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Preface

This textbook is intended for an undergraduate course in classical mechanics taken by stu-
dents majoring in physics, physical science, or engineering. We assume that the student
has taken a year of calculus-based general physics and a year of differential /integral cal-
culus. We recommend that a course in differential equations and matrix algebra be taken
prior to, or concurrently with, this course in classical mechanics.

The seventh edition of this text adheres to the same general philosophy of the pre-
vious editions: it centers on the development and exposition of Newtonian mechanics with
the more advanced Lagrangian and Hamiltonian formalism introduced and used only in
the last two chapters. New material has been added to, and old material has been elimi-
nated from, some of the chapters. We have expended much effort to stamp out annoying
typographical errors, inadvertent mistakes, and unclear presentations. Explanations of
some of the more difficult concepts have been expanded, and many figures and examples
have been added with the intent of achieving greater clarification. Several sections have
been greatly modified, and some new ones have been added. Those sections that are to
be used with software tools such as Mathcad and Mathematica as part of the problem solv-
ing strategy have been streamlined with many of the details relegated to an appendix.

A brief synopsis of each chapter follows:

e Chapter 1. A brief introduction to dimensional analysis and vector algebra; con-
cepts of velocity and acceleration.

e Chapter 2. Newton’s laws of motion; motion in one dimension. Expansion of dis-
cussion of inertial frames of reference. Introduction to solving problems numeri-
cally using Mathcad: vertical fall through a fluid.

¢ Chapter 3. Harmonic motion, resonance, the driven oscillator. Numerical solution
of non-linear oscillator problems.

¢ Chapter 4. Motion of a particle in three dimensions. Potential energy and conser-
vative forces. Introduction to solving problems numerically using Mathematica;
projectile motion in a resistive medium; Mickey Mantle’s “tape measure” homerun.

e Chapter5. The analysis of motion in a noninertial frame of reference and fictitious
forces. Numerical solution of projectile motion in a rotating frame of reference.

¢ Chapter 6. Gravitation. Expanded discussion of central forces. Conic sections and
orbits. Expanded discussion of orbital energy. Criteria for stable orbits. Rutherford
scattering.

e Chapter 7. Many particle systems. The three-body problem: numerical solution.
Lagrangian points. Conservation laws and collisions. Expanded presentation of
rocket motion.

e Chapter 8. Rotation of a body about a fixed axis. Expanded discussion of laminar
motion. Moments of inertia.
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e Chapter 9. Rotation of a body in three dimensions. Numerical solutions of prob-
lems involving the rotation of bodies with differing principal moments of inertia.
Motion of tops and gyroscopes. Stability of a rotating bicycle wheel (why Lance
doesn’t fall over).

¢ Chapter 10. Lagrangian and Hamiltonian mechanics. Hamilton’s and D’Alembert’s
principles. Conservation laws.

¢ Chapter 11. Coupled oscillators. Normal coordinates and normal modes of oscil-
lation. The eigenvalue problem. The loaded string and wave motion.

More worked examples have been added to this edition. Most worked examples can
be found at the end of each section. The problems found in the first set at the end of each
chapter can be solved analytically. A second set contains problems that require numeri-
cal techniques, typically by using Mathcad, Mathematica, or any other software tool
favored by the student or required by the instructor.

The appendices contain information or reference material that should help the time-
challenged student solve problems without resorting to time-consuming data searches else-
where. Answers to a few selected odd-numbered problems are given at the end of the text.

An updated problem solutions manual is available to instructors who adopt the text.
Brooks Cole/Thomson Learning may provide complementary aids and supplements to
those qualified under our adoption policy. Please contact your sales representative for more
information.
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Plato’s inscription over his academy, in Athens

1.1]| Introduction

The science of classical mechanics deals with the motion of objects through absolute
space and time in the Newtonian sense. Although central to the development of classical
mechanics, the concepts of space and time would remain arguable for more than two and
a half centuries following the publication of Sir Isaac Newton’s Philosophie naturalis prin-
cipia mathematica in 1687. As Newton put it in the first pages of the Principia, “Absolute,
true and mathematical time, of itself, and from its own nature, flows equably, without rela-
tion to anything external, and by another name is called duration. Absolute space, in its
own nature, without relation to anything external, remains always similar and immovable.”

Ernst Mach (1838-1916), who was to have immeasurable influence on Albert
Einstein, questioned the validity of these two Newtonian concepts in The Science of
Mechanics: A Critical and Historical Account of Its Development (1907). There he claimed
that Newton had acted contrary to his expressed intention of “framing no hypotheses,”
that is, accepting as fundamental premises of a scientific theory nothing that could not
be inferred directly from “observable phenomena” or induced from them by argument.
Indeed, although Newton was on the verge of overtly expressing this intent in Book III
of the Principia as the fifth and last rule of his Regulae Philosophandi (rules of reasoning
in philosophy), it is significant that he refrained from doing so.

Throughout his scientific career he exposed and rejected many hypotheses as false;
he tolerated many as merely harmless; he put to use those that were verifiable. But he
encountered a class of hypotheses that, neither “demonstrable from the phenomena nor
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following from them by argument based on induction,” proved impossible to avoid. His
concepts of space and time fell in this class. The acceptance of such hypotheses as fun-
damental was an embarrassing necessity; hence, he hesitated to adopt the frame-no-
hypotheses rule. Newton certainly could be excused this sin of omission. After all, the
adoption of these hypotheses and others of similar ilk (such as the “force” of gravita-
tion) led to an elegant and comprehensive view of the world the likes of which had never
been seen.

Not until the late 18th and early 19th centuries would experiments in electricity and
magnetism yield observable phenomena that could be understood only from the vantage
point of a new space—time paradigm arising from Albert Einstein's special relativity.
Hermann Minkowski introduced this new paradigm in a semipopular lecture in Cologne,
Germany in 1908 as follows:

Gentlemen! The views of space and time which I wish to lay before you have sprung from
the soil of experimental physics and therein lies their strength. They are radical. From now
on, space by itself and time by itself are doomed to fade away into the shadows, and only
a kind of union between the two will preserve an independent reality.

Thus, even though his own concepts of space and time were superceded, Newton most
certainly would have taken great delight in seeing the emergence of a new space—time
concept based upon observed “phenomena,” which vindicated his unwritten frame-no-

hypotheses rule.

1.2| Measure of Space and Time: Units'
and Dimensions

We shall assume that space and time are described strictly in the Newtonian sense. Three-
dimensional space is Euclidian, and positions of points in that space are specified by a set
of three numbers (x,y,z) relative to the origin (0,0,0) of a rectangular Cartesian coordinate
system. A length is the spatial separation of two points relative to some standard length.

Time is measured relative to the duration of reoccurrences of a given configuration
of a cyclical system—say, a pendulum swinging to and fro, an Earth rotating about its axis,
or electromagnetic waves from a cesium atom vibrating inside a metallic cavity. The time
of occurrence of any event is specified by a number ¢, which represents the number of reoc-
currences of a given configuration of a chosen cyclical standard. For example, if 1 vibra-
tion of a standard physical pendulum is used to define 1 s, then to say that some event
occurred at ¢ = 2.3 s means that the standard pendulum executed 2.3 vibrations after its
“start” at t = 0, when the event occurred.

All this sounds simple enough, but a substantial difficulty has been swept under the
rug: Just what are the standard units? The choice of standards has usually been made
more for political reasons than for scientific ones. For example, to say that a person is
6 feet tall is to say that the distance between the top of his head and the bottom of his
foot is six times the length of something, which is taken to be the standard unit of 1 foot.

' A delightful account of the history of the standardization of units can be found in H. A. Klein, The Science of
Measurement—A Historical Survey, Dover Publ., Mineola, 1988, ISBN 0-486-25839-4 (pbk).
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In an earlier era that standard might have been the length of an actual human foot or
something that approximated that length, as per the writing of Leonardo da Vinci on the
views of the Roman architect—engineer Vitruvius Pollio (first century B.C.E.):

... Vitruvius declares that Nature has thus arranged the measurements of a man: four fin-
gers make 1 palm and 4 palms make 1 foot; six palms make 1 cubit; 4 cubits make once
a man’s height; 4 cubits make a pace, and 24 palms make a man’s height . ..

Clearly, the adoption of such a standard does not make for an accurately reproducible
measure. An early homemaker might be excused her fit of anger upon being “short-
footed” when purchasing a bolt of cloth measured to a length normalized to the foot of
the current short-statured king.

The Unit of Length

The French Revolution, which ended with the Napoleanic coup d’etat of 1799, gave birth
to (among other things) an extremely significant plan for reform in measurement. The
product of that reform, the metric system, expanded in 1960 into the Systéme International
d’Unités (SI).

In 1791, toward the end of the first French National Assembly, Charles Maurice de
Talleyrand-Perigord (1754~1838) proposed that a task of weight and measure reform be
undertaken by a “blue ribbon” panel with members selected from the French Academy
of Sciences. This problem was not trivial. Metrologically, as well as politically, France was
still absurdly divided, confused, and complicated. A given unit of length recognized in Paris
was about 4% longer than that in Bordeaux, 2% longer than that in Marseilles, and 2%
shorter than that in Lille. The Academy of Sciences panel was to change all that. Great Britain
and the United States refused invitations to take part in the process of unit standardization.
Thus was born the antipathy of English-speaking countries toward the metric system.

The panel chose 10 as the numerical base for all measure. The fundamental unit of
length was taken to be one ten-millionth of a quadrant, or a quarter of a full meridian. A
surveying operation, extending from Dunkirk on the English Channel to a site near Barcelona
on the Mediterranean coast of Spain (a length equivalent to 10 degrees of latitude or one
ninth of a quadrant), was carried out to determine this fundamental unit of length accu-
rately. Ultimately, this monumental trek, which took from 1792 until 1799, changed the stan-
dard meter—estimated from previous, less ambitious surveys—by less than 0.3 mm, or
about 3 parts in 10,000. We now know that this result, too, was in error by a similar factor.
The length of a standard quadrant of meridian is 10,002,288.3 m, a little over 2 parts in 10,000
greater than the quadrant length established by the Dunkirk—Barcelona expedition.

Interestingly enough, in 1799, the year in which the Dunkirk—Barcelona survey was
completed, the national legislature of France ratified new standards, among them the
meter. The standard meter was now taken to be the distance between two fine scratches
made on a bar of a dense alloy of platinum and iridium shaped in an X-like cross section
to minimize sagging and distortion. The United States has two copies of this bar, numbers
21 and 27, stored at the Bureau of Standards in Gaithersburg, MD, just outside
Washington, DC. Measurements based on this standard are accurate to about 1 part in
10°. Thus, an object (a bar of platinum), rather than the concepts that led to it, was estab-
lished as the standard meter. The Earth might alter its circumference if it so chose, but
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the standard meter would remain safe forever in a vault in Sevres, just outside Paris,
France. This standard persisted until the 1960s.

The 11th General Conference of Weights and Measures, meeting in 1960, chose a
reddish-orange radiation produced by atoms of krypton-86 as the next standard of length,
with the meter defined in the following way:

The meter is the length equal to 1,650,763.73 wavelengths in vacuum of the radiation
corresponding to the transition between the levels 2 p'° and 5 d° of the krypton-86 atom.

Krypton is all around us; it makes up about 1 part per million of the Earth’s present
atmosphere. Atmospheric krypton has an atomic weight of 83.8, being a mixture of six
different isotopes that range in weight from 78 to 86. Krypton-86 composes about 60%
of these. Thus, the meter was defined in terms of the “majority kind” of krypton. Standard
lamps contained no more than 1% of the other isotopes. Measurements based on this stan-
dard were accurate to about 1 part in 10°.

Since 1983 the meter standard has been specified in terms of the velocity of light. A
meter is the distance light travels in 1/299,792,458 s in a vacuum. In other words, the veloc-
ity of light is defined to be 299,792,458 m/s. Clearly, this makes the standard of length
dependent on the standard of time.

The Unit of Time

Astronomical motions provide us with three great “natural” time units: the day, the month,
and the year. The day is based on the Earth’s spin, the month on the moon’s orbital motion
about the Earth, and the year on the Earth’s orbital motion about the Sun. Why do we have
ratios of 60: 1 and 24: 1 connecting the day, hour, minute, and second? These relationships
were born about 6000 years ago on the flat alluvial plains of Mesopotamia (now Iraq), where
civilization and city-states first appeared on Earth. The Mesopotamian number system was
based on 60, not on 10 as ours is. It seems likely that the ancient Mesopotamians were more
influenced by the 360 days in a year, the 30 days in a month, and the 12 months in a year
than by the number of fingers on their hands. It was in such an environment that sky
watching and measurement of stellar positions first became precise and continuous. The
movements of heavenly bodies across the sky were converted to clocks.

The second, the basic unit of time in SI, began as an arbitrary fraction (1/86,400) of
a mean solar day (24 x 60 x 60 = 86,400). The trouble with astronomical clocks, though,
is that they do not remain constant. The mean solar day is lengthening, and the lunar
month, or time between consecutive full phases, is shortening. In 1956 a new second was
defined to be 1/31,556,926 of one particular and carefully measured mean solar year, that
of 1900. That second would not last for long! In 1967 it was redefined again, in terms of
a specified number of oscillations of a cesium atomic clock.

A cesjum atomic clock consists of a beam of cesium-133 atoms moving through an evac-
uated metal cavity and absorbing and emitting microwaves of a characteristic resonant fre-
quency, 9,192,631,770 Hertz (Hz), or about 10" cycles per second. This absorption and
emission process occurs when a given cesium atom changes its atomic configuration and,
in the process, either gains or loses a specific amount of energy in the form of microwave
radiation. The two differing energy configurations correspond to situations in which the
spins of the cesium nucleus and that of its single outer-shell electron are either opposed
(lowest energy state) or aligned (highest energy state). This kind of a “spin-flip” atomic
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transition is called a hyperfine transition. The energy difference and, hence, the resonant
frequency are precisely determined by the invariable structure of the cesium atom. It does
not differ from one atom to another. A properl¥ adjusted and maintained cesium clock can
keep time with a stability of about 1 part in 10"*. Thus, in one year, its deviation from the
right time should be no more than about 30 s (30 x 107 5). When two different cesium
clocks are compared, it is found that they maintain agreement to about 1 part in 10*,

It was inevitable then that in 1967, because of such stability and reproducibility, the
13th General Conference on Weights and Measures would substitute the cesium-133
atom for any and all of the heavenly bodies as the primary basis for the unit of time. The
conference established the new basis with the following historic words:

The second is the duration of 9,192,631,770 periods of the radiation corresponding to the
transition between two hyperfine levels of the cesium-133 atom.

