a physical object. Thus a sphere is symmetric under arbitrary
rotations around any axis passing through its center, under reflections in
any plane containing the center, and under inversion through the center
itself. A cube is symmetric under fourfold rotations around axes through
the face centers and under various other rotations, reflections, and inver-
sion operations.

Because a sphere is symmetric under rotations through an angle that
can take continuous values the rotational symmetry group of a sphere is
said to be continuous. In contrast, the rotational symmetry group of a
cube is discrete.

Each geometrical symmetry operation is described mathematically by a
coordinate transformation. Reflection in the x—y plane corresponds to the
transformation x — x’, y - y’, z - —z’, whereas fourfold (90°) rota-
tion around the z-axis i1s described by x = y’, y —» —x’, z = z’. The
symmetry of a sphere under either of these operations corresponds to the
fact that the equation of a sphere (x? + y? + z2 = r?) is identical in form
if reexpressed in the primed coordinates.

The concept of a geometrical symmetry is easily generalized. A transfor-
mation of variables defines a symmetry operation. A function of those
variables that is unchanged in form by the transformation is said to be
symmetric with respect to the symmetry operation. Similarly a law of
physics is said to be symmetric under the operation if the functional form
of the law is invariant under the transformation.

Newton’s law of dynamics, f = m(d?r/dt?) is symmetric under time
inversion (r — r’, t = —1t') for a system in which the force is a function
of position only. Physically this “ time-inversion symmetry” implies that a
video tape of a ball thrown upward by an astronaut on the moon, and
falling back to the lunar surface, looks identical if projected backward or
forward. (On the earth, in the presence of air friction, the dynamics of the
ba]l would not be symmetric under time inversion).

The symmetry of the dynamical behavior of a particular system is
governed by the dynamical equation and by the mechanical potential that

3E Wagner, “Symmetry and Conservation Laws,” Physics Today, March 1964, p 34.
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determines the forces. For quantum mechanical problems the dynamical
equation is more abstract (Schrodinger’s equation rather than Newton’s
law), but the principles of symmetry are identical.

21-3 NOETHER’S THEOREM

A far reaching and profound physical consequence of symmetry is
formulated in “Noether’s theorem®”. The theorem asserts that every
continuous symmetry of the dynamical behavior of a system (i.e., of the
dynamical equation and the mechanical potential) implies a conservation
law for that system.

The dynamical equation for the motion of the center of mass point of
any material system is Newton’s law. If the external force does not depend
upon the coordinate x, then both the potential and the dynamical equa-
tion are symmetric under spatial translation parallel to the x-axis. The
quantity that is conserved as a consequence of this symmetry is the
x-component of the momentum. Similarly the symmetry under translation
along the y or z axes results in the conservation of the y or z components
of the momentum. Symmetry under rotation around the z axis implies
conservation of the z-component of the angular momentum.

Of enormous significance for thermostatistics is the symmetry of dy-
namical laws under time translation. That is, the fundamental dynamical
laws of physics (such as Newton’s law, Maxwell’s equatiéyns, and
Schrodinger’s equation) are unchanged by the transformation t —1t" + §,
(i.e., by a shift of the origin of the scale of time). If the external potential
is independent of time, Noether’s theorem predicts the existence of a
conserved quantity. That conserved quantity is called the energy.

Immediately evident is the relevance of time-translation symmetry to
what is often called the “first law of thermodynamics”—the existence of
the energy as a conserved state function (recall Section 1.3 and Postulate
D).

It is instructive to reflect on the profundity of Noether’s theorem by
comparing the conclusion here with the tortuous historical evolution of
the energy concept in mechanics (recall Section 1.4). Identification of the
conserved energy began in 1693 when Leibniz observed that 1mv? + mgh
is a conserved quantity for a mass particle in the earth’s gravitational field.
As successively more complex systems were studied it was found that
additional terms had to be appended to maintain a conservation principle,

“See E Wigner, ibid The physical content of Noether’s theorem 1s imphcit in Emmy Noether’s
purely mathematical studies A beautiful appreciation of this bnlliant mathematician’s Life and work
in the face of implacable prejudice can be found in the introductory remarks to her collected works.
Emmy Noether, Gesummelte Abhandlungen, (Collected Papers), Springer- Verlag, Berlin—-New York.
1983
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but that in each case such an ad hoc addition was possible. The develop-
ment of electromagnetic theory introduced the potential energy of the
interaction of electric charges, subsequently to be augmented by the
electromagnetic field energy. In 1905 Albert Einstein was inspired to alter
the expression for the mechanical kinetic energy, and even to associate
energy with stationary mass, in order to maintain the principle of energy
conservation. In the 1930s Enrico Fermi postulated the existence of the
neutrino solely for the purpose of retaining the energy conservation law in
nuclear reactions. And so the process continues, successively accreting
additional terms to the abstract concept of energy, which is defined by its
conservation law. That conservation law was evolved historically by a long
series of successive rediscoveries. It is now based on the assumption of
time translation symmetry.

The evolution of the energy concept for macroscopic thermodynamic
systems was even more difficult. The pioneers of the subject were guided
neither by a general a priori conservation theorem nor by any specific
analytic formula for the energy. Even empiricism was thwarted by the
absence of a method of direct measurement of heat transfer. Only inspired
insight guided by faith in the simplicity of nature somehow revealed the
interplay of the concepts of energy and entropy, even in the absence of a
priori definitions or of a means of measuring either!

21-4 ENERGY, MOMENTUM, AND
ANGULAR MOMENTUM: THE
GENERALIZED “FIRST LAW” OF THERMOSTATISTICS

In accepting the existence of a conserved macroscopic energy function
as the first postulate of thermodynamics, we anchor that postulate directly
in Noether’s theorem and in the time-translation symmetry of physical
laws.

An astute reader will perhaps turn the symmetry argument around.
There are seven “first integrals of the motion” (as the conserved quantities
are known in mechanics). These seven conserved quantities are the energy,
the three components of linear momentum, and the three components of
the angular momentum; and they follow in parallel fashion from the
translation in “space--time” and from rotation. Why, then, does energy
appear to play a unique role in thermostatistics? Should not momentum
and angular momentum play parallel roles with the energy?

In fact, the energy is not unique in thermostatistics. The linear momen-
tum and angular momentum play precisely parallel roles. The asymmetry
in our account of thermostatistics is a purely conventional one that obscures
the true nature of the subject.

We have followed the standard convention of restricting attention to
systems that are macroscopically stationary, in which case the momentum
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and angular momentum arbitrarily are required to be zero and do not
appear in the analysis. But astrophysicists, who apply thermostatistics to
rotating galaxies, are quite familiar with a more complete form of thermo-
statistics. In that formulation the energy, linear momentum, and angular
momentum play fully analogous roles.

The fully generalized canonical formalism is a straightforward extension
of the canonical formalism of Chapters 16 and 17. Consider a subsystem
consisting of N moles of stellar atmosphere. The stellar atmosphere has a
particular mean molar energy (U/N), a particular mean molar momen-
tum (P/N), and a particular mean molar angular momentum (J/N). The
fraction of time that the subsystem spends in a particular microstate i
(with energy E, momentum P, and angular moment J) is
f(E,P,J,V,N). Then f, is determined by maximizing the disorder, or
entropy, subject to the constraints that the average energy of the subsys-
tem be the same as that of the stellar atmosphere, and similarly for
momentum and angular momentum. As in Section 17.2, we quite evi-
dently find

1
fi=Zexp(=BE~N\,-P, =X\, J) (21.1)

The seven constants 8, A,,, A, , A, A, A, and A, all arise as
Lagrange parameters and they play completely symmetric roles in the
theory (just as Bp does in the grand canonical formalism).

The proper “first law of thermodynamics,” (or the first postulate in our
formulation) is the symmetry of the laws of physics under space—time
translation and rotation, and the consequent existence of conserved energy,

momentum, and angular momentum functions.

21-5 BROKEN SYMMETRY AND GOLDSTONE’S THEOREM

As we have seen, then, the entropy of a thermodynamic system is a
function of various coordinates, among which the energy is a prominent
member. The energy is, in fact, a surrogate for the seven quantities
conserved by virtue of space—time translations and rotations. But other
independent variables also exist—the volume, the magnetic moment, the
mole numbers, and other similar variables. How do these arise in the
theory?

The operational criterion for the independent varnables of thermostatis-
tics (recall Chapter 1) is that they be macroscopically observable. The low
temporal and spatial resolving powers of macroscopic observations re-
quire that thermodynamic variables be essentially time independent on
the atomic scale of time and spatially homogeneous on the atomic scale of
distance. The time independence of the energy (and of the linear and
angular momentum) has been rationalized through Noether’s theorem.
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The time independence of other variables is based on the concept of
broken symmetry and Goldstone’s theorem. These concepts are best intro-
duced by a particular case and we focus specifically on the volume.

For definiteness, consider a crystalline solid. As we saw in Section 16.7,
{the vibrational modes of the crystal are described by a wave number
k(= 2w /X, where A is the wavelength) and by an angular frequency w(k).
For very long wavelengths the modes become simple sound waves, and in
this region the frequency is proportional to the wave number; w = ck
(recall Fig. 16.1). The significant feature is that w(k) vanishes for k = 0
(i.e., for A — o0). Thus, the very mode that is spatially homogeneous has
zero frequency. Furthermore, as we have seen in Chapter 1 (refer also to
Problem 21.5-1), the volume of a macroscopic sample is associated with
the amplitude of the spatially homogeneous mode. Consequently the
volume is an acceptably time independent thermodynamic coordinate.

The vanishing of the frequency of the homogeneous mode is not simply
a fortunate accident, but rather it is associated with the general concept of
broken symmetry. The concept of broken symmetry is clarified by reflect-
ing on the process by which a crystal may be formed. Suppose the crystal
to be solid carbon dioxide (“dry ice”), and suppose the CO, initially to be
in the gaseous state, contained in some relatively large vessel (“infinite” in
size). The gas is slowly cooled. At the temperature of the gas—solid phase
transition a crystalline nucleus forms at some point in the gas. The
nucleus thereafter grows until the gas pressure falls to that on the
gas—solid coexistence curve (i.e., to the vapor pressure of the solid). From
the point of view of symmetry the condensation is a quite remarkable
development. In the “infinite” gas the system is symmetric under a
continuous translation group, but the condensed solid has a lower symme-
try! It is invariant only under a discrete translation group. Furthermore
the location of the crystal is arbitrary, determined by the accident of the
first microscopic nucleation. In that nucleation process the symmetry of
the system suddenly and spontaneously lowers, and it does so by a
nonpredictable, random event. The symmetry of the system is “broken.”

Macroscopic sciences, such as solid state physics or thermodynamics,
are qualitatively different from “microscopic” sciences because of the
effects of broken symmetry, as was pointed out by P. W. Anderson’® in an
early but profound and easily readable essay which is highly recom-
mended to the interested reader.