So, just as the meter is no longer bound to the surface of the Earth, the second is no longer
derived from the “ticking” of the heavens.

The Unit of Mass

This chapter began with the statement that the science of mechanics deals with the
motion of objects. Mass is the final concept needed to specify completely any physical
qua.ntity.2 The kilogram is its basic unit. This primary standard, too, is stored in a vault in
Sevres, France, with secondaries owned and kept by most major governments of the
world. Note that the units of length and time are based on atomic standards. They are uni-
versally reproducible and virtually indestructible. Unfortunately, the unit of mass is not
yet quite so robust.

A concept involving mass, which we shall have occasion to use throughout this text,
is that of the particle, or point mass, an entity that possesses mass but no spatial extent.
Clearly, the particle is a nonexistent idealization. Nonetheless, the concept serves as a
useful approximation of physical objects in a certain context, namely, in a situation where
the dimension of the object is small compared to the dimensions of its environment.
Examples include a bug on a phonograph record, a baseball in flight, and the Earth in
orbit around the Sun.

The units (kilogram, meter, and second) constitute the basis of the SI system.’ Other
systems are commonly used also, for example, the cgs (centimeter, gram, second) and
the fps (foot, pound, second) systems. These systems may be regarded as secondary
because they are defined relative to the SI standard. See Appendix A.

Dimensions

Normally, we think of dimensions as the three mutually orthogonal directions in space
along which an object can move. For example, the motion of an airplane can be
described in terms of its movement along the directions: east—west, north—south, and
up—down. However, in physics, the term has an analogous but more fundamental meaning,

*The concept of mass is treated in Chapter 2.

®Other basic and derived units are listed in Appendix A.
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EXAMPLE 1.2.1

Converting Units
What is the length of a light year (LY) in meters?

Solution:
The speed of light is ¢ = 1 LY/Y. The distance light travelsin T=1 Y is

D=cT=(1LY/¥)x1¥=1LY.

If we want to express one light year in terms of meters, we start with the speed of light
expressed in those units. It is given by ¢ = 3.00 x 10° m/s. However, the time unit used
in this value is expressed in seconds, while the interval of time T is expressed in years, so

1 LY = (3.00 x 10° m/s) x (1Y) = 3.00 x 10* m x (1 Y/1 5)

The different times in the result must be expressed in the same unit to obtain a dimen-
sionless ratio, leaving an answer in units of meters only. Converting 1Y into its equiva-
lent value in seconds achieves this.

1 LY = (3.00x10° m) x (1 ¥/1 s) x (365 day/¥) x (24 hr/day) x (60 min /kr) x (60 s/min)
=(3.00 x10°m) x (3.15x 10" 8/1 8) =9.46 x 10®° m

We have multiplied 1 year by a succession of ratios whose values each are intrinsically
dimensionless and equal to one. For example, 365 days = 1 year, so (365 days/1 year) =
(1 year/1 year) = 1. The multiplications have not changed the intrinsic value of the result.
They merely convert the value (1 year) into its equivalent value in seconds to “cancel
out” the seconds unit, leaving a result expressed in meters.

No more than three fundamental quantities are needed to completely describe or char-
acterize the behavior of any physical system that we encounter in the study of classical
mechanics: the space that bodies occupy, the matter of which they consist, and the time
during which those bodies move. In other words, classical mechanics deals with the
motion of physical objects through space and time. All measurements of that motion ulti-
mately can be broken down into combinations of measurements of mass, length, and time.
The acceleration a of a falling apple is measured as a change in speed per change in time
and the change in speed is measured as a change in position (length) per change in
time. Thus, the measurement of acceleration is completely characterized by measurements
of length and time. The concepts of mass, length, and time are far more fundamental
than are the arbitrary units we choose to provide a scale for their measurement. Mass,
length, and time specify the three primary dimensions of all physical quantities. We use
the symbols [M], [L], and [T] to characterize these three primary dimensions. The
dimension of any physical quantity is defined to be the algebraic combination of [M],
[L], and [T] that is needed to fully characterize a measurement of the physical quantity.
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In other words, the dimension of any physical quantity can be written as [M]” [L1P 17",

where ¢, B, and 7y are powers of their respective dimension. For example, the dimen-
sion of acceleration a is

[a]—[ T } [LI[T]

Be aware! Do not confuse the dimension of a quantity with the units chosen to express it.
Acceleration can be expressed in units of feet per second per second, kilometers per hour
per hour, or, if you were Galileo investigating a ball rolling down an inclined plane, in units
of punti per beat per beat! All of these units are consistent with the dimension [L] [T

Dimensional Analysis

Dimensional analysis of equations that express relationships between different physical
quantities is a powerful tool that can be used to immediately determine whether the
result of a calculation has even the possibility of being correct or not. All equations must
have consistent dimensions. The dimension of a physical quantity on the left hand side
of an equation must have the same dimension as the combination of dimensions of all phys-
ical quantities on the right hand side. For example, later on in Example 6.5.3, we calcu-
late the speed of satellite in a circular orbit of radius R, about the Earth (radius R,) and

obtain the result
2 \1/2
RC

in which g is the acceleration due to gravity, which we introduce in Section 2.2. If this result
is correct, the dimensions on both sides of the equation must be identical. Let’s see.
First, we write down the combination of dimensions on the right side of the equation and
reduce them as far as possible

RPN
[([L][T] )IL] ) — (PITH™ = LT

[L]
The dimensions of the speed v, are also [L] [TT. The dimensions match; thus, the answer
could be correct. It could also be incorrect. Dimensional analysis does not tell us unequijv-
ocally that it is correct. It can only tell us unequivocally that it is incorrect in those cases
in which the dimensions fail to match.

Determining Relationships by Dimensional Analysis

Dimensional analysis can also be used as a way to obtain relationships between physi-
cal quantities without going through the labor of a more detailed analysis based on the
laws of physics. As an example, consider the simple pendulum, which we analyze in
Example 3.2.2. It consists of a small bob of mass m attached to the end of a massless,
rigid string of length I. When displaced from its equilibrium configuration, in which it
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hangs vertically with the mass at its lowest possible position, it swings to and fro because
gravity tries to restore the mass to its minimum height above the ground. In the absence
of friction, air resistance and all other dissipative forces, it continues to swing to and fro
forever! The time it takes to return to any configuration and direction of motion is called
its period, or the time 7 it takes to execute one complete cycle of its motion. The question
before us is: How does its period 7 depend on any physical parameters that characterize
the pendulum and its environment?

First, we list those parameters that could be relevant. Because we've postulated
that the pendulum consists, in part, of an idealized string of zero mass and no flexibility,
that it suffers no air resistance and no friction, we eliminate from consideration any fac-
tors that are derivable from them. That leaves only three: the mass m of the pendulum
bob, the length ! of the string, and the acceleration g due to gravity. The period of the
pendulum has dimension [T] and the combination of m, I, and g that equates to the period
must have dimensions that reduce to [T], also. In other words, the period of the pendu-
lum 7 depends on an algebraic combination of m, [, and g of the form

rocm“lﬁgy

whose dimensional relationship must be

[T] = [M]* [L)? (L]'[TT™")

Because there are no powers of [M] on the left-hand side, & = 0 and the mass of the
pendulum bob is irrelevant. To match the dimension [T] on both sides of the equation,
Y= ——%, and to match the dimension [L], B+ Y =0,0r 8 = % Thus, we conclude that

Dimensional analysis can be taken no further than this. It does not give us the constant
of proportionality, but it does tell us how 7 likely depends on ! and g and it does tell us
that the period is independent of the mass m of the bob. Moreover, a single meas-
urement of the period of a pendulum of known length I, would give us the constant of
proportionality.

We did leave out one other possible factor, the angle of the pendulum’s swing. Could
its value affect the period? Maybe, but dimensional analysis alone does not tell us. The
angle of swing is a dimensionless quantity, and the period could conceivably depend on
it in a myriad of ways. Indeed, we see in Example 3.7.1, that the angle does affect the
period if the angular amplitude of the swing is large enough. Yet, what we have learned
simply by applying dimensional analysis is quite remarkable. A more detailed analysis
based on the laws of physics should yield a result that is consistent with the one obtained
from simple dimensional analysis, or we should try to understand why it does not.
Whenever we find ourselves faced with such a dilemma, we discover that there is a strong
likelihood that we’ve fouled up the detailed analysis.

Dimensional analysis applied this way is not always so simple. Experience is usually
required to zero in on the relevant variables and to make a guess of the relevant functional
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dependencies. In particular, when trigonometric functions are involved, their lack of
dimensionality thwarts dimensional analysis. Be that as it may, it remains a valuable
weapon of attack that all students should have in their arsenal.

1._3| Vectors

The motion of dynamical systems is typically described in terms of two basic quantities:
scalars and vectors. A scalar is a physical quantity that has magnitude only, such as the mass
of an object. It is completely specified by a single number, in appropriate units. Its value
is independent of any coordinates chosen to describe the motion of the system. Other famil-
iar examples of scalars include density, volume, temperature, and energy. Mathematically,
scalars are treated as real numbers. They obey all the normal algebraic rules of addition,
subtraction, multiplication, division, and so on.

A vector, however, has both magnitude and direction, such as the displacement from
one point in space to another. Unlike a scalar, a vector requires a set of numbers for its
complete specification. The values of those numbers are, in general, coordinate system
dependent. Besides displacement in space, other examples of vectors include velocity,
acceleration, and force. Mathematically, vectors combine with each other according to
the parallelogram rule of addition which we soon discuss.* The vector concept has led
to the emergence of a branch of mathematics that has proved indispensable to the
development of the subject of classical mechanics. Vectors provide a compact and ele-
gant way of describing the behavior of even the most complicated physical systems.
Furthermore, the use of vectors in the application of physical laws insures that the results
we obtain are independent of our choice of coordinate system.

In most written work, a distinguishing mark, such as an arrow, customarily designates
a vector, for example, A. In this text, however, for the sake of simplicity, we denote vector
quantities simply by boldface type, for example, A. We use ordinary italic type to repre-
sent scalars, for example, A.

A given vector A is specified by stating its magnitude and its direction relative to some
arbitrarily chosen coordinate system. It is represented diagrammatically as a directed
line segment, as shown in three-dimensional space in Figure 1.3.1.

A vector can also be specified as the set of its components, or projections onto the coor-
dinate axes. For example, the set of three scalars, (4,, A, A,), shown in Figure 1.3.1, are
the components of the vector A and are an equivalent representation. Thus, the equation

A=A A, A) 1.3.1)

implies that either the symbol A or the set of three components (4,, A, A,) referred to
a particular coordinate system can be used to specify the vector. For example, if the vector
A represents a displacement from a point P, (x;, 41, z1) to the point Py (%3, y2, 22), then its

* An example of a directed quantity that does not obey the rule for addition is a finite rotation of an object about
a given axis. The reader can readily verify that two successive rotations about different axes do not produce the
same result as a single rotation determined by the parallelogram rule. For the present, we shall not be concerned
with such nonvector-directed quantities.
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three components are A, =x; — xy, A, =y — Y1, A, =25 — %), and the equivalent repre-
sentation of A is its set of three scalar components, (x, —x;, s — 1, 2 — 21). If A represents
a force, then A, is the x-component of the force, and so on.

If a particular discussion is limited to vectors in a plane, only two components are nec-
essary for their specification. In general, one can define a mathematical space of any
number of dimensions n. Thus, the set of n-numbers (A;, Ay, A;, . .., A,) represent a vector
in an n-dimensional space. In this abstract sense, a vector is an ordered set of numbers.

We begin the study of vector algebra with some formal statements concerning vectors.

L. Equality of Vectors
The equation
A=B (1.3.2)

or

(A;, Ay, A;)= (B, B,, B,)

is equivalent to the three equations

A,=B, A,=B, A,=B,

That is, two vectors are equal if, and only if, their respective components are equal.
Geometrically, equal vectors are parallel and have the same length, but they do not
necessarily have the same position. Equal vectors are shown in Figure 1.3.2. Though
equal, they are physically separate. (Equal vectors are not necessarily equivalent in
all respects. Thus, two vectorially equal forces acting at different points on an object
may produce different mechanical effects.)
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Figure 1.3.2 Illustration of 0
equal vectors.

%W—>|

s

Figure 1.3.3 Addition of two
vectors.

o

IL. Vector Addition
The addition of two vectors is defined by the equation

A+B=(A, A, A)+(B,.B,,B)=(A,+B,A,+B,A,+B) (133

The sum of two vectors is a vector whose components are sums of the components
of the given vectors. The geometric representation of the vector sum of two non-
parallel vectors is the third side of a triangle, two sides of which are the given vec-
tors. The vector sum is illustrated in Figure 1.3.3. The sum is also given by the
parallelogram rule, as shown in the figure. The vector sum is defined, however,
according to the above equation even if the vectors do not have a common point.

IIL. Multiplication by a Scalar
If ¢ is a scalar and A is a vector,

cA=c(A,, Ay, A;)=(cA,, cAy, cA,)=Ac (1.3.4)
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-A
Figure 1.3.4 The negative of a vector.

The product cA is a vector whose components are ¢ times those of A. Geometrically,
the vector cA is parallel to A and is ¢ times the length of A. When ¢ =1, the vector
—A is one whose direction is the reverse of that of A, as shown in Figure 13.4.

V. Vector Subtraction
Subtraction is defined as follows:
A-B=A+(-1)B=(A,-B,, A,~B,, A,~B) (1.3.5)
That is, subtraction of a given vector B from the vector A is equivalent to adding
-B to A.

V. The Null Vector
The vector O =(0,0,0) is called the null vector. The direction of the null vector is unde-
fined. From (IV) it follows that A — A = O. Because there can be no confusion when
the null vector is denoted by a zero, we shall hereafter use the notation O =0.

VI. The Commutative Law of Addition
This law holds for vectors; that is,

A+B=B+A (1.3.6)
because A, + B, = B, + A,, and similarly for the y and z components.

VIL. The Associative Law
The associative law is also true, because

A+(B+C)=(A,+(B,+C), A, +(B,+C,), A, + (B, +C,)
=((A;+B)+Cy, (A, +B,) +C,, (A, +B) +C,) (1.3.7)
=(A+B)+C

VIIL. The Distributive Law
Under multiplication by a scalar, the distributive law is valid because, from (II)
and (III),

c(A+B)=c(A,+B,,A,+B,,A.+B,)
=(c(A;+By,c(A,+B,),c(A. +B.)) (1.3.8)
=(cA,+cB,,cA,+cB,, cA, +cB,)
=cA,+cB
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Figure 1.3.5 Magnitude of a vector A: /Z— A, 7/ /
A= (AJ+A]+AD"

Thus, vectors obey the rules of ordinary algebra as far as the above operations are
concerned.