At sufficiently high temperature systems always exhibit the full symme-
try of the “mechanical potential” (that is, of the Lagrangian or Hamilto-
nian functions). There do exist permissible microstates with lower
symmetry, but these states are grouped in sets which collectively exhibit
the full symmetry. Thus the microstates of a gas do include states with
crystal-like spacing of the molecules—in fact, among the microstates all
manner of different crystal-like spacings are represented, so that collec-

SP. W. Anderson, pp. 175-182 in Concepts in Solids (W. A. Benjamin Inc., New York, 1964).
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tively the states of the gas retain no overall crystallinity whatever. How-
ever, as the temperature of the gas is lowered the molecules select that
particular crystalline spacing of lowest energy, and the gas condenses into
the corresponding crystal structure. This is a partial breaking of the
symmetry. Even among the microstates with this crystalline periodicity
there are a continuum of possibilities available to the system, for the
incipient crystal could crystallize with any arbitrary position. Given one
possible crystal position there exist infinitely many equally possible posi-
tions, slightly displaced by an arbitrary fraction of a “lattice constant”.
Among these possibilities, all of equal energy, the system chooses one
position (i.e., a nucleation center for the condensing crystallite) arbitrarily
and “accidentally”.

An important general consequence of broken symmetry is formulated in
the Goldstone theorem®. It asserts that any system with broken symmetry
(and with certain weak restrictions on the atomic interactions) has a
spectrum of excitations for which the frequency approaches zero as the
wavelength becomes infinitely large.

For the crystal discussed here the Goldstone theorem ensures that a
phonon excitation spectrum exists, and that its frequency vanishes in the
long wavelength limit.

The proof of the Goldstone theorem is beyond the scope of this book,
but its intuitive basis can be understood readily in terms of the crystal
condensation example. The vibrational modes of the crystal oscillate with
sinusoidal time dependence, their frequencies determined by the masses of
the atoms and by the restoring forces which resist the crowding together
or the separation of those atoms. But in a mode of very long wavelength
the atoms move very nearly in phase; for the infinite wavelength mode the
atoms move in unison. Such a mode does not call into action any of the
interatomic forces. The very fact that the original position of the crystal
was arbitrary— that a slightly displaced position would have had precisely
the same energy—guarantees that no restoring forces are called into play
by the infinite wavelength mode. Thus the vanishing of the frequency in
the long wavelength limit is a direct consequence of the broken symmetry.
The theorem, so transparent in this case, is true in a far broader context.
with far-reaching and profound consequences.

In summary, then, the volume emerges as a thermodynamic coordinate
by virtue of a fundamental symmetry principle grounded in the concept of
broken symmetry and in Goldstone’s theorem.

PROBLEMS

21.5-1. Draw a longitudinal vibrational mode in a one-dimensional system, with a
node at the center of the system and with a wavelength twice the nominal length

°P W Anderson thid
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of the system. Show that the instantaneous length of the system is a linear
function of the instantaneous amplitude of this mode. What is the order of
magnitude of the wavelength if the system is macroscopic and if the wavelength is
measured in dimensionless units (i.e., relative to interatomic lengths)?

21-6 OTHER BROKEN SYMMETRY
COORDINATES—ELECTRIC AND MAGNETIC MOMENTS

In the preceding two sections we have witnessed the role of symmetry in
determining several of the independent variables of thermostatistical
theory. We shall soon explore other ways in which symmetry underlies the
bases of thermostatistics, but in this section and in the following we
continue to explore the nature of the extensive parameters. It should
perhaps be noted that the choice of the variables in terms of which a given
problem is formulated, while a seemingly innocuous step, is often the
most crucial step in the solution.

In addition to the energy and the volume, other common extensive
parameters are the magnetic and electric moments. These are also prop-
erly time independent by virtue of broken symmetry and Goldstone’s
theorem. For definiteness consider a crystal such as HCl. This material
crystallizes with an HCI molecule at each lattice site. Each hydrogen ion
can rotate freely around its relatively massive Cl partner, so that each
molecule constitutes an electric dipole that is free to point in any arbitrary
direction in space. At low temperatures the dipoles order, all pointing
more or less in one common direction and thereby imbueing the crystal
with a net dipole moment.

The direction of the net dipole moment is the residue of a random
accident associated with the process of cooling below the ordering temper-
ature. Above that temperature the crystal had a higher symmetry; below
the ordering temperature it develops one unique axis—the direction of the
net dipole moment.

Below the ordering temperature the dipoles are aligned generally (but
not precisely) along a common direction. Around this direction the
dipoles undergo small dynamic angular oscillations (“librations”), rather
like a pendulum. The librational oscillations are coupled, so that libra-
tional waves propagate through the crystal. These librational waves are the
Goldstone excitations. The Goldstone theorem implies that the librational
modes of infinite wavelength have zero frequency’. Thus the electric

"In the interests of clarity I have oversimplified slightly. The discussion here overlooks the fact that
the crystal structure would have already destroyed the spherical symmetry even above the ordering
temperature of the dipoles. That is, the discussion as given would apply to an amorphous (spherically
symmetric) crystal but not to a cubic crystal. In a cubic crystal each electric dipole would be coupled
by an “anisotropy energy” to the cubic crystal structure, and this coupling would (naively) appear to
provide a restoring {orce even to infinite wavelength librational modes. However, under these
circumstances librations and crystal vibrations would couple to form mixed modes, and these coupled
“libration—vibration™ modes would again satisfy the Goldstone theorern
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dipole moment of the crystal qualifies as a time independent thermody-
namic coordinate.

Similarly ferromagnetic crystals are characterized by a net magnetic
moment arising from the alignment of electron spins. These spins par-
ticipate in collective modes known as “spin waves.” If the spins are not
coupled to lattice axes (i.e., in the absence of “magnetocrystalline ani-
sotropy”’) the spin waves are Goldstone modes and the frequency vanishes
in the long wavelength limit. In the presence of magnetocrystalline ani-
sotropy the Goldstone modes are coupled phonon-spin-wave excitations.
In either case the total magnetic moment qualifies as a time independent
thermodynamic coordinate.

21-7 MOLE NUMBERS AND GAUGE SYMMETRY

We come to the last representative type of thermodynamic coordinate,
of which the mole numbers are an example.

Among the symmetry principles of physics perhaps the most abstract is
the set of “gauge symmetries.” The representative example is the “gauge
transformation” of Maxwell’s equations of electromagnetism. These equa-
tions can be written in terms of the observable electric and magnetic
fields, but a more convenient representation introduces a “scalar poten-
tial” and a “vector potential.” The electric and magnetic fields are
derivable from these potentials by differentiation. However the electric
and magnetic potentials are not unique. Either can be altered in form
providing the other is altered in a compensatory fashion, the coupled
alterations of the scalar and vector potentials constituting the “gauge
transformation.” The fact that the observable electric and magnetic fields
are invariant to the gauge transformation is the “gauge symmetry” of
electromagnetic theory. The quantity that is conserved by virtue of this
symmetry is the electric charge®.

Similar gauge symmetries of fundamental particle theory lead to con-
servation of the numbers of leptons (electrons, mesons, and other particles
of small rest mass) and of the numbers of baryons (protons, neutrons, and
other particles of large rest mass).

In the thermodynamics of a hot stellar interior, where nuclear transfor-
mations occur sufficiently rapidly to achieve nuclear equilibrium, the
numbers of leptons and the numbers of baryons would be the appropriate
“mole numbers” qualifying as thermodynamic extensive parameters.

In common terrestrial experience the baryons form long-lived associa-
tions to constitute quasi-stable atomic nuclei. It is then a reasonable

8 The result is a uniquely quantum mechanical result. It depends upon the fact that the phase of the
quantum mechanical wave function is arbitrary (“gauge symmetry of the second kind™), and it is the
interplay of the two types of gauge symmietry that leads to charge conservation.
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approximation to consider atomic (or even molecular) species as being in
quasi-stable equilibrium, and to consider the atomic mole numbers as
appropriate thermodynamic coordinates.

21-8 TIME REVERSAL, THE EQUAL
PROBABILITIES OF MICROSTATES,
AND THE ENTROPY PRINCIPLE

We come finally to the essence of thermostatistics—to the principle that
an isolated system spends equal fractions of the time in each of its
permissible microstates. Given this principle it then follows that the
number of occupied microstates is maximum consistent with the external
constraints, that the logarithm of the number of microstates is also
maximum (and that it is extensive), and that the entropy principle is
validated by interpreting the entropy as proportional to In§2.

The permissible microstates of a system can be represented in an
abstract, many-dimensional state space (recall Section 15.5). In the state
space every permissible microstate is represented by a discrete point. The
system then follows a random, erratic trajectory in the space as it
undergoes stochastic transitions among the permissible states. These tran-
sitions are guaranteed by the random external perturbations which act on
even a nominally “isolated” system (although other mechanisms may
dominate in particular cases—recall Section 15.1).

The evolution of the system in state space is guided by a set of
transition probabilities. If a system happens at a particular instant to be in
a microstate i then it may make a transition to the state j, with
probability (per unit time) f, . The transition probabilities { f,,} form a
network joining pairs of states throughout the state space.

The formalism of quantum mechanics establishes that, at least in the
absence of external magnetic fields®

f, =1, (21.2)

That 1s, a system in the state i will undergo a transition to the state j with
the same probability that a system in state j will undergo a transition to
the state i.

The “principle of detuiled balance™ (equation 21.2) follows from the
symmetry of the relevant laws of quantum mechanics under time inversion
(i.e., under the transformation ¢ — -t').

°The restriction that the external magnetic field must be zero can be dealt with most simply by
including the source of the magnetic field as part of the system. In any case the presence of external
magnetic fields complicates intermediate statements but does not alter final conclusions, and we shall
here 1gnore such fields in the 1nterests of simphcity and clanty.
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Although we merely quote the principle of detailed balance as a
quantum mechanical theorem, it is intuitively reasonable. Consider a
system in the microstate i, and imagine a video tape of the dynamics of
the system (a hypothetical form of video tape that records the microstate
of the system!). After a brief moment the system makes a transition to the
microstate j. If the video tape were to be played backwards the system
would start in the state j and make a transition to the state ;. Thus the
interchangeability of future and past, or the time reversibility of physical
laws, associates the transitions 1 = j and j — 1 and leads to the equality
(21.2) of the transition probabilities.

The principle of equal probabilities of states in equilibrium (f, = 1/8)
follows from the principle of detailed balance ( f,, = f,). To see that this is
so we first observe that f, is the conditional probablhty that the system
will undergo a transition to state j zf it 1s initially in state i. The number
of such transitions per unit time 1s then the product of f, and the
probability f, that the system is initially in the state :. Hence the total
number of transitions per unit time out of the state : 1s X, f,f, . Similarly
the number of transitions per unit time into the state 7 is )—_J . However
in equilibrium the occupation probability f, of the ith state must be
independent of time; or

L o Yps,+ Tpg=0 (213)

J#1 1+

With the symmetry condition f,, = f,, a general solution of equation 21.3
is f,=/, for all i and j. That 1s the configuration f =1/ is an
equllzbrzum configuration for any set of transition probabllztzes {],} for
which f, = f,,.