IX. Magnitude of a Vector
The magnitude of a vector A, denoted by |A| or by A, is defined as the square root
of the sum of the squares of the components, namely,

72
A=|A|=(a2+A%+A2) (1.3.9)

where the positive root is understood. Geometrically, the magnitude of a vector is
its length, that is, the length of the diagonal of the rectangular parallelepiped whose
sidesare A,, A,, and A, expressed in appropriate units. See Figure 1.3.5.

X. Unit Coordinate Vectors
A unit vector is a vector whose magnitude is unity. Unit vectors are often designated
by the symbol e, from the German word Einheit. The three unit vectors

e, =(1,0,0) e,=(0,1,0) e.=(0,0,1) (1.3.10)

are called unit coordinate vectors or basis vectors. In terms of basis vectors, any
vector can be expressed as a vector sum of components as follows:

A=(A,,AA,)=(4,,0,00+(0,4,,0)+(0,0,4,)
=A,(1,0,00+4,(0,1,0)+A,(0,0,1) (1.3.11)
=eA,+eA +eA,

A widely used notation for Cartesian unit vectors uses the letters i, j, and k, namely,

i=e, ji=e, k=e, 1.3.12)
We shall usually employ this notation hereafter.
The directions of the Cartesian unit vectors are defined by the orthogonal coor-

dinate axes, as shown in Figure 1.3.6. They form a right-handed or a left-handed triad,
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Figure 1.3.6 The unit vectors ijk. x

depending on which type of coordinate system is used. It is customary to use right-
handed coordinate systems. The system shown in Figure 1.3.6 is right-handed.
(The handedness of coordinate systems is defined in Section 1.5.)

EXAMPLE 1.3.1

Find the sum and the magnitude of the sum of the two vectors A = (1,0,2) and
B=(0,1,1)

Solution:
Adding components, we have A + B =(1,0,2) +(0,1,1) = (1,1,3).
IA+B|=(1+1+9)" =11

EXAMPLE 1.3.2

For the above two vectors, express the difference in ijk form.

Solution:
Subtracting components, we have

A-B=(l,-11)=i-j+k

EXAMPLE 1.3.3

A helicopter flies 100 m vertically upward, then 500 m horizontally east, then 1000 m
horizontally north. How far is it from a second helicopter that started from the same point
and flew 200 m upward, 100 m west, and 500 m north?

Solution:

Choosing up, east, and north as basis directions, the final position of the first helicopter is
expressed vectorially as A = (100,500, 1000) and the second as B = (200,-100,500),
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in meters. Hence, the distance between the final positions is given by the expression

|A = B|=]((100 — 200), (500 + 100), (1000 — 500))| m
= (100% + 600% + 500%)* m
=7874m

1.4| The Scalar Product

Given two vectors A and B, the scalar product or “dot” product, A - B, is the scalar defined
by the equation

A-B=A,B,+A,B,+A,B, (1.4.1)

From the above definition, scalar multiplication is commutative,
A-B=B-.A (1.4.2)
because A, B, = B,A,, and so on. It is also distributive,
A.-B+C)=A-B+A.C (1.4.3)
because if we apply the definition (1.4.1) in detail,

A-B+C)=A,B,+C)+A,B,+C)+A,(B,+C)
=A,B,+A,B,+A,B,+A,C,+A,C,+A,C, (14.4)
=A.B+A.C

The dot product A - B has a simple geometrical interpretation and can be used to
calculate the angle 8 between those two vectors. For example, shown in Figure 1.4.1 are
the two vectors A and B separated by an angle 6, along with an x’, 4/’, 2’ coordinate system
arbitrarily chosen as a basis for those vectors. However, because the quantity A - Bis a
scalar, its value is independent of choice of coordinates. With no loss of generality, we can
rotate the ) i}, 2’ system into an x, y, z coordinate system, such that the x-axis is aligned
with the vector A and the z-axis is perpendicular to the plane defined by the two vectors.
This coordinate system is also shown in Figure 1.4.1. The components of the vectors, and
their dot product, are much simpler to evaluate in this system. The vector A is expressed

as (A,0,0) and the vector B as (B,, B,,0) or (Bcos 6, Bsin 6,0). Thus,

A.-B=A,B,=A(Bcos8) =|A||B|cos 8 (1.4.5)

Geometrically, B cos 8 is simply the projection of B onto A. If we had aligned the x-axis
along B, we would have obtained the same result but with the geometrical interpretation
that A . B is now the projection of A onto B times the length of B. Thus, A - B can be
interpreted as either the projection of A onto B times the length of B or that of B onto
A times the length of A. Either interpretation is correct. Perhaps more importantly, we
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Figure 1.4.1 Evaluating a dot product
between two vectors. X i

can see that we have just proved that the cosine of the angle between two line segments
is given by

A:B__A'B (14.6)

cos@ =
|A]|B| AB

This last equation may be regarded as an alternative definition of the dot product.

(Note: IfA.Bisequal to zero and neither Anor B is null, then cos @is zero and
A is perpendicular to B.)

The square of the magnitude of a vector A is given by the dot product of A with itself,
A’=|AFf=A.A (1.4.7)

From the definitions of the unit coordinate vectors i, j, and k, it is clear that the fol-
lowing relations hold:

i-i=j.-j=k.k=1 (14.8)
1.j=i-k=]-k=0

Expressing Any Vector as the Product of Its Magnitude by a
Unit Vector: Projection

Consider the equation

A=iA, +jA, +kA, (1.4.9)
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A
___7
o
y
Figure 1.4.2 Direction angles o, B, yof a
vector. x
Multiply and divide on the right by the magnitude of A:
A—A‘A"'+‘Ay+kA’ 1.4.10
=Ali " J " n (1.4.10)

Now A,/A = cosa, A,/A = cosf3, and A,/A = cosy are the direction cosines of the vector
A, and @, B, and 7 are the direction angles. Thus, we can write

A=A(icosa+jcosB+kcosy) = A(cosa, cos B, cosy) (14.11a)

or
A=An (1.4.11b)

where n is a unit vector whose components are cosc, cos 8, and cosy. See Figure 1.4.2.
Consider any other vector B. Clearly, the projection of B on A is just

BcosG=%=B-n (1.4.12)
where 0 is the angle between A and B.

EXAMPLE 1.4.1

Component of a Vector: Work

As an example of the dot product, suppose that an object under the action of a constant
force® undergoes a linear displacement As, as shown in Figure 1.4.3. By definition, the
work AW done by the force is given by the product of the component of the force F in
the direction of As, multiplied by the magnitude As of the displacement; that is,

AW = (F cos 0) As

5The concept of force is discussed in Chapter 2.
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Figure 1.4.3 A force actingon a
body undergoing a displacement.

where 0 s the angle between F and As. But the expression on the right is just the dot
product of F and As, that is,

AW =F . As

me

Law of Cosines

Consider the triangle whose sides are A, B, and C, as shown in Figure 1.4.4. Then
C = A + B. Take the dot product of C with itself,

C.C=(A+B)-(A+B)
=A.-A+2A-B+B-.B

The second step follows from the application of the rules in Equations 1.4.2 and 1.4.3.
Replace A - B with AB cos € to obtain

C®*=A%+2AB cos 9+ B>

which is the familiar law of cosines.

Figure 1.4.4 The law of cosines. A
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EXAMPLE 1.4.3

Find the cosine of the angle between a long diagonal and an adjacent face diagonal of
a cube.

Solution:

We can represent the two diagonals in question by the vectors A =(1,1,1) and B =
(1, 1,0). Hence, from Equations 1.4.1 and 1.4.6,

A-B 1+1+0 2
COSYETAB T Javz  \3

EXAMPLE 1.4.4

The vector ai + j — k is perpendicular to the vector i + 2j — 3k. What is the value
of a?

Solution:

If the vectors are perpendicular to each other, their dot product must vanish (cos 90° = 0).
(@i+j-k).-(i+2j-3k)=a+2+3=a+5=0

Therefore,

1.5| The Vector Product

Given two vectors A and B, the vector product or cross product, A x B, is defined as the
vector whose components are given by the equation

AxB=(A,B,~A,B,A,B,~A.B,A,B,~A,B) (15.1)

It can be shown that the following rules hold for cross multiplication:

AxB=-BxA (1.5.2)
AXB+C)=AxB+AxC (15.3)
n(A X B) =(nA) x B=A X (nB) (1.54)

The proofs of these follow directly from the definition and are left as an exercise.

(Note: The first equation states that the cross product is anticommutative.)
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According to the definitions of the unit coordinate vectors (Section 1.3), it follows that

ixi=jxj=kxk=0

jxk=i=-kxj
ixj=k=—xi (1.5.5)
kxi=j=-ixk

These latter three relations define a right-handed triad. For example,
ixj=(0-0,0-0,1-0)=(0,0,1)=k (1.5.6)

The remaining equations are proved in a similar manner.
The cross product expressed in ijk form is

AxB=i(A,B,~A,B)+jA,B,~A,B) +KkA,B,~A,B,) (1.5.7)

Each term in parentheses is equal to a determinant,

14,4, JAA, kAxAy
AxB=1 By B, +j BB, + B, By (1.5.8)
and finally
ijk
AxXB= A A A, (1.5.9)
B,B,B,

which is verified by expansion. The determinant form is a convenient aid for remembering

the definition of the cross product. From the properties of determinants, if A is parallel

to B—that is, if A = cB—then the two lower rows of the determinant are proportional

and so the determinant is null. Thus, the cross product of two parallel vectors is null.
Let us calculate the magnitude of the cross product. We have

|AxB=(A,B,—A,B,)*+(A,B,—A,B)* +(A,B,—A,B)Y  (15.10)
y Y 1 1

This can be reduced to
|AxB® =(A2 + A%+ A})(B + B} +B)—(A,B, +A,B, +A,B,)’ (1511)

or, from the definition of the dot product, the above equation may be written in the form

JAxBP=A%B*- (A -B) (1.5.12)
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Taking the square root of both sides of Equation 1.15.12 and using Equation 1.4.6, we
can express the magnitude of the cross product as

|AxB|=AB( —cos’0)>*= AB sin 0 (1.5.13)

where 01is the angle between A and B.
To interpret the cross product geometrically, we observe that the vector C=A x B
is perpendicular to both A and to B because

A.C=A,C,+A,C,+A,C,
=A,(A,B,~A,B,)+A,(A.B,~A,B)+A,(A,B,~A,B) (1514)
=0

Similarly, B - C = 0; thus, the vector C is perpendicular to the plane containing the vec-
tors A and B.

The sense of the vector C = A X B is determined from the requirement that the
three vectors A, B, and C form a right-handed triad, as shown in Figure 1.5.1. (This is
consistent with the previously established result that in the right-handed triad ijk we have
i x j =k.) Therefore, from Equation 1.5.13 we see that we can write

AxB =(AB sin 6)n (1.5.15)

where n is a unit vector normal to the plane of the two vectors A and B. The sense of n
is given by the right-hand rule, that is, the direction of advancement of a right-handed
screw rotated from the positive direction of A to that of B through the smallest angle
between them, as illustrated in Figure 1.5.1. Equation 1.5.15 may be regarded as an
alternative definition of the cross product in a right-handed coordinate system.

Figure 1.5.1 The cross product of two vectors.
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EXAMPLE 1.5.1

Given the two vectors A=2i+j—k, B=i-j+ 2k, find AxB.

Solution:

In this case it is convenient to use the determinant form

i j k
AxB=[2 1 -1|=i@2-1+j(-1-4)+k(-2-1)
1 -1 2

=i-5j-3k

EXAMPLE 1.5.2

Find a unit vector normal to the plane containing the two vectors A and B above.

Solution:

L. AxB _ i-5j-3k
|AxB| [12+52 +32]/2

i 5§ 3k
V35 35 35

EXAMPLE 1.5.3

Show by direct evaluation that A x B is a vector with direction perpendicular to A and
B and magnitude AB sin6.

Solution:

Use the frame of reference discussed for Figure 1.4.1 in which the vectors A and B
are defined to be in the x, y plane; A is given by (4,0,0) and B is given by (B cos 6, B sin 6,0).
Then

i j k
AxB=| A 0 0|=kABsin @
Bcos@® Bsin® 0

1.6] An Example of the Cross Product:
Moment of a Force

Moments of force, or torques, are represented by cross products. Let a force F act at a
point P(x, y, z), as shown in Figure 1.6.1, and let the vector OP be designated by r; that is,

OP=r=ix+jy +kz (1.6.1)
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N=rxF
A

Axis
e

o
im0 pid r
¥r S1N
7 > F

Figure 1.6.1 Illustration of the moment of ~
a force about a point O.

The moment N of force, or the torque N, about a given point O is defined as the cross
product

N=rxF (1.6.2)

Thus, the moment of a force about a point is a vector quantity having a magnitude and a
direction. If a single force is applied at a point P on a body that is initially at rest and is
free to turn about a fixed point O as a pivot, then the body tends to rotate. The axis of this
rotation is perpendicular to the force F, and it is also perpendicular to the line OP; there-
fore, the direction of the torque vector N is along the axis of rotation.

The magnitude of the torque is given by

IN|=|rxF|=rFsin@ (1.6.3)

in which 8is the angle between r and F. Thus, |N| can be regarded as the product of the
magnitude of the force and the quantity r sin8, which is just the perpendicular distance
from the line of action of the force to the point O.

When several forces are applied to a single body at different points, the moments add
vectorially. This follows from the distributive law of vector multiplication. The condition
for rotational equilibrium is that the vector sum of all the moments is zero:

2 (i xF)=3 N;=0 (1.6.4)

A more complete discussion of force moments is given in Chapters 8 and 9.

1.7| Triple Products

The expression
A.(BxC)

is called the scalar triple product of A, B, and C. It is a scalar because it is the dot prod-
uct of two vectors. Referring to the determinant expressions for the cross product,
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Equations 1.5.8 and 1.5.9, we see that the scalar triple product may be written

AAA,
A-(BxC)=|B,B,B, W7D
C.C,C,

Because the exchange of the terms of two rows or of two columns of a determinant
changes its sign but not its absolute value, we can derive the following useful equation:

A-(BxC)=(AxB)-C (1.7.2)

Thus, the dot and the cross may be interchanged in the scalar triple product.
The expression

AXx(BxC)

is called the vector triple product. It is left for the student to prove that the following equa-
tion holds for the vector triple product:

Ax(BxC)=B(A.C)-C(A . B) (1.7.3)

This last result can be remembered simply as the “back minus cab” rule.

Vector triple products are particularly useful in the study of rotating coordinate sys-
tems and rotations of rigid bodies, which we take up in later chapters. A geometric appli-
cation is given in Problem 1.12 at the end of this chapter.

Given the three vectors A=i, B=i—j, and C=k, find A - (B x C).

Solution:

Using the determinant expression, Equation 1.7.1, we have

1 00
A-BxC)=]1 -1 0|=1(-1+0)=-1
0 01

EXAMPLE 1.7.2

Find A x (B x C) above.

Solution:

From Equation 1.7.3 we have
AxBxC)=BA.C)- C(A-B)=(i—j)0—k(l—0)=—k
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EXAMPLE 1.7.3

Show that the vector triple product is nonassociative.

Solution:

(axb)xe=—cx(axb)=-a(c:-b)+b(c:a)
ax(bxc)—(axb)xc=a(c-b)—c(a-b)

which is not necessarily zero.

1.8| Change of Coordinate System:
The Transformation Matrix
In this section we show how to represent a vector in different coordinate systems. Consider
the vector A expressed relative to the triad ijk:
A=iA +jA,+KA, (1.8.1)
Relative to a new triad i'j’k” having a different orientation from that of ijk, the same vector
A is expressed as

A=VA, +JA, +KA, (18.2)

Now the dot product A - i’ is just A,, that is, the projection of A on the unit vector i’. Thus,
we may write
Ay =A-i=(-1)A, +(-1)A,+(k-D)A,
Ay =A-J =G )A,+G A, + (k- IA, (18.3)
A, =AK=@(-K)A, +(- KA, +(k-k)A,
The scalar products (i - i’), (i - ), and so on are called the coefficients of transformation.
They are equal to the direction cosines of the axes of the primed coordinate system rel-
ative to the unprimed system. The unprimed components are similarly expressed as
A, =Avi=@ DA, +(§ DA, +(K DA,
A=A j={"PA +({ DA, + (K- A, (1.84)
A, =Ak=@-0A, +( WA, +K WA,

All the coefficients of transformation in Equation 1.8.4 also appear in Equation 1.8.3,
because i-i’= i’ iand so on, but those in the rows (equations) of Equation 1.8.4 appear
in the columns of terms in Equation 1.8.3, and conversely. The transformation rules
expressed in these two sets of equations are a general property of vectors. As a matter of
fact, they constitute an alternative way of defining vectors.

6See, for example, ]. B. Marion and S. T. Thornton, Classical Dynamics, 5th ed., Brooks/Cole—Thomson
Learning, Belmont, CA, 2004.
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The equations of transformation are conveniently expressed in matrix notation.”
Thus, Equation 1.8.3 is written

A (ii ji ki)(A,
Ag|=|ioy §T ki |a, (185)
Ay) K K kK A4,

The 3-by-3 matrix in Equation 1.8.5 is called the transformation matrix. One advantage
of the matrix notation is that successive transformations are readily handled by means of
matrix multiplication.

The application of a given transformation matrix to some vector A is also formally
equivalent to rotating that vector within the unprimed (fixed) coordinate system, the
components of the rotated vector being given by Equation 1.8.5. Thus, finite rotations can
be represented by matrices. (Note that the sense of rotation of the vector in this context
is opposite that of the rotation of the coordinate system in the previous context.)

From Example 1.8.2 the transformation matrix for a rotation about a different coor-
dinate axis—say, the y-axis through an angle 6—is given by the matrix

cos@ 0 —sin@
0 1 0
sn@® O cos@

Consequently, the matrix for the combination of two rotations, the first being about the
z-axis (angle ¢) and the second being about the new y"-axis (angle 8), is given by the
matrix product

cos§ 0 —sinB)( cos¢ sing O cosBcos¢ cosOsingd -—sinf
0 1 0 —-sing cos¢ O|=| -sing cos¢ 0 (1.8.6)
sin@ 0 cos@ 0 0 1 sin@cos¢ sinOsing cosd

Now matrix multiplication is, in general, noncommutative; therefore, we might expect that
the result would be different if the order of the rotations, and, therefore, the order of the
matrix multiplication, were reversed. This turns out to be the case, which the reader can
verify. This is in keeping with a remark made earlier, namely, that finite rotations do not
obey the law of vector addition and, hence, are not vectors even though a single rotation
has a direction (the axis) and a magnitude (the angle of rotation). However, we show later
that infinitesimal rotations do obey the law of vector addition and can be represented by
vectors.

" A brief review of matrices is given in Appendix H.



1.8 Change of Coordinate System: The Transformation Matrix 27

EXAMPLE 1.8.1

Express the vector A = 3i + 2j + k in terms of the triad ij’k’, where the x’y’-axes are
rotated 45° around the z-axis, with the z- and z™-axes coinciding, as shown in Figure 1.8.1.
Referring to the figure, we have for the coefficients of transformation i - i’ = cos 45° and
so on; hence,

i-i' =142 jei'=142 k-i’=0

i-j=-1W2  jj=1"2 k-j=0

i-k’'=0 jk'=0 k-k'=1
These give

3 2 5 -3 2 -1
A, =242 - A, =—4a=— A, =1
so that, in the primed system, the vector A is given by
5 1
A=—i"-—=j+k’
N
z, 2
yl
45°
(9
y
45°

Figure 1.8.1 Rotated axes. x 4

EXAMPLE 1.8.2

Find the transformation matrix for a rotation of the primed coordinate system through
an angle ¢ about the z-axis. (Example 1.8.1 is a special case of this.) We have

i-i'=j.j =cos¢
jeoi'=-i.j=sing
k-K=1
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and all other dot products are zero; hence, the transformation matrix is

cos¢ sing O
—sing cos¢ O
0 0 1

EXAMPLE 1.8.3

Orthogonal Transformations

In more advanced texts, vectors are defined as quantities whose components change
according to the rules of orthogonal transformations. The development of this subject
lies outside the scope of this text; however, we give a simple example of such a trans-
formation that the student may gain some appreciation for the elegance of this more
abstract definition of vectors. The rotation of a Cartesian coordinate system is an exam-
ple of an orthogonal transformation. Here we show how the components of a vector trans-
form when the Cartesian coordinate system in which its components are expressed is
rotated through some angle 6 and then back again.

Let us take the velocity v of a projectile of mass m traveling through space along a par-
abolic trajectory as an example of the vector.® In Figure 1.8.2, we show the position and
velocity of the projectile at some instant of time ¢. The direction of v is tangent to the tra-
jectory of the projectile and designates its instantaneous direction of travel. Because the
motion takes place in two dimensions only, we can specify the velocity in terms of its com-
ponents along the x- and y-axes of a two-dimensional Cartesian coordinate system. We
can also specify the velocity of the projectile in terms of components referred to an x'y’
coordinate system obtained by rotating the xy system through the angle 6. We choose
an angle of rotation @ that aligns the x”-axis with the direction of the velocity vector.

We express the coordinate rotation in terms of the transformation matrix, defined
in Equation 1.8.5. We write all vectors as column matrices; thus, the vector v = (v,,v,) is

(vx [u cos 9)

V= = .

v, vsin @

Given the components in one coordinate system, we can calculate them in the other using
the transformation matrix of Equation 1.8.5. We represent this matrix by the symbol R.°

R i-i" j-i") ( cos® sin6
-7 j-j’) \-sin@ cos@

®Galileo demonstrated back in 1609 that the trajectory of such a projectile is a parabola. See for example: (1)
Stillman Drake, Galileo at Work—His Scientific Biography, Dover Publications, New York 1978. (2) Galileo
Manuscripts, Folio 116v, vol. 72, Biblioteca Nationale Centrale, Florence, Italy.

®We also denote matrices in this text with boldface type symbols. Whether the symbol represents a vector or
a matrix should be clear from the context.
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Figure 1.8.2 Velocity of a
moving particle referred to two
different two-dimensional
coordinate systems.

The components of v’ in the x"y” coordinate system are
, (v cos@ sinf \(vcosh
v = =
0 —sinf cosf )\ vsinf
or symbolically, v' = Rv. Here we have denoted the vector in the primed coordinate system
by v'. Bear in mind, though, that v and v’ represent the same vector. The velocity vector
points along the direction of the x’-axis in the rotated x'y” coordinate system and, consistent
with the figure, v, = v and v, = 0. The components of a vector change values when we

express the vector in coordinate systems rotated with respect to each other.
The square of the magnitude of v is

vcosf

(v:v)=vv=(vcos vsine)( )
vsin 6

J = v% cos?0 + v%sin%0 = v*

(¥ is the transpose of the column vector v—the transpose A of any matrix A is obtained
by interchanging its columns with its rows.)
Similarly, the square of the magnitude of v’ is

v
V' -v)=9v =(v 0)(()) =p?+0% =¢?

In each case, the magnitude of the vector is a scalar v whose value is independent of our
choice of coordinate system. The same is true of the mass of the projectile. If its mass
is one kilogram in the xy coordinate system, then its mass is one kilogram in the 2" coor-
dinate system. Scalar quantities are invariant under a rotation of coordinates.

Suppose we transform back to the xy coordinate system. We should obtain the origi-
nal components of v. The transformation back is obtained by rotating the 1y’ coordinate
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system through the angle —6. The transformation matrix that accomplishes this can be
obtained by changing the sign of 6in the matrix R.

R(-6) = cos(—0) sin(-0) N cos@ —sinf) .
0= “sin® cosO

—sin(—0) cos(—0) =

We see that the rotation back is generated by the transpose of the matrix R, or R.
If we now operate on v with R, we obtain Ry’ = RRv=v or in matrix notation

cos@ —sinf\(v B cos@ —sinBO){ cos® sinO \ vcosO
sin@ cosO J\0) |sin@ cos@ J\—-sin® cosO )| vsin®
N 1 0) vcos@ B vcos 0
10 1)l vsin® ) | vsin@
In other words, RR = I, the identity operator, or R = R, the inverse of R.

Transformations that exhibit this characteristic are called orthogonal transformations.
Rotations of coordinate systems are examples of such a transformation.

1.9] Derivative of a Vector

Up to this point we have been concerned mainly with vector algebra. We now begin the
study of the calculus of vectors and its use in the description of the motion of particles.

Consider a vector A, whose components are functions of a single variable u. The vector
may represent position, velocity, and so on. The parameter u is usually the time ¢, but it
can be any quantity that determines the components of A:

A@w) =iA, () +jA,(u) + kA, () (1.9.1)

The derivative of A with respect to u is defined, quite analogously to the ordinary
derivative of a scalar function, by the limit

AA, AA,  AA,
At M

—=lim—=lim(i ~+j—L+k
Au

where AA, = A, (u + Au) — A,(u) and so on. Hence,

A A, dA, dA
A _x s k —*% (1.9.2)
P L

The derivative of a vector is a vector whose Cartesian components are ordinary derivatives.
It follows from Equation 1.9.2 that the derivative of the sum of two vectors is equal
to the sum of the derivatives, namely,

d dA dB
d_u(A+B)__J1;+E (1.9.3)
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The rules for differentiating vector products obey similar rules of vector calculus. For
example,

d(nA) _dn dA

AL (1.9.4)
d(A-B) dA dB
=22 B+A- 22
du du tA du (1.9.5)
d(AxB) _dA dB
B —d—uXB+Axd—u (1.9.6)

Notice that it is necessary to preserve the order of the terms in the derivative of the cross
product. The proofs are left as an exercise for the student.

1.10| Position Vector of a Particle: Velocity and
Acceleration in Rectangular Coordinates

In a given reference system, the position of a particle can be specified by a single vector,
namely, the displacement of the particle relative to the origin of the coordinate system.
This vector is called the position vector of the particle. In rectangular coordinates
(Figure 1.10.1), the position vector is simply

r=ix+jy +kz (1.10.1)

The components of the position vector of a moving particle are functions of the time,
namely,

x=x(t) y=y(t) z=2(t) (1.10.2)

In Equation 1.9.2 we gave the formal definition of the derivative of any vector with
respect to some parameter. In particular, if the vector is the position vector r of a moving

kz

Figure 1.10.1 The position ix

vector r and its components - >
in a Cartesian coordinate »

system. x
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Tangent line
atP

Figure 1.10.2 The velocity
vector of a moving particle as
the limit of the ratio Ar/Az.

particle and the parameter is the time ¢, the derivative of r with respect to ¢ is called the
velocity, which we shall denote by v:

v= % =i+ jij+ka (1.10.3)

where the dots indicate differentiation with respect to ¢. (This convention is standard and
is used throughout the book.) Let us examine the geometric significance of the veloc-
ity vector. Suppose a particle is at a certain position at time . At a time At later, the par-
ticle will have moved from the position r(¢) to the position r(t + At). The vector
displacement during the time interval At is

Ar =r(t + Af) - 1) (1.10.4)

so the quotient Ar/At is a vector that is parallel to the displacement. As we consider
smaller and smaller time intervals, the quotient Ar/At approaches a limit dr/dt, which we
call the velocity. The vector dr/dt expresses both the direction of motion and the rate. This
is shown graphically in Figure 1.10.2. In the time interval At, the particle moves along
the path from P to P’. As At approaches zero, the point P’ approaches P, and the direc-
tion of the vector Ar/At approaches the direction of the tangent to the path at P. The
velocity vector, therefore, is always tangent to the path of motion.

The magnitude of the velocity is called the speed. In rectangular components the
speed is just

v=|v|=@#? +4% +2%)"2 (1.10.5)
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If we denote the cumulative scalar distance along the path with s, then we can express
the speed alternatively as

ds _ . As_ . [(A0) +(Ay)” + (A7)}

p=—=
dt  A—0 AfF  A—0 At

(1.10.6)

which reduces to the expression on the right of Equation 1.10.5.
The time derivative of the velocity is called the acceleration. Denoting the acceler-
ation with a, we have

dv d*r
=2 = 1.10.
P TR (1107
In rectangular components,
a=i%+ jij+kz (1.10.8)

Thus, acceleration is a vector quantity whose components, in rectangular coordinates, are
the second derivatives of the positional coordinates of a moving particle.