As the system undergoes random transitions among its microstates
some states are “visited” frequently (i.e., X f, is large), and others are
visited only infrequently Some states are tenacious of the system once it
does arrive (i.e,, L f, 1s small), whereas others permit it to depart rapidly.
Because of tlme reversal symmetry, however, those states that are visited
only infrequently are tenacious of the system. Those states that are visited
frequently host the system only fleetingly. By virtue of these compensating
attributes the system spends the same fraction of time in each state.

The equal probabilities of pernussible states for a closed system in equi-
hbrium is a consequence of time reversal symmetry of the relevant quantum
mechamical laws*.

'In fact a weaker condition, £,(f,,  f,) = 0. which follows from a more abstract requirement of
*causality.” 1s also sufhicient to ensure that f, = 1/ in cquihbnum Thas fact does not invahdate the
previous statement
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21-9 SYMMETRY AND COMPLETENESS

There is an additional, more subtle aspect of the principle of equal a
priori probabilities of states. Consider the schematic representation of
state space in Fig. 21.2. The boundary B separates the permissible states
(“inside”) from the nonpermissible states (“outside”). The transition
probabilities f,, are symmetric for all states 1 and j inside the bound-
ary B.

FIGURL 21 2

Suppose now that the permussible region in state space is divided into
two subregions (denoted by 4” and A4” in Fig. 21.2) such that all
transition probabulities f, vanish if the state i 1sin 4’ and j 1s in 4”, or
vice versa. Such a set of transition probabilities 1s fully consistent with
time reversal symmetry (or detailed balance), but it does nor lead to a
probability uniform over the physically permissible region (A4’ + A”). If
the system were initially in 4’ the probability density would diffuse from
the initial state to eventually cover the region A’ uniformly, but it would
not cross the internal boundary to the region A4”.

The *““accident” of such a zero transition boundary, separating the
permussible states into nonconnected subsets, would lead to a failure of
the assumption of equal probabilities throughout the permissible region of
state space.

It 1s important to recognize how incredibly stringent must be the rule of
vanishing of the f,, between subregions if the principle of equal
probabilities of states is to be violated. It i1s not sufficient for transttion
probabilities between subregions to be very small—every such transition
probabihity must be absolutely and rigorously zero. If even one or a few
transition probabilities were merely very small across the internal boundary
it would take a very long time for the probability density to fill both A’
and A" uniformly, but eventually it would.

The *accident” that we feared might vitiate the conclusion of equal
probabilities appears less and less likely-—unless it is not an accident at
all, but the consequence of some underlying principle. Throughout auan.
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tum physics the occurrence of outlandish accidents is disbarred; physics is
neither mystical nor mischievous. If a physical quantity has a particular
value, say 4.5172... then a second physical quantity will not have
precisely that same value unless there 1s a compelling reason that ensures
equality. Degeneracy of energy levels is the most familiar example—when
it occurs it always reflects a symmetry origin. Similarly, transition prob-
abilities do not accidentally assume the precise value zero; when they do
vanish they do so by virtue of an underlying symmetry based reason. The
vanishing of a transition probability as a consequence of symmetry is
called a “selection rule.”

Selection rules that divide the state space into disjoint regions do exist.
They always reflect symmetry origins and they imply conservation princi-
ples. An already familiar example 1s provided by a ferromagnetic system.
The states of the system can be classified by the components of the total
angular momentum. States with different total angular momentum com-
ponents have different symmetries under rotation, and the selection rules
of quantum mechanics forbid transitions among such states. These selec-
tion rules give rise to the conservation of angular momentum.

More generally, then, the state space can be subdivided into disjoint
regions, not connected by transition probabilities. These regions are never
accidental; they reflect an underlying symmetry origin. Each region can be
labeled according to the symmetry of its states—such labels are called the
“characters of the group representation.” The symmetry thereby gives rise
to a conserved quantity, the possible values of which correspond to the
distinguishing labels for the disjoint regions of state space.

In order that thermodynamics be valid it is necessary that the set of
extensive parameters be complete. Any conserved quantity, such as that
labelling a disjuncture of the state space, must be included in the set of
thermodynamic coordinates. Specifying the value of that conserved quan-
tity then restricts the permissible state space to a single disjoint sector ( 4’
alone, or 4" alone, in Fig. 21.2). The principle of equal probabilities of
states is restored only when all such symmetry based thermodynamic
coordinates are recognized and included in the theory.

Occasionally the symmetry that leads to a selection rule is not evident,
and the selection rule is not suspected in advance. Then conventional
thermodynamics leads to conclusions discrepant with experiment. Puzzle-
ment and consternation motivate exploration until the missing symmetry
principle is recognized. Such an event occurred in the exploration of the
properties of gaseous hydrogen at low temperatures. Hydrogen molecules
can have their two nuclear spins parallel or antiparallel, the molecules
then being designated as “ortho-hydrogen™ or “para-hydrogen,” respec-
tively. The symmetries of the two types of molecules are quite different. In
one case the molecule is symmetric under reflection in a plane perpendicu-
lar to the molecular axis, in the other case there is symmetry with respect
to mversion through the center of the molecule. Consequently a selection
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rule prevents the conversion of one form of molecule to the other. This
unsuspected selection rule led to spectacularly incorrect predictions of the
thermodynamic properties of H, gas. But when the selection rule was at
last recognized, the resolution of the difficulty was straightforward. Ortho-
and para-hydrogen were simply constdered to be two distinct gases, and
the single mole number of “hydrogen” was replaced by separate mole
numbers. With the theory thus extended to include an additional con-
served coordinate, theory and experiment were fully reconciled.