EXAMPLE 1.10.1

Projectile Motion

Let us examine the motion represented by the equation
gt
r(t) = ibt+j(ct—7)+k0

This represents motion in the xy plane, because the z component is constant and equal
to zero. The velocity v is obtained by differentiating with respect to £, namely,

v=%—=ib+j(c—gt)

The acceleration, likewise, is given by

a:d—v=—'
dt J8

Thus, a is in the negative y direction and has the constant magnitude g. The path of
motion is a parabola, as shown in Figure 1.10.3. The speed v varies with ¢ according to
the equation

1/2

v=[b+(c-g’]
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Figure 1.10.3 Position,
velocity, and acceleration

vectors of a particle

(projectile) moving in a

parabolic path. 0

EXAMPLE 1.10.2

Circular Motion

Suppose the position vector of a particle is given by

r=ib sin wt + jb cos wt

where @is a constant.
Let us analyze the motion. The distance from the origin remains constant:

Irj=r=(b*sin® ot +b* cos® wt)*=b
So the path is a circle of radius b centered at the origin. Differentiating r, we find the
velocity vector

dr _. N
v=_r= ibw coswt— jbw sinwt

The particle traverses its path with constant speed:

v=|v|= B’ cos® wt +b’ef sin® wt)*=bw
The acceleration is

dv .
a=—-= -ibow®sinwt - jbw? coswt

In this case the acceleration is perpendicular to the velocity, because the dot product of
v and a vanishes:

v - a=(bwcos wt)(-ba’ sin wt) + (-bwsin wt)(-ba' cos wt) =0

Comparing the two expressions for a and r, we see that we can write

a=—(02]'
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Figure 1.10.4 A particle
moving in a circular path
with constant speed.

so a and r are oppositely directed; that is, a always points toward the center of the cir-
cular path (Fig. 1.10.4).

EXAMPLE 1.10.3
Rolling Wheel

Let us consider the following position vector of a particle P:
r=ry;+rp
in which
r= ibot +jb
r, =ib sin @t +jb cos wt

Now r; by itself represents a point moving along the line y = b at constant velocity,
provided @ is constant; namely,

The second part, r,, is just the position vector for circular motion, as discussed in
Example 1.10.2. Hence, the vector sum r, + r, represents a point that describes a circle
of radius b about a moving center. This is precisely what occurs for a particle on the rim
of a rolling wheel, r; being the position vector of the center of the wheel and r, being
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Figure 1.10.5 The
cycloidal path of a particle
on a rolling wheel.

Figure 1.10.6 Velocity vectors for various
points on a rolling wheel.

the position vector of the particle P relative to the moving center. The actual path is a
cycloid, as shown in Figure 1.10.5. The velocity of P is

v=v,+ Vv, =i(bw+bwcos ot) — jbwsin wt

In particular, for @t =0, 27, 47, . . ., we find that v=i2b®, which is just twice the veloc-
ity of the center C. At these points the particle is at the uppermost part of its path.
Furthermore, for @t = &, 37, 57, . . ., we obtain v = 0. At these points the particle is at
its lowest point and is instantaneously in contact with the ground. See Figure 1.10.6.

1.11] Velocity and Acceleration
in Plane Polar Coordinates

It is often convenient to employ polar coordinates r, 6 to express the position of a parti-
cle moving in a plane. Vectorially, the position of the particle can be written as the prod-
uct of the radial distance r by a unit radial vector e,

r=re, (1.11.1)
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€g

ol i x

Figure 1.11.1 Unit vectors for plane polar coordinates.

As the particle moves, both r and e, vary; thus, they are both functions of the time.
Hence, if we differentiate with respect to t, we have

dr de
2 _ . r (1.11.2)
dt re,+r dt

v

To calculate the derivative de,/dt, let us consider the vector diagram shown in
Figure 1.11.1. A study of the figure shows that when the direction of r changes by an amount
A#, the corresponding change Ae, of the unit radial vector is as follows: The magnitude
| Ae, | is approximately equal to A@ and the direction of Ae, is very nearly perpendicu-
lar to e,. Let us introduce another unit vector, ey, whose direction is perpendicular to e,.
Then we have

Ae, = eyzA0 (1.11.3)
If we divide by At and take the limit, we get

de, de

=e,— 1.11.4
5 =T ( )

for the time derivative of the unit radial vector. In a precisely similar way, we can argue
that the change in the unit vector e, is given by the approximation

Ae, =—e, A0 (1.11.5)

Here the minus sign is inserted to indicate that the direction of the change Ae, is opposite
to the direction of e,, as can be seen from Figure 1.11.1. Consequently, the time deriva-
tive is given by

deg _ _, 40 (1.11.6)

dt " dt
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By using Equation 1.11.4 for the derivative of the unit radial vector, we can finally
write the equation for the velocity as

v=re, +rfe, 1.11.7)

Thus, 7 is the radial component of the velocity vector, and r 0 is the transverse component.
To find the acceleration vector, we take the derivative of the velocity with respect to
time. This gives
a=%='r’e, +r‘d;t' +(#0+rf)e, +re‘% (111.8)
The values of de,/dt and de,/dt are given by Equations 1.11.4 and 1.11.6 and yield the
following equation for the acceleration vector in plane polar coordinates:

a=(#-r8%e, +(r6 +2/0)e, (1.11.9)
Thus, the radial component of the acceleration vector is

a, =¥ -r6? (1.11.10)

and the transverse component is
.o 1d, g
=rf+2/0 =~ (r2
G =TU+2r6 =" dt(r ) (1.11.11)

The above results show, for instance, that if a particle moves on a circle of constant
radius b, so that + =0, then the radial component of the acceleration is of magnitude b 6?
and is directed inward toward the center of the circular path. The transverse component
in this case is b6. On the other hand, if the particle moves along a fixed radial line—that
is, if @is constant—then the radial component is just # and the transverse component
is zero. If r and 6 both vary, then the general expression (1.11.9) gives the acceleration.

A honeybee hones in on its hive in a spiral path in such a way that the radial distance
decreases at a constant rate, r =b — ct, while the angular speed increases at a canstant
rate, 6 =kt. Find the speed as a function of time.

Solution:
We have # =—c and # =0. Thus, from Equation 1.11.7,
v=—ce,+ (b —ct)ktey
so
v=[+ (b - ct)’k*?
which is valid for ¢t < b/c. Note that v =c both fort=0,r=b and fort =b/c, r=0.
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EXAMPLE 1.11.2

On a horizontal turntable that is rotating at constant angular speed, a bug is crawling
outward on a radial line such that its distance from the center increases quadratically
with time: r=b#’, = wt, where b and are constants. Find the acceleration of the bug.

Solution:
We have + =2bt, # =2b, § =@, 6 =0. Substituting into Equation 1.11.9, we find
a=e,(2b - bi’e’) + e [0 + 22bt) w]
=b@ - tfad)e, + dbwte,

Note that the radial component of the acceleration becomes negative for large ¢ in this
example, although the radius is always increasing monotonically with time.

1.12] Velocity and Acceleration in Cylindrical
and Spherical Coordinates

Cylindrical Coordinates

In the case of three-dimensional motion, the position of a particle can be described in
cylindrical coordinates R, ¢, z. The position vector is then written as

r =Rep +ze, (1.12.1)

where ey is a unit radial vector in the xy plane and e, is the unit vector in the z direction.
A third unit vector e, is needed so that the three vectors ezee, constitute a right-handed
triad, as illustrated in Figure 1.12.1. We note thatk=e,.

(d

€

Ak €r

Figure 1.12.1 Unit vectors for
cylindrical coordinates. x
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The velocity and acceleration vectors are found by differentiating, as before. This
again involves derivatives of the unit vectors. An argument similar to that used for the plane
case shows that dey/dt = e, ¢ and de, /dt =—e ¢. The unit vector e, does not change in
direction, so its time derivative is zero.

In view of these facts, the velocity and acceleration vectors are easily seen to be given
by the following equations:

v=Rey+Roe, +ze, (1.12.2)
a=(R-R¢’)ey, + (2R +Re, +Ze, (1.12.3)

These give the values of v and a in terms of their components in the rotated triad ez e, e,.

An alternative way of obtaining the derivatives of the unit vectors is to differentiate
the following equations, which are the relationships between the fixed unit triad ijk and
the rotated triad:

ez=1icos ¢+jsin ¢
e,=—isin ¢+jcos ¢ (1.12.4)
e, =k

The steps are left as an exercise. The result can also be found by use of the rotation
matrix, as given in Example 1.8.2.

Spherical Coordinates

When spherical coordinates r, 6, ¢ are employed to describe the position of a particle,
the position vector is written as the product of the radial distance r and the unit radial
vector €,, as with plane polar coordinates. Thus,

r=re, (1.12.5)

The direction of e, is now specified by the two angles ¢ and 6. We introduce two more
unit vectors, e, and ey, as shown in Figure 1.12.2.
The velocity is

_ % = e, +r d;tr (1.12.6)

v

Our next problem is how to express the derivative de,/d¢ in terms of the unit vectors in
the rotated triad.

Referring to Figure 1.12.2, we can derive relationships between the ijk and e,eqe,
triads. For example, because any vector can be expressed in terms of its projections on
to the x, y, z, coordinate axes

e, =i(e, )+ e, j)+k(e,- k) (1.12.7)

e, - i is the projection of the unit vector e, directly onto the unit vector i. According to
Equation 1.4.11a, it is equal to cos &, the cosine of the angle between those two unit vec-
tors. We need to express this dot product in terms of 8 and ¢, not a. We can obtain the
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€

Figure 1.12.2 Unit vectors for spherical
coordinates.

desired relation by making two successive projections to get to the x-axis. First project e,
onto the xy plane, and then project from there onto the x-axis. The first projection gives
us a factor of sin 6, while the second yields a factor of cos ¢. The magnitude of the pro-
jection obtained in this way is the desired dot product:

e, -i=sinBfcos¢ (1.12.8a)
The remaining dot products can be evaluated in a similar way,

€, -j=sinOsin¢ and e .-k=cos0 (1.12.8b)

The relationships for eoand e, can be obtained as above, yielding the desired relations

e, =isin@cos¢+jsinOsind+k cos O
ep=icosOcos¢+jcosOsing—ksind (1.12.9)
e,=—ising+jcoso

which express the unit vectors of the rotated triad in terms of the fixed triad ijk. We note
the similarity between this transformation and that of the second part of Example 1.8.2.
The two are, in fact, identical if the correct identification of rotations is made. Let us dif-
ferentiate the first equation with respect to time. The result is

‘Z’tf = i(f cos 0 cos ¢ — Psin O sin §) + j(Ocos Osing + $sin @ cos p) —kOsin®  (1.12.10)

Next, by using the expressions for e, and egin Equation 1.12.9, we find that the above
equation reduces to
de,

— = e,fsinf+ e,0 (1.12.11a)
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The other two derivatives are found through a similar procedure. The results are

B0 _ ¢ b+eypcoshd (112.11b)
dt

d . .

—L—;ti= —e, ¢sinf—e, Pcosb (112.11¢)

The steps are left as an exercise. Returning now to the problem of finding v, we insert the
expression for de, /dt given by Equation 1.12.11a into Equation 1.12.6. The final result is

v= er1'*+e¢r¢sin0+e9r9 (1.12.12)

giving the velocity vector in terms of its components in the rotated triad.
To find the acceleration, we differentiate the above expression with respect to time.
This gives

act®
dt
. ‘ d A ' (1.12.13)
= eri‘+f%+e¢L—i%ts—lg—e—)+r¢sin0—§tl+ee%+r0%

Upon using the previous formulas for the derivatives of the unit vectors, the above expres-
sion for the acceleration reduces to

a=(#-r¢?sin®0—rb%)e, +(rd+2/0 —ré®sinBcosH)e,

. . .. (1.12.14)
+(r¢sin 0+ 27¢sin 6 + 2rBp cos O)e,

giving the acceleration vector in terms of its components in the triad e, ege,.

A bead slides on a wire bent into the form of a helix, the motion of the bead being given

in cylindrical coordinates by R =b, ¢= wt, z=ct. Find the velocity and acceleration vec-
tors as functions of time.

Solution:

Differentiating, we find R=R =0, ¢ =w, §=0, 2=c¢, £=0. So, from Equations
1.12.2 and 1.12.3, we have

v=bwe,+ce,
a= —bwzeﬂ
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Thus, in this case both velocity and acceleration are constant in magnitude, but they vary
in direction because both e, and e, change with time as the bead moves.

A wheel of radius b is placed in a gimbal mount and is made to rotate as follows. The
wheel spins with constant angular speed @, about its own axis, which in turn rotates with
constant angular speed @, about a vertical axis in such a way that the axis of the wheel
stays in a horizontal plane and the center of the wheel is motionless. Use spherical coor-
dinates to find the acceleration of any point on the rim of the wheel. In particular, find
the acceleration of the highest point on the wheel.

Solution:

We can use the fact that spherical coordinates can be chosen such that r = b, 6=t
and ¢ = @,t (Fig. 1.12.3). Then we have 7+ = =0,0 =@, 6 =0, ¢=0,, $=0.
Equation 1.12.14 gives directly

a=(-bwj; sin® 6-bo})e, — b} sinBcosb e, +2bw, o, cosbe,
The point at the top has coordinate 8 = 0, so at that point

a=-bole, +2bwwe,

The first term on the right is the centripetal acceleration, and the last term is a trans-
verse acceleration normal to the plane of the wheel.

Figure 1.12.3 A rotating wheel on a rotating mount.
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Problems

1.1

1.2

1.3

14

L5

1.6

1.7

1.8

1.9
1.10

1.11
L12

L.13

Given the two vectors A =i + j and B =j + k, find the following;

(a) A+Band |A+B|

(b) 3A- 2B

(©)A-B

(d) AxB and |A xB|

Given the three vectors A =2i + j, B=i+ k, and C = 4j, find the following:

(@ A-B+C)and(A+B)-C

(b) A-(BxC)and AxB)-C

(©) Ax(BxC)and (AxB)xC

Find the angle between the vectors A = ai + 2aj and B = ¢i + 2aj + 3ak. (Note: These two

vectors define a face diagonal and a body diagonal of a rectangular block of sides a, 24,
and 3a.)

Consider a cube whose edges are each of unit length. One corner coincides with the origin
of an xyz Cartesian coordinate system. Three of the cube’s edges extend from the
origin along the positive direction of each coordinate axis. Find the vector that begins at the
origin and extends

() along a major diagonal of the cube;

(b) along the diagonal of the lower face of the cube.

(¢) Calling these vectors A and B, find C=A xB.

(d) Find the angle between A and B.

Assume that two vectors A and B are known. Let C be an unknown vector such that
A . C=uis a known quantity and A x C = B. Find C in terms of A, B, u, and the
magnitude of A.

Given the time-varying vector

A=iat+jBf +kyt*
where @, B, and ¥ are constants, find the first and second time derivatives dA/dt and
d’A/ds®.
For what value (or values) of ¢ is the vector A =ig + 3j + k perpendicular to the vector B =
ig —qj+2k?

Give an algebraic proof and a geometric proof of the following relations:

[A+B|<[A]+]|B]
|A-B|<[A]|B]

Prove the vector identity A x (B x C) =B(A - C) — C(A - B).

Two vectors A and B represent concurrent sides of a parallelogram. Show that the area of
the parallelogram is equal to |A x B|.

Show that A - (B x C) is not equal to B . (A x C).

Three vectors A, B, and C represent three concurrent edges of a parallelepiped. Show that
the volume of the parallelepiped is equal to |A - (B x C)|.

Verify the transformation matrix for a rotation about the z-axis through an angle ¢ followed
by a rotation about the y’-axis through an angle 6, as given in Example 1.8.2.
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1.16

1.17

1.18

1.19

1.20
1.21

1.22
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Express the vector 2i + 3j — k in the primed triad i'j’k’ in which the x"y’-axes are rotated
about the z-axis (which coincides with the z’-axis) through an angle of 30°.

Consider two Cartesian coordinate systems xyz and " 4’ z’ that initially coincide. The
x" y" 2’ undergoes three successive counterclockwise 45° rotations about the following
axes: first, about the fixed z-axis; second, about its own x’-axis (which has now been
rotated); finally, about its own z"-axis (which has also been rotated). Find the components
of a unit vector X in the xyz coordinate system that points along the direction of the x’-axis
in the rotated x” y’ 2’ system. (Hint: It would be useful to find three transformation matri-
ces that depict each of the above rotations. The resulting transformation matrix is simply
their product.)

A racing car moves on a circle of constant radius b. If the speed of the car varies with time
t according to the equation v = c¢f, where ¢ is a positive constant, show that the angle
between the velocity vector and the acceleration vector is 45° at time £ = Jblc. (Hint: At
this time the tangential and normal components of the acceleration are equal in magnitude.)

A small ball is fastened to a long rubber band and twirled around in such a way that the ball
moves in an elliptical path given by the equation

r(t) =1ib cos @t + j2b sin 0t

where b and ware constants. Find the speed of the ball as a function of ¢. In particular, find
v att=0and at t = 7/2@, at which times the ball is, respectively, at its minimum and max-
imum distances from the origin.

A buzzing fly moves in a helical path given by the equation
x(t)=ib sinwt +jb cos wt + ket®

Show that the magnitude of the acceleration of the fly is constant, provided b, @, and ¢ are
constant.

A bee goes out from its hive in a spiral path given in plane polar coordinates by

r=be" 0=ct
where b, k, and ¢ are positive constants. Show that the angle between the velocity vector
and the acceleration vector remains constant as the bee moves outward. (Hint: Find v - a/va.)
‘Work Problem 1.18 using cylindrical coordinates where R=b, ¢ = wt, and z = ctl.

The position of a particle as a function of time is given by

() =i(l —e ™) + je*
where k is a positive constant. Find the velocity and acceleration of the particle. Sketch its
trajectory.

An ant crawls on the surface of a ball of radius b in such a manner that the ant’s motion is
given in spherical coordinates by the equations

Il
S~

r o=t 0= £[1 + %cos(4wt)]

2

Find the speed of the ant as a function of the time ¢. What sort of path is represented by
the above equations?
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1.23

1.24

1.25

1.26

1.27
1.28

1.29

1.30
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Prove that v-a = vi and, hence, that for a moving particle v and a are perpendicular to each
other if the speed v is constant. (Hint: Differentiate both sides of the equation v - v =" with
respect to t. Note, © is not the same as | a|. It is the magnitude of the acceleration of the par-
ticle along its instantaneous direction of motion.)

Prove that
étd—[r-(vxa)]=r-(vxé)

Show that the tangential component of the acceleration of a moving particle is given by the
expression

a, =—
v

and the normal component is therefore

1/2
2 o2 _[ o (v-a)?
a,,=(a —a,) ={a" ——

v

Use the above result to find the tangential and normal components of the acceleration as
functions of time in Problems 1.18 and 1.19.

Prove that |v x a| =v"/p,where p is the radius of curvature of the path of a moving particle.

A wheel of radius b rolls along the ground with constant forward acceleration a,. Show that, at
any given instant, the magnitude of the acceleration of any point on the wheel is (a2 + v*/b® 2
relative to the center of the wheel and is also 4[2 + 2 cos8 + v*/a2b? — (2v*/ayb) sin ]2
relative to the ground. Here v is the instantaneous forward speed, and & defines the loca-
tion of the point on the wheel, measured forward from the highest point. Which point has
the greatest acceleration relative to the ground?

What is the value of x that makes of following transformation R orthogonal?

x x 0
R=[-x = 0
0 01

What transformation is represented by R?

Use vector algebra to derive the following trigonometric identities
(a) cos(0— @) = cosOcosg+ sinO sing

(b) sin(0— ¢) = sinO cosp — cosOsing



"Salvratr But if this is tru and iarge stone moves with a speed of, say,
eight while a smaller one moves wuth a speecl of four, then when they are
united, the system will move with a speed less than eight; but the two stones
when tied together make a stone larger than that which before moved with a
speed of eight. Hence the heavier body moves with less speed than the lighter;
an effect which is contrary to your supposition. Thus you see how, from your
supposition that the heavier body moves more rapidly than the lighter one, |
infer that the heavier body moves more slowly.”

Galileo—Dialogues Concerning Two New Sciences

2.1| Newton's Laws of Motion: Historical Introduction
In his Principia of 1687, Isaac Newton laid down three fundamental laws of motion,
which would forever change mankind’s perception of the world:
I. Every body continues in its state of rest, or of uniform motion in a straight ]ine, unless
it is compelled to change that state by forces impressed upon it.

IL. The change of motion is proportional to the motive force impressed and is made in
the direction of the line in which that force is impressed.

III. To every action there is always imposed an equal reaction; or, the mutual actions of
two bodies upon each other are always equal and directed to contrary parts.

These three laws of motion are now known collectively as Newton's laws of motion or, more
simply, as Newton’s laws. It is arguable whether or not these are indeed all his laws.
However, no one before Newton stated them quite so precisely, and certainly no one before

47
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him had such a clear understanding of the overall implication and power of these laws.
The behavior of natural phenomena that they imply seems to fly in the face of common
experience. As any beginning student of physics soon discovers, Newton’s laws become
“reasonable” only with the expenditure of great effort in attempting to understand thor-
oughly the apparent vagaries of physical systems.

Aristotle (384-322 B.C.E.) had frozen the notion of the way the world works for almost
20 centuries by invoking powerfully logical arguments that led to a physics in which all
moving, earthbound objects ultimately acquired a state of rest unless acted upon by some
motive force. In his view, a force was required to keep earthly things moving, even at con-
stant speed—a law in distinct contradiction with Newton's first and second laws. On the
other hand, heavenly bodies dwelt in a more perfect realm where perpetual circular motion
was the norm and no forces were required to keep this celestial clockwork ticking.

Modern scientists heap scorn upon Aristotle for burdening us with such obviously
flawed doctrine. He is particularly criticized for his failure to carry out even the most
modest experiment that would have shown him the error of his ways. At that time, though,
it was a commonly held belief that experiment was not a suitable enterprise for any
self-respecting philosopher, and thus Aristotle, raised with that belief, failed to acquire a
true picture of nature. This viewpoint is a bit misleading, however. Although he did no
experiments in natural philosophy, Aristotle was a keen observer of nature, one of the first.
If he was guilty of anything, it was less a failure to observe nature than a failure to follow
through with a process of abstraction based upon observation. Indeed, bodies falling
through air accelerate initially, but ultimately they attain a nearly constant velocity of fall.
Heavy objects, in general, fall faster than lighter ones. It takes a sizable force to haul a
ship through water, and the greater the force, the greater the ship’s speed. A spear thrown
vertically upward from a moving chariot will land behind the charioteer, not on top of him.
And the motion of heavenly bodies does go on and on, apparently following a curved path
forever without any visible motive means. Of course, nowadays we can understand these
things if we pay close attention to all the variables that affect the motion of objects and
then apply Newton’s laws correctly.

That Aristotle failed to extract Newton's laws from such observations of the real world
is a consequence only of the fact that he observed the world and interpreted its workings
in a rather superficial way. He was basically unaware of the then-subtle effects of air
resistance, friction, and the like. It was only with the advent of the ability and motiva-
tion to carry out precise experiments followed by a process of abstraction that led to the
revolutionary point of view of nature represented by the Newtonian paradigm. Even
today, the workings of that paradigm are most easily visualized in the artificial realm of
our own minds, emptied of the real world’s imperfections of friction and air resistance (look
at any elementary physics book and see how often one encounters the phrase “neglect-
ing friction”). Aristotle’s physics, much more than Newtonss, reflects the workings of a
nature quite coincident with the common misconception of modern people in general
(including the typical college student who chooses a curriculum curiously devoid of
courses in physics).

There is no question that the first law, the so-called law of inertia, had already
been set forth prior to the time of Newton. This law, commonly attributed to
Galileo (1564-1642), was actually first formulated by René Descartes (1596-1650).
According to Descartes, “inertia” made bodies persist in motion forever, not in perfect
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Aristotelian circles but in a straight line. Descartes came to this conclusion not by exper-
iment but by pure thought. In contrast to belief in traditional authority (which at that time
meant belief in the teachings of Aristotle), Descartes believed that only one’s own think-
ing could be trusted. It was his intent to “explain effects by their causes, and not causes
by their effects.” For Descartes, pure reasoning served as the sole basis of certainty. Such
a paradigm would aid the transition from an Aristotelian worldview to a Newtonian one,
but it contained within itself the seeds of its own destruction.

It was not too surprising that Descartes failed to grasp the implication of his law of
inertia regarding planetary motion. Planets certainly did not move in straight lines.
Descartes, more ruthless in his methods of thought than any of his predecessors, reasoned
that some physical thing had to “drive” the planets along in their curved paths. Descartes
rebelled in horror at the notion that the required physical force was some invisible entity
reaching out across the void to grab the planets and hold them in their orbits. Moreover,
having no knowledge of the second law, Descartes never realized that the required force
was not a “driving” force but a force that had to be directed “inward” toward the Sun. He,
along with many others of that era, was certain that the planets had to be pushed along
in their paths around the Sun (or Earth). Thus, he concocted the notion of an all-pervading,
ether-like fluid made of untold numbers of unseen particles, rotating in vortices, within
which the planets were driven round and round—an erroneous conclusion that arose from
the fancies of a mind engaged only in pure thought, minimally constrained by experimental
or observational data.

Galileo, on the other hand, mainly by clear argument based on actual experimental
results, had gradually commandeered a fairly clear understanding of what would come
to be the first of Newton’s laws, as well as the second. A necessary prelude to the final
synthesis of a correct system of mechanics was his observation that a pendulum undergo-
ing small oscillations was isochronous; that is, its period of oscillation was independent
of its amplitude. This discovery led to the first clocks capable of making accurate meas-
urements of small time intervals, a capability that Aristotle did not have. Galileo would
soon exploit this capability in carrying out experiments of unprecedented precision with
objects either freely falling or sliding down inclined planes. Generalizing from the results
of his experiments, Galileo came very close to formulating Newtonss first two laws.

For example, concerning the first law, Galileo noted, as had Aristotle, that an object
sliding along a level surface indeed came to rest. But here Galileo made a wonderful mental
leap that took him far past the dialectics of Aristotle. He imagined a second surface, more
slippery than the first. An object given a push along the second surface would travel farther
before stopping than it would if given a similar push along the first surface. Carrying this
process of abstraction to its ultimate conclusion, Galileo reasoned that an object given a push
along a surface of “infinite slipperiness” (i.e., “neglecting friction”) would, in fact, go on
forever, never coming to rest. Thus, contrary to Aristotle’s physics, he reasoned that a force
is not required merely to keep an object in motion. In fact, some force must be applied
to stop it. This is very close to Newton's law of inertia but, astonishingly, Galileo did not argue
that motion, in the absence of forces, would continue forever in a straight line!

For Galileo and his contemporaries, the world was not an impersonal one ruled by
mechanical laws. Instead, it was a cosmos that marched to the tune of an infinitely intel-
ligent craftsman. Following the Aristotelian tradition, Galileo saw a world ordered accord-
ing to the perfect figure, the circle. Rectilinear motion implied disorder. Objects that
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found themselves in such a state of affairs would not continue to fly in a straight line for-
ever but would ultimately lapse into their more natural state of perfect circular motion.
The experiments necessary to discriminate between straight-line motion forever and
straight-line motion ultimately evolving to pure circular motion obviously could not be
performed in practice, but only within the confines of one’s own mind, and only if that
mind had been properly freed from the conditioning of centuries of ill-founded dogma.
Galileo, brilliant though he was, still did battle with the ghosts of the past and had not yet
reached that required state of mind.

Galileo’s experiments with falling bodies led him to the brink of Newton’s second law.
Again, as Aristotle had known, Galileo saw that heavy objects, such as stones, did fall faster
than lighter ones, such as feathers. However, by carefully timing similarly shaped objects,
albeit of different weights, Galileo discovered that such objects accelerated as they fell
and all reached the ground at more or less the same time! Indeed, very heavy objects, even
though themselves differing greatly in weight, fell at almost identical rates, with a speed
that increased about 10 m/s each second. (Incidentally, the famous experiment of
dropping cannonballs from the Leaning Tower of Pisa might not have been carried out
by Galileo but by one of his chief Aristotelian antagonists at Pisa, Giorgio Coressio, and
in hopes not of refuting but of confirming the Aristotelian view that larger bodies must
fall more quickly than small ones!)" It was again through a process of brilliant abstraction
that Galileo realized that if the effects of air resistance could be eliminated, all objects
would fall with the same acceleration, regardless of weight or shape. Thus, even more of
Aristotle’s edifice was torn apart; a heavier weight does not fall faster than a light one, and
a force causes objects to accelerate, not to move at constant speed.

Galileo’s notions of mechanics on Earth were more closely on target with Newton's laws
than the conjectures of any of his predecessors had been. He sometimes applied them bril-
liantly in defense of the Copernican viewpoint, that is, a heliocentric model of the solar
system. In particular, even though his notion of the law of inertia was somewhat flawed,
he applied it correctly in arguing that terrestrial-based experiments could not be used to
demonstrate that the Earth could not be in motion around the Sun. He pointed out that
a stone dropped from the mast of a moving ship would not “be left behind” since the stone
would share the ship’s horizontal speed. By analogy, in contrast to Aristotelian argument,
a stone dropped from a tall tower would not be left behind by an Earth in motion. This
powerful argument implied that no such observation could be used to demonstrate whether
or not the Earth was rotating. The argument contained the seeds of relativity theory.