Interestingly, a different “operational” solution of the ortho-H ,, para-H,
problem was discovered. If a minute concentration of oxygen gas or water
vapor is added to the hydrogen gas the properties are drastically changed.
The oxygen atoms are paramagnetic, they interact strongly with the
nuclear spins of the hydrogen molecules, and they destroy the symmetry
that generates the selection rule. In the presence of a very few atoms of
oxygen the ortho- and parahydrogen become interconvertible, and only a
single mole number need be introduced. The original “naive” form of
thermodynamics then becomes valid.

To return to the general formalism, we thus recognize that all symme-
tries must be taken into account in specifying the relevant state space of a
system.

As additional symmetries are discovered in physics the scope of thermo-
statistics will expand. Perhaps all the symmetries of an ideal gas at
standard temperatures and pressures are known, but the case of ortho-
and para-hydrogen cautions modesty even in familiar cases. Moreover
thermodynamics has relevance to quasars, and black holes, and neutron
stars and quark matter and gluon gases. For each of these there will be
random perturbations, and symmetry principles, conservation laws, and
Goldstone excitations,—and therefore thermostatistics.






APPENDIX

SOME RELATIONS
INVOLVING PARTIAL
DERIVATIVES

A-1 PARTIAL DERIVATIVES

In thermodynamics we are interested in continuous functions of three
(or more) variables

¥ =¢(x,y,2) (A.1)

If two independent variables, say y and z, are held constant, { becomes a
function of only one independent variable x, and the derivative of i with
respect to x may be defined and computed in the standard fashion. The
derivative so obtained is called the partial derivative of i} with respect to x
and is denoted by the symbol (dy/dx), , or simply by dy/dx. The
derivative depends upon x and upon the values at which y and z are held
during the differentiation; that is dy,/dx is a function of x, y, and z. The
derivatives dy /dy and 34// dz are defined in an identical manner.

The function dv,/dx, if continuous, may 1itself be differentiated to yield
three derivatives which are called the second partial derivatives of

()= 5

ay(f)ﬁ) =34 (A.2)

3z ( gi ) = aizgx

By partial differentiation of the functions dy,/dy and dvy/dz, we obtain
other second partial derivatives of ¢

% Iy R o Yy %y

dxdy ay? 0z dy Ox 0z dydz 322
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It may be shown that under the continuity conditions that we have
assumed for  and its partial derivatives the order of differentiation is
immaterial, so that

i I A N L S SR
dxdy dydx’ Ixdz 9z dx’ dydz  9z9y )

There are therefore just six nonequivalent second partial derivatives of a
function of three independent variables (three for a function of two
variables, and 3n(n + 1) for a function of n variables).

A-2 TAYLOR’S EXPANSION
The relationship between Y(x, y,z) and (x + dx, y + dy,z + dz),
where dx, dy, and dz denote arbitrary increments in x, y, and z, is given

by Taylor’s expansion

Y(x+dx, y+dy,z+dz)

Y ay Y %y ™y
=y(x,y,z)+ —a———d Ty dy Iy + - d)+2[3x (d) + yz(dy)2

llb(a')-i—Z llbda'+23l'ba’xdz-i—ZaZl'b

ax dy ox 0z aydz DET

(A.4)
This expanston can be written in a convenient symbolic form
Y(x + dx,y + dy,z + dz) = e@x(/9x) v dy(8/33) 1 d2(8/30Ny (x . 7)
(A.5)

Expansion of the symbolic exponential according to the usual series

1 1
"‘1+A+§A LR e (A.6)

then reproduces the Taylor expansion (equation A.4)
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A-3 DIFFERENTIALS

The Taylor expansion (equation A.4) can also be written in the form

Y(x+dx,y+dy,z+dz)—(x,y,2)

1 1,
=dy + 2—!d24/+-”+—n!d¢"' (A.7)
where
L AN, 7 W
dy = Bx 3y dy + e dz (A.8)
M, 2, 0% 3y %y
2 ==
d*y 8x2(dX) + 8y2(dy) Py (d) +2(9 2y dx dy
%y I
+2 Fr dxdz + 2 3y 9z dydz (A.9)
and generally
e 0 0 a\”
dmy = dx—ax + dy———ay + dz—az v(x.,y,z2) (A.10)

These quantities dy,d*,...,d™"},... are called the first-, second-, and
nth-order differentials of .

A-4 COMPOSITE FUNCTIONS

Returning to the first-order differential

d¢=(g—i)) dx +(‘3j)“d +(‘Z‘P)“dz (A.11)

an interesting case arises when x, y, and z are not varied independently
but are themselves considered to be functions of some vanable u. Then

_dx _ & _dz
dx = dud dy = e du and dz = T du

whence

ww-|(3), (5 % ) e e
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or

(2, % ()2 ). 4

du \dx),.du dy |, .du 9z ) x.vdu (A.13)

If x and y are functions of two (or more) variables, say 4 and v, then

Ox Ox
dx = (%)udqu(:?—;)udv, etc.

(A.14)
or
dxp—(%%)vdu +(%‘bv—)udu (A.15)
where
[50), - (5] 5] (5) 3 (305,
(A.16)

and similarly for (d¢/dv) .
It may happen that u is identical to x itself. Then

[55).- (3. (5) () + (5] (&),

Other special cases can be treated similarly.