Unfortunately, as mentioned above, Galileo could not entirely break loose from
the Aristotelian dogma of circular motion. In strict contradiction to the law of inertia, he
postulated that a body left to itself will continue to move forever, not in a straight line but
in a circular orbit. His reasoning was as follows:

. .. straight motion being by nature infinite (because a straight line is infinite and inde-
terminate), it is impossible that anything should have by nature the principle of moving
in a straight line; or, in other words, towards a place where it is impossible to arrive, there
being no finite end. For that which cannot be done, nor endeavors to move whither it is
impossible to arrive.

! Aristotle, Galileo, and the Tower of Pisa, L. Cooper, Cornell University Press, Ithaca, 1935.
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This statement also contradicted his intimate knowledge of centrifugal forces, that is, the
tendency of an object moving in a circle to fly off on a tangent in a straight line. He
knew that earthbound objects could travel in circles only if this centrifugal force was either
balanced or overwhelmed by some other offsetting force. Indeed, one of the Aristotelian
arguments against a rotating Earth was that objects on the Earth’s surface would be flung
off it. Galileo argued that this conclusion was not valid, because the Earth’s “gravity”
overwhelmed this centrifugal tendency! Yet somehow he failed to make the mental leap
that some similar effect must keep the planets in circular orbit about the Sun!

So ultimately it was Newton who pulled together all the fragmentary knowledge that
had been accumulated about the motion of earthbound objects into the brilliant synthe-
sis of the three laws and then demonstrated that the motion of heavenly objects obeyed
those laws as well.

Newton’s laws of motion can be thought of as a prescription for calculating or pre-
dicting the subsequent motion of a particle (or system of particles), given a knowledge of
its position and velocity at some instant in time. These laws, in and of themselves, say
nothing about the reason why a given physical system behaves the way it does. Newton
was quite explicit about that shortcoming. He refused to speculate (at least in print) why
objects move the way they do. Whatever “mechanism” lay behind the workings of phys-
ical systems remained forever hidden from Newton’s eyes. He simply stated that, for
whatever reason, this is the way things work, as demonstrated by the power of his calcu-
lational prescription to predict, with astonishing accuracy, the evolution of physical
systems set in motion. Much has been learned since the time of Newton, but a basic fact
of physical law persists: the laws of motion are mathematical prescriptions that allow us
to predict accurately the future motion of physical systems, given a knowledge of their
current state. The laws describe how things work. They do not tell us why.

Newton’s First Law: Inertial Reference Systems

The first law describes a common property of matter, namely, inertia. Loosely speaking,
inertia is the resistance of all matter to having its motion changed. If a particle is at rest,
it resists being moved; that is, a force is required to move it. If the particle is in motion, it
resists being brought to rest. Again, a force is required to bring it to rest. It almost seems
as though matter has been endowed with an innate abhorrence of acceleration. Be that
as it may, for whatever reason, it takes a force to accelerate matter; in the absence of applied
forces, matter simply persists in its current velocity state—forever.

A mathematical description of the motion of a particle requires the selection of a frame
of reference, or a set of coordinates in configuration space that can be used to specify
the position, velocity, and acceleration of the particle at any instant of time. A frame of
reference in which Newton’s first law of motion is valid is called an inertial frame of ref-
erence. This law rules out accelerated frames of reference as inertial, because an object
“really” at rest or moving at constant velocity, seen from an accelerated frame of refer-
ence, would appear to be accelerated. Moreover, an object seen to be at rest in such a
frame would be seen to be accelerated with respect to the inertial frame. So strong is our
belief in the concept of inertia and the validity of Newton’s laws of motion that we would
be forced to invent “fictitious” forces to account for the apparent lack of acceleration of
an object at rest in an accelerated frame of reference.
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Figure 2.1.1 A plumb bob hangs at an angle 6 in an accelerating frame of reference.

A simple example of a noninertial frame of reference should help clarify the situation.
Consider an observer inside a railroad boxcar accelerating down the track with an accel-
eration a. Suppose a plumb bob were suspended from the ceiling of the boxcar. How would
it appear to the observer? Take a look at Figure 2.1.1. The point here is that the observer
in the boxcar is in a noninertial frame of reference and is at rest with respect to it. He sees
the plumb bob, also apparently at rest, hanging at an angle 6 with respect to the vertical.
He knows that, in the absence of any forces other than gravity and tension in the plumb
line, such a device should align itself vertically. It does not, and he concludes that some
unknown force must be pushing or pulling the plumb bob toward the back of the car.
(Indeed, he too feels such a force, as anyone who has ever been in an accelerating vehi-
cle knows from first-hand experience.)

A question that naturally arises is how is it possible to determine whether or not a
given frame of reference constitutes an inertial frame? The answer is nontrivial! (For
example, if the boxcar were sealed off from the outside world, how would the observer
know that the apparent force causing the plumb bob to hang off-vertical was not due to
the fact that the whole boxcar was “misaligned” with the direction of gravity—that is,
the force due to gravity was actually in the direction indicated by the angle 6?) Observers
would have to know that all external forces on a body had been eliminated before check-
ing to see whether or not objects in their frame of reference obeyed Newtonss first law.
It would be necessary to isolate a body completely to eliminate all forces acting upon it.
This is impossible, because there would always be some gravitational forces acting unless
the body were removed to an infinite distance from all other matter.

Is there a perfect inertial frame of reference? For most practical purposes, a coordi-
nate system attached to the Earth’s surface is approximately inertial. For example, a
billiard ball seems to move in a straight line with constant speed as long as it does not
collide with other balls or hit the cushion. If its motion were measured with very high
precision, however, we would see that its path is slightly curved. This is due to the fact
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that the Earth is rotating and its surface is therefore accelerating toward its axis. Hence,
a coordinate system attached to the Earth’s surface is not inertial. A better system would
be one that uses the center of the Earth as coordinate origin, with the Sun and a star as
reference points. But even this system would not be inertial because of the Earth’s orbital
motion around the Sun.

Suppose, then, we pick a coordinate system whose origin is centered on the Sun.
Strictly speaking, this is not a perfect inertial frame either, because the Sun partakes of
the general rotational motion of the Milky Way galaxy. So, we try the center of the Milky
Way, but to our chagrin, it is part of a local group, or small cluster, of some 20 galaxies
that all rotate about their common center of mass. Continuing on, we see that the local
group lies on the edge of the Virgo supercluster, which contains dozens of clusters of galax-
ies centered on the 2000-member-rich Virgo cluster, 60 million light years away, all rotat-
ing about their common center of mass! As a final step in this continuing saga of seeming
futility, we might attempt to find a frame of reference that is at rest with respect to the
observed relative motion of all the matter in the universe; however, we cannot observe
all the matter. Some of the potentially visible matter is too dim to be seen, and some matter
isn’t even potentially visible, the so-called dark matter, whose existence we can only infer
by indirect means. Furthermore, the universe appears to have a large supply of dark
energy, also invisible, which nonetheless makes its presence known by accelerating the
expansion of the universe.

However, all is not lost. The universe began with the Big Bang about 12.7 billion years
ago and has been expanding ever since. Some of the evidence for this is the observation
of the Cosmic Microwave Background radiation (CMB), a relic of the primeval fireball
that emerged from that singular event.” Its existence provides us with a novel means of
actually measuring the Earth’s “true” velocity through space, without reference to
neighboring galaxies, clusters, or superclusters. If we were precisely at rest with respect
to the universal expansion,’ then we would see the CMB as perfectly isotropic, that is, the
distribution of the radiation would be the same in all directions in the sky. The reason
for this is that initially, the universe was extremely hot and the radiation and matter that
sprang forth from the Big Bang interacted fairly strongly and were tightly coupled together.
But 380,000 years later, the expanding universe cooled down to a temperature of about
3000 K and matter, which up to that point consisted mostly of electrically charged protons
and electrons, then combined to form neutral hydrogen atoms and the radiation decou-
pled from it. Since then, the universe has expanded even more, by a factor of about 1000,
and has cooled to a temperature of about 2.73 K. The spectral distribution of the left over
CMB has changed accordingly. Indeed, the radiation is remarkably, though not perfectly,

%For the most up-to-date information about the CMB, dark matter, and dark energy, visit the NASA Goddard
Space Flight Center at http:/map.gsfc.nasa.gov and look for articles discussing the Wilkinson Microwave
Anisotropy Project (WMAP). For a general discussion of the CMB and its implications, the reader is referred
to almost any current astronomy text, such as The Universe, 6th ed., Kaufmann and Freedman, Wiley Publishing,
Indianapolis, 2001.

®A common analog of this situation is an inflating balloon on whose surface is attached a random distribution
of buttons. Each button is fixed and, therefore, “at rest” relative to the expanding two-dimensional surface. Any
frame of reference attached to any button would be a valid inertial frame of reference.
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isotropic. Radiation arriving at Earth from the direction of the constellation Leo appears
to be coming from a slightly warmer region of the universe and, thus, has a slightly shorter
or “bluer” wavelength than radiation arriving from the opposite direction in the constel-
lation Aquarius (Figure 2.1.2). This small spectral difference occurs because the Earth
moves about 400 km/s towards Leo, which causes a small Doppler shift in the observed
spectral distribution.* Observers in a frame of reference moving from Leo toward Aquarius
at 400 km/s relative to Earth would see a perfectly isotropic distribution (except for some
variations that originated when the radiation decoupled from matter in localized regions
of space of slightly different matter densities). These observers would be at rest with
respect to the overall expansion of the universe! It is generally agreed that such a frame
of reference comes closest to a perfect inertial frame.

However, do not think that we are implying that there is such a thing as an absolute
inertial frame of reference. In part, the theory of relativity resulted from the failure of
attempts to find an absolute frame of reference in which all of the fundamental laws of
physics, not just Newton’s first law of motion, were supposed to be valid. This led Einstein
to the conclusion that the failure to find an absolute frame was because of the simple
reason that none exists. Consequently, he proposed as a cornerstone of the theory of rel-
ativity that the fundamental laws of physics are the same in all inertial frames of refer-
ence and that there is no single preferred inertial frame.

Interestingly, Galileo, who predated Einstein by 300 years, had arrived at a very
similar conclusion. Consider the words that one of his characters, Salviati, speaks to
another, Sagredo, in his infamous Dialogue Concerning the Two Chief World Systems,’
which poetically expresses the gist of Galilean relativity.

*Relative motion toward a source of light decreases the observed wavelength of the light. Relative motion away
from the source increases the observed wavelength. This change in observed wavelength is called the Doppler
Effect. A shortening is called a blueshift and a lengthening is called a redshift.

®Dialogue Concerning the Two Chief World Systems, Galileo Galilei (1632), The Second Day, 2nd printing,
p- 186, translated by Stillman Drake, University of California Press, Berkeley, 1970.
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“Shut yourself up with some friend in the main cabin below decks on some large ship,
and have with you there some flies, butterflies, and other small flying animals. Have
a large bowl of water with some fish in it; hang up a bottle that empties drop by drop
into a wide vessel beneath it. With the ship standing still, observe carefully how the
little animals fly with equal speed to all sides of the cabin. The fish swim indiffer-
ently in all directions; the drops fall into the vessel beneath; and, in throwing some-
thing to your friend, you need throw it no more strongly in one direction than
another, the distances being equal; jumping with your feet together, you pass equal
spaces in every direction. When you have observed all these things carefully (though
there is no doubt that when the ship is standing still, everything must happen in this
way), have the ship proceed with any speed you like, so long as the motion is uni-
form and not fluctuating this way and that. You will discover not the least change in
all the effects named, nor could you tell from any of them whether the ship was
moving or standing still. In jumping, you will pass on the floor the same spaces as
before, nor will you make larger jumps toward the stern than toward the prow even
though the ship is moving quite rapidly, despite the fact that during the time you are
in the air, the floor under you will be going in a direction opposite to your jump. In
throwing something to your companion, you will need no more force to get it to him
whether he is in the direction of the bow or the stern, with yourself situated oppo-
site. The droplets will fall as before into the vessel, without dropping toward the stern,
although while the drops are in the air the ship runs many spans. The fish in their
water will swim toward the front of their bowl with no more effort than toward the
back, and will go with equal ease toward bait placed anywhere around the edges of
the bowl. Finally the butterflies and flies will continue their flights indifferently
toward every side, nor will it ever happen that they are concentrated toward the stern,
as if tired out from keeping up with the course of the ship, from which they will have
been separated during long intervals by keeping themselves in the air. . ..”

EXAMPLE 2.1.1

Is the Earth a Good Inertial Reference Frame?

Calculate the centripetal acceleration (see Example 1.12.2), relative to the acceleration
due to gravity g, of

(a) a point on the surface of the Earth’s equator (the radius of the Earth is
Rz =6.4% 10° km)

(b) the Earth in its orbit about the Sun (the radius of the Earth’s orbit is
ax = 150 x 10° km)

(¢) the Sun in its rotation about the center of the galaxy (the radius of the Sun’s
orbit about the center of the galaxy is Rg = 2.8 X 10* LY. Its orbital speed is
ve = 220 km/s)

Solution:

The centripetal acceleration of a point rotating in a circle of radius R is given by

o\’ 4rn’R
ac=sz=[—”] R="Z

T T2
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where T is period of one complete rotation. Thus, relative to g we have

a, 4n°R
g gr
2 6
@) [ 4 (_SAXIO m)7 " =3.4x107°
g 98m-s(3.16x10"s)
(b) 6x107*

(¢) 1.5x107"2

Question for Discussion

Suppose that you step inside an express elevator on the 120th floor of a tall skyscraper.
The elevator starts its descent, but as in your worst nightmare, the support elevator cable
snaps and you find yourself suddenly in freefall. Realizing that your goose is cooked —
or soon will be—you decide to conduct some physics experiments during the little time
you have left on Earth— or above it! First, you take your wallet out of your pocket and
remove a dollar bill. You hold it in front of your face and let it go. Wonder of wonders—
it does nothing! It just hangs there seemingly suspended in front of your face (Figure
2.1.3)! Being an educated person with a reasonably good understanding of Newton’s first
law of motion, you conclude that there is no force acting on the dollar bill. Being a skep-
tical person, however, you decide to subject this conclusion to a second test. You take
a piece of string from your pocket, tie one end to a light fixture on the ceiling of the
falling elevator, attach your wallet to the other end, having thus fashioned a crude

/

Figure 2.1.3 Person in falling elevator.
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plumb bob. You know that a hanging plumb bob aligns itself in the direction of gravity,
which you anticipate is perpendicular to the plane of the ceiling. However, you discover
that no matter how you initially align the plumb bob relative to the ceiling, it simply hangs
in that orientation. There appears to be no gravitational force acting on the plumb bob,
either. Indeed, there appears to be no force of any kind acting on any object inside the
elevator. You now wonder why your physics instructor had such difficulty trying to find
a perfect inertial frame of reference, because you appear to have discovered one quite
easily—just get into a freely falling elevator. Unfortunately, you realize that within a few
moments, you will not be able to share the joy of your discovery with anyone else.