A-S IMPLICIT FUNCTIONS

If ¥ is held constant, the variations of x, y, and z are not independent,
and the relation

¥(x, y,z) = constant (A.18)
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gives an implicit functional relation among x, y, and z. This relation may
be solved for one variable, say z, in terms of the other two

z=z(x.y) (A.19)

This function can then be treated by the techniques previously described
to derive certain relations among the partial derivatives. However, a more
direct method of obtaining the appropriate relations among the partial
derivatives is merely to put dy = 0 in equation A.8.

0=(%)1:-)‘L dx +(gt)x'zdy +(%)x’ydz (A.20)

If we now put dz = 0 and divide through by dx, we find

o=(3),. (5=, (2

in which the symbol (dy/dx), , approprlately indicates that the implied
functional relation between y and x is that determined by the constancy
of ¥ and z. Equation A.21 can be written in the convenient form

2) - —(99/9x) .-
0x /v (9¢/9y)...
This equation plays a very prominent role in thermodynamic calculations.

By successively putting dy = 0 and dx = 0 in equation A 20, we find the
two similar relations

(A.22)

—(dy/0x), .
9% /4.y (alp/az)xy
and
32) ~(94/9y).
- = — =< A.24
( 3}1 ¥.x (3‘1//32) X,y ( )
Returning to equation A.20 we again put dz = 0, but we now divide
through by dy rather than by dx
_ (o) [9x 4
o=@l 5], e
whence
dx —(99/3y)...
gx = : A 26
(ay)\PZ (84‘/8)()): ( )
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and, on comparison with equation A.21, we find the very reasonable result
that

ax) 1
)y, (By/x),., (A.27)
(3)) vz (9dy/dx)y.,
From equations A.22 to A.24 we then find
=) (2. (%), -
(9y)¢.z( dz )¢ ax o, ! (A.28)

Finally we return to our basic equation, which defines the differential
dy, and consider the case in which x, y, and z are themselves functions
of a variable u (as in equation A.12)

[(2e) & () b (o) a
e [( 3")»2‘1“ +(9y),,zdu +( 32)x.ydu]du (A.29)

I  is to be cons.tant, there must be a relation among x, y, and z, hence
also among dx/du, dy/du, and dz/du. We find

0= (3], 81, (5).(2).(2). 2], oo

If we further require that z shall be a constant independent of u we find

0= (%))uz(%)w+(%)x.z(%)w (A-31)

or

(Iy/0u)y.. _ (94/0x),..

= - A32
(ax/au)\b.z (a‘P/ay)x.z ( )
Comparison with equation A.22 shows that
Q) _ ( 3)"/3“) ¥.z
(3)6 voe  (dx/0u)y.. (A-33)

Equations A22, A27, and A.33 are among the most useful formal
manipulations in thermodynamic calculations.
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MAGNETIC
SYSTEMS

If matter is acted on by a magnetic field it generally develops a
magnetic moment. A description of this magnetic property, and of its
interaction with thermal and mechanical properties, requires the adoption
of an additional extensive parameter. This additional extensive parameter
X and its corresponding intensive parameter P are to be chosen so that
the magnetic work dW,, 1s

dWmaB = PdX (B.1)
where

dU = dQ + dW,, + dW, + dW, (B2)

mag

Here dQ is the heat TdS, dW,, is the mechanical work (e.g., — PdV’), and
dW, is the chemical work Lp dN. We consider a specific situation that
clearly indicates the appropriate choice of parameters X and P.

Consider a solenoid, or coil, as shown in Fig. B.1. The wire of which the
solenoid is wound is assumed to have zero electrical resistance (supercon-
ducting). A battery is connected to the solenoid, and the electromotive
force (emf) of the battery is adjustable at will. The thermodynamic system
1s inside the solenoid, and the solenoid is enclosed within an adiabatic
wall.

If no changes occur within the system, and if the current [ is constant,
the battery need supply no emf because of the perfect conductivity of the
wire.

Let the current be I and let the local magnetization of the thermody-
namic system be M(r). The current I can be altered at will by controlling
the battery emf. The magnetization M(r) then will change also. We assume
that the magnetization at any position r is a single-valued function of the
current

M(r) = M(r; 1) (R 2
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Systems for which M(r; I) is not single valued in I are said to ex-
hibit hysterests; most ferromagnetic systems have this property. Hysteresis
generally is associated with a magnetic heterogeneity of the sample, the
separate regions being known as domains. The analysis we shall develop is
generally applicable within a ferromagnetic domain, but for simplicity we
explicitly exclude all hysteretic systems. Paramagnetic, diamagnetic, and
antiferromagnetic systems satisfy the requirement that M(r; /) is single
valued in I.

If the thermodynamic system were not within the solenoid, the current
I would produce a magnetic field (more accurately, a magnetic flux
density) B,(I). This external “field” may be a function of position within
the solenoid, but it is linear in /. That is

B, = bl (B.4)

where b is a vector function of position.

We suppose that the current is increased, thereby increasing the exter-
nal field B,. The magnetic moment changes in response. In order to
accomplish these changes, the battery must deliver work, and we seek the
relationship between the work done and the changes in B, and M.

The rate at which work is done by the battery is given by

dw,

mag = x )
7 I % (voltage) (B.5)
in which (voltage) denotes the back emf induced in the solenoid windings
by the changes that occur within the coil.
The induced emf in the solenoid arises from two sources. One source is
independent of the thermodynamic system and results from a change in
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the flux associated with the field B,. Rather than compute this flux and
voltage, we can write the resultant contribution to dW, ,, directly. For an

empty solenoid the work is just the change in the energy of the magnetic
field, or

AWy = ( T f Bde) (B.6)

in which p, = 47 X 107 'T - m/4, and in which the integral is taken over
the entire volume of the solenoid.

The second contribution to dW,,,, results from the thermodynamic
system itself and consequently is of more direct interest to us. It is evident
that the change of magnetic moment of each infinitesimal element of the
system contributes separately and additively to the total induced emf, and
furthermore that the induced emf produced by any change in dipole
moment depends not on the nature of the dipole but only on the rate of
change of its moment and on its position in the solenoid. Consider then a
particular model of an elementary dipole at the position r: a small current
loop of area a and current /, with a magnetic moment of m = ja. If the
current in the solenoid is I, the field produced by the solenoid at the point
r is B,(r) = b(r)/. This field produces a flux linkage through the small
current loop of magnitude b(r) » al. Thus the mutual inductance between
solenoid and current loop is b(r) < a. If the current in the current loop
changes, it consequently induces a voltage in the solenoid given by

(voltage) = [b(r) - a] % (B.7)
~ b(r) (3)

1 d
= 7B 50 (B.9)

Thus the work done by the battery is

AW,
dt

Although this result has been obtained for a particular model of an
elementary dipole, it holds for any change in elementary dipole moment.
In particular if M(r) is the magnetization, or the dipole moment per unit
volume in the system at the point r, we set

m =fM(r) dv (B.11)
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To obtain the total work, we sum over all elementary dipoles, or
integrate over the volume of the sample

aw dM
mag .
7 fBe 7 dv (B.12)

Adding the two contributions to the magnetic work, we find

1
aw,,, = d(meﬁdV

+ /(Be - dM) dV (B.13)

This is the fundamental result on which the thermodynamics of magnetic
systems is based.

In passing we note that the local field H can be introduced in place of
the external field H, by noting that the difference H — H,, is just the field
produced by the magnetization M(r) acting as a magnetostatic source. In
this way it can be shown' that

aw, =/H-dBdV (B.14)

mag

where H and B are local values. However the form of the magnetic work
expression we shall find most convenient is the first derived (equation
B.13).

In the general case the magnetization M(r) will vary from point to point
within the system, even if the external field B, is constant. This variation
may arise from inherent inhomogeneities in the properties of the system,
or it may result from demagnetization effects of the boundaries of the
system. We wish to develop the theory for homogeneous systems. We
therefore assume that B, is constant and that the intrinsic properties of
the system are homogeneous. We further assume that the system is
ellipsoidal in shape. For such a system the magnetization M is indepen-
dent of position, as shown in any text on magnetostatics.

The magnetic work equation can now be written as

— 4l L rpe
AWy = d( T | B: dV) +B,-dl (B.15)
where I is the total magnetic dipole moment of the system
1= [Mdv =MV (B.16)

1See V. Heine, Proc. Cambridge Phil. Soc., 52, 546 (1956).
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The energy differential is
d(Energy) = TdS — PdV + d(%fBede) +B,-dl + ZP’,de
0 1

(B.17)

The third term on the right of the foregoing equation does not involve
the thermodynamic system itself but arises only from the magnetostatic
energy of the empty solenoid. Consequently it is convenient to absorb this
term into the definition of the energy. We define the energy U by

U = Energy — 1 BXdv (B.18)
2p0J ¢

so that U is the total energy contained within the solenoid relative to the
state in which the system is removed to its field free fiducial state and the
solenoid is left with the field B,. This redefinition of the internal energy
does not alter any of the formalism of thermodynamics. Thus we write

dU=TdS — PdV + B,dl, + } p dN, (B.19)
1

where I, is the component of I parallel to B,.

The extensive parameter descriptive of the magnetic properties of a system
is 1, the component of the total magnetic moment parallel to the external
field. The intensive parameter in the energy representation is B,.

The fundamental equation is

U=U(S,V,I; Ny,...,N,) (B.20)

and

— = B, (B.21)
(8IB)S,V.N1. .N,
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Energy

UNITS AND CONVERSION FACTORS

1 Joule =

Pressure

107 ergs

0.2389 calories

9.480 x 10~¢ Btu

9.869 x 102 liter-atmospheres
0.7376 foot-pounds

2.778 x 10~ * watt-hours

3.724 x 10~ horsepower-hours

1 Pascal =

Volume

1m?

1 Newton/m?

10 dynes/cm?

10 baryes

10~° bars

1.450 X 10~ * psi (pounds/inch?)
0.9869 X 10~ ° atmospheres
7.5006 x 10~ * Torr (or “mm Hg”)

10° cm®

10° liters

6.1024 X 10* inch’®

35.315 ft?

264.17 U.S. gallons

219.97 British Imperial gallons

Temperature

T(°C) = T(Kelvin) — 273.15
T(°R) = 1.8 X T(Kelvin)

(1077 J ferg)

(4.186 J /cal)

(1055 J /Btu)

(101.3 J /liter-atm)
(1.356 J /ft-pound)
(3600 J /watt-hr)
(2.685 X 10° J /hp-hr)

(6897 Pa/psi)
(1.013 X 10° Pa/atm)
(133.3 Pa/Torr)

(1.639 x 10 > m’/in%)
(.02832 m*/ft?)

(3.785 x-10"* m?/gal)
(4.546 x 103 m? /gal)

T(°F) = T(°R) — 459.67 = 1.8 X T(°C) + 32

CONSTANTS

R = 8.314 Joule/mole-Kelvin = 1.986 calories/mole-Kelvin
k

R/k, = 6022 x 102 /mole
h = 6.626 X 10~ ** Joule-sec

5 = 1.381 x 10~ % Joules /Kelvin
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