So—is an elevator in free fall a perfect inertial frame of reference, or not?

Hint: Consider this quotation by Albert Einstein.

At that moment there came to me the happiest moment of my life . . . for an observer
falling freely from the roof of a house no gravitational force exists during his fall —at least
not in his immediate vicinity. That is, if the observer releases any objects, they remain in
a state of rest or uniform motion relative to him, respectively, independent of their unique
chemical and physical nature. Therefore, no observer is entitled to interpret his state as
that of “rest”

For a more detailed discussion of inertial frames of reference and their relationship to
gravity, read the delightful book, Spacetime Physics, 2nd ed., by Taylor and Wheeler,
W. H. Freeman & Co., New York, 1992.

Mass and Force: Newton's Second and Third Laws

The quantitative measure of inertia is called mass. We are all familiar with the notion that
the more massive an object is, the more resistive it is to acceleration. Go push a bike to
get it rolling, and then try the same thing with a car. Compare the efforts. The car is much
more massive and a much larger force is required to accelerate it than the bike. A more
quantitative definition may be constructed by considering two masses, m, and my, attached
by a spring and initially at rest in an inertial frame of reference. For example, we could
imagine the two masses to be on a frictionless surface, almost achieved in practice by two
carts on an air track, commonly seen in elementary physics class demonstrations. Now
imagine someone pushing the two masses together, compressing the spring, and then sud-
denly releasing them so that they fly apart, attaining speeds v, and v,. We define the ratio
of the two masses to be

v, @11

If we let m, be the standard of mass, then all other masses can be operationally defined
in the above way relative to the standard. This operational definition of mass is consistent
with Newton’s second and third laws of motion, as we shall soon see. Equation 2.1.1 is
equivalent to

A(mv)) = =A(mgvy) (2.1.2)
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because the initial velocities of each mass are zero and the final velocities v, and v, are
in opposite directions. If we divide by At and take limits as At — 0, we obtain

d d
%(mlvl) = "a(mzvz) (2.1.3)

The product of mass and velocity, mv, is called linear momentum. The “change of
motion” stated in the second law of motion was rigorously defined by Newton to be the
time rate of change of the linear momentum of an object, and so the second law can be
rephrased as follows: The time rate of change of an object’s linear momentum is propor-
tional to the impressed force, F. Thus, the second law can be written as

F = ; 2mv) (2.14)
dt

where k is a constant of proportionality. Considering the mass to be a constant, inde-
pendent of velocity (which is not true of objects moving at “relativistic” speeds or speeds
approaching the speed of light, 3 x 10° m/s, a situation that we do not consider in this book),
we can write

F= km@ =kma 2.15)
dt

where a is the resultant acceleration of a mass m subjected to a force F. The constant
of proportionality can be taken to be k = 1 by defining the unit of force in the SI system
to be that which causes a 1-kg mass to be accelerated 1 m/s®. This force unit is called
1 newton.

Thus, we finally express Newton’s second law in the familiar form

_d(mv) _
dt
The force F on the left side of Equation 2.1.6 is the net force acting upon the mass m;

that is, it is the vector sum of all of the individual forces acting upon m.
We note that Equation 2.1.3 is equivalent to

F,=-F, @.17)

(2.1.6)

or Newton’s third law, namely, that two interacting bodies exert equal and opposite forces
upon one another. Thus, our definition of mass is consistent with both Newton’s second

and third laws.

Linear Momentum
Linear momentum proves to be such a useful notion that it is given its own symbol:
p=mv (2.1.8)

Newton’s second law may be written as

dp 2.1.9
F=— (2.1.9)
dt
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Thus, Equation 2.1.3, which describes the behavior of two mutually interacting masses,
is equivalent to

d
2 (pr+p) =0 2.1.10)

or
P: + P2 = constant 2.1.11)

In other words, Newton’s third law implies that the total momentum of two mutually
interacting bodies is a constant. This constancy is a special case of the more general sit-
uation in which the total linear momentum of an isolated system (a system subject to no
net externally applied forces) is a conserved quantity. The law of linear momentum con-
servation is one of the most fundamental laws of physics and is valid even in situations in
which Newtonian mechanics fails.

EXAMPLE 2.1.2

A spaceship of mass M is traveling in deep space with velocity v; = 20 km/s relative to
the Sun. It ejects a rear stage of mass 0.2 M with a relative speed u = 5 km/s (Figure 2.1.4).
What then is the velocity of the spaceship?

Solution:

The system of spaceship plus rear stage is a closed system upon which no external forces
act (neglecting the gravitational force of the Sun); therefore, the total linear momen-
tum is conserved. Thus

Pf = P{

where the subscripts i and f refer to initial and final values respectively. Taking veloci-
ties in the direction of the spaceship’s travel to be positive, before ejection of the rear
stage, we have

Pi::MDi

Let U be the velocity of the ejected rear stage and vy be the velocity of the ship after
ejection. The total momentum of the system after ejection is then

7 v

Figure 2.1.4 Spaceship ejecting a V

rear stage.
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The speed u of the ejected stage relative to the spaceship is the difference in velocities
of the spaceship and stage

u=vf-—U
or
U=vf-—u

Substituting this latter expression into the equation above and using the conservation
of momentum condition, we find

0.20 M(vy—u) + 0.8 Mos= My,
which gives us

vy =0;+0.2u =20 km/s + 0.20 (5 km/s) = 21 km/s

Motion of a Particle

Equation 2.1.6 is the fundamental equation of motion for a particle subject to the influ-
ence of a net force, F. We emphasize this point by writing F as F,,,,, the vector sum of all
the forces acting on the particle.

&
dt?

The usual problem of dynamics can be expressed in the following way: Given a knowl-
edge of the forces acting on a particle (or system of particles), calculate the acceleration
of the particle. Knowing the acceleration, calculate the velocity and position as functions
of time. This process involves solving the second-order differential equation of motion rep-
resented by Equation 2.1.12. A complete solution requires a knowledge of the initial con-
ditions of the problem, such as the values of the position and velocity of the particle at
time ¢ = 0. The initial conditions plus the dynamics dictated by the differential equation
of motion of Newton’s second law completely determine the subsequent motion of the
particle. In some cases this procedure cannot be carried to completion in an analytic way.
The solution of a complex problem will, in general, have to be carried out using numer-
ical approximation techniques on a digital computer.

F,=XF,=m> > =ma (2.1.12)

2.2] Rectilinear Motion: Uniform Acceleration
Under a Constant Force

When a moving particle remains on a single straight line, the motion is said to be recti-
linear. In this case, without loss of generality we can choose the x-axis as the line of
motion. The general equation of motion is then

F.(x,%,t) =mi (2.2.1)
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(Note: In the rest of this chapter, we usually use the single variable x to repre-
sent the position of a particle. To avoid excessive and unnecessary use of sub-
scripts, we often use the symbols v and a for x and X, respectively, rather than
v and a,, and F rather than F,.)

The simplest situation is that in which the force is constant. In this case we have con-
stant acceleration

i= % = % = constant = a (2.2.2a)

and the solution is readily obtained by direct integration with respect to time:
t=v=at+v, (2.2.2b)
x= %at2 + vyt + 1, (2.2.2¢)

where vy is the velocity and x, is the position at ¢ = 0. By eliminating the time ¢ between
Equations 2.2.2b and 2.2.2¢, we obtain

2a(x —x5) =v° —vp (2.2.2d)

The student will recall the above familiar equations of uniformly accelerated motion.
There are a number of fundamental applications. For example, in the case of a body
falling freely near the surface of the Earth, neglecting air resistance, the acceleration is
very nearly constant. We denote the acceleration of a freely falling body with g. Its mag-
nitude is g = 9.8 m/s>. The downward force of gravity (the weight) is, accordingly, equal
tomg. The gravitational force is always present, regardless of the motion of the body, and
is independent of any other forces that may be acting,® We henceforth call it mg.

EXAMPLE 2.2.1

Consider a block that is free to slide down a smooth, frictionless plane that is inclined at an
angle 6 to the horizontal, as shown in Figure 2.2.1(a). If the height of the plane is & and
the block is released from rest at the top, what will be its speed when it reaches the bottom?

Solution:

We choose a coordinate system whose positive x-axis points down the plane and whose
y-axis points “upward,” perpendicular to the plane, as shown in the figure. The only
force along the x direction is the component of gravitational force, mg sin 6, as shown
in Figure 2.2.1(b). It is constant. Thus, Equations 2.2.2a—d are the equations of motion,
where

S Effects of the Earth’s rotation are studied in Chapter 5.
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(@ (b) (©)

Figure 2.2.1 (a) A block sliding down an inclined plane. (b} Force diagram (no friction).
(c) Force diagram (friction f =y, N).

and

Thus,
2 . h
v” =2g sinf)| — [=2gh
sin8
Suppose that, instead of being smooth, the plane is rough; that is, it exerts a frictional
force f on the particle. Then the net force in the x direction, (see Figure 2.2.1(c)), is equal

to mg sin 6 — f. Now, for sliding contact it is found that the magnitude of the frictional
force is proportional to the magnitude of the normal force N; that is,

fz.uxN

where the constant of proportionality u, is known as the coefficient of sliding or kinetic

T . k . .
friction.” In the example under discussion, the normal force, as shown in the figure, is
equal to mg cos 6; hence,

f=u,mgcosb
Consequently, the net force in the x direction is equal to
mg sin @— pu,mg cos 6
Again the force is constant, and Equations 2.2.2a—d apply where

5c'=£=g(sin9—uk cos 0)
m

"There is another coefficient of friction called the static coefficient g, which, when multiplied by the normal
force, gives the maximum frictional force under static contact, that is, the force required to barely start an object
to move when it is initially at rest. In general, p, > y,.
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The speed of the particle increases if the expression in parentheses is positive—that is,
if 8> tan™ . The angle, tan ™" Iy, usually denoted by e, is called the angle of kinetic
friction. If 8= €, then a = 0, and the particle slides down the plane with constant speed.
If 6 < €, a is negative, and so the particle eventually comes to rest. For motion up the
plane, the direction of the frictional force is reversed; that is, it is in the positive x direc-
tion. The acceleration (actually deceleration) is then % = g(sin 8 + y,c cos 6).

2.3| Forces that Depend on Position: The Concepts

of Kinetic and Potential Energy

It is often true that the force a particle experiences depends on the particle’s position with

respect to other bodies. This is the case, for example, with electrostatic and gravitational

forces. It also applies to forces of elastic tension or compression. If the force is independent

of velocity or time, then the differential equation for rectilinear motion is simply
Flx)=mXx (2.3.1)

It is usually possible to solve this type of differential equation by one of several methods,

such as using the chain rule to write the acceleration in the following way:

(_di_dedi_ do

T & ®52)
so the differential equation of motion may be written
do_md(v) _dr
dx 2 dx dx

The quantity T'= 1 mo’is called the kinetic energy of the particle. We can now express
Equation 2.3.3 in integral form:

w=[ Fx)de=T-T, (2.3.4)

The integral | F(x)dx is the work W done on the particle by the impressed force F (x). The
work is equal to the change in the kinetic energy of the particle. Let us define a function
V(x) such that

(2.3.3)

F(x) =mo

_dv(x)
dx

The function V(x) is called the potential energys; it is defined only to within an arbi-
trary additive constant. In terms of V(x), the work integral is

w =f0F(x)dx =—J:c0 dV =-V(x)+V(xy) =T-T, (2.3.6)

= F(x) (2.3.5)

Notice that Equation 2.3.6 remains unaltered if V(x) is changed by adding any constant
C, because

—[V(x) + C1+ [V(xy) + C] =—=V(x) + V(xy) 2.3.7)
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V(x)

Allowed
region

Turning points
Figure 2.3.1 Graph of a one-
dimensional potential energy
function V(x) showing the allowed
region of motion and the turning
points for a given value of the total
energy E.

We now transpose terms and write Equation 2.3.6 in the following form:
Ty+ V(xy) =constant=T + V(x)=E (2.3.8)

This is the energy equation. E is defined to be the total energy of the particle (tech-
nically, it’s the total mechanical energy). It is equal to the sum of the kinetic and poten-
tial energies and is constant throughout the motion of the particle. This constancy
results from the fact that the impressed force is a function only of the position x (of the
particle and consequently can be derived from a corresponding potential energy)
function V(x). Such a force is said to be conservative.® Nonconservative forces—that
is, those for which no potential energy function exists—are usually of a dissipational
nature, such as friction.

The motion of the particle can be obtained by solving the energy equation (Equation

2.3.8) for v,
dx ;2
=2+ [ ZE- 2.3.9
0= + [E-V(x)] ( )

which can be written in integral form,

x dx

J; —— =t
° 4 / 2 (E- V()] (2.3.10)
m

thus giving ¢ as a function of x.

In view of Equation 2.3.9, we see that the expression for v is real only for those values
of x such that V(x) is less than or equal to the total energy E. Physically, this means that
the particle is confined to the region or regions for which the condition V(x) < E is satis-
fied. Furthermore, v goes to zero when V(x) = E. This means that the particle must come
to rest and reverse its motion at points for which the equality holds. These points are
called the turning points of the motion. The above facts are illustrated in Figure 2.3.1.

¥ A more complete discussion of conservative forces is found in Chapter 4.
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EXAMPLE 2.3.1

Free Fall

The motion of a freely falling body (discussed above under the case of constant accel-
eration) is an example of conservative motion. If we choose the x direction to be posi-
tive upward, then the gravitational force is equal to —mg. Therefore, ~dV/dx = —mg, and
V=mgx + C. The constant of integration C is arbitrary and merely depends on the choice
of the reference level for measuring V. We can choose C = 0, which means that V=0
when x = 0. The energy equation is then

1 2 _
zmv~ +mgr=E

The energy constant E is determined from the initial conditions. For instance, let the
body be pro]ected upward with initial speed v, from the origin x = 0. These values give
E=mvg/2=mo’2 + mgx, so

v =vg— 2gx

The turning point of the mot10n which is in this case the maximum height, is given by
setting v = 0. This gives 0 = v§ ~ 28 %5z, OF

Variation of Gravity with Height

In Example 2.3.1 we assumed that g was constant. Actually, the force of gravity between
two particles is 1nversely proportional to the square of the distance between them
(Newton’s law of gravity). ® Thus, the gravitational force that the Earth exerts on a body
of mass m is given by

GMm

v
1"2

in which G is Newton’s constant of gravitation, M is the mass of the Earth, and r is the
distance from the center of the Earth to the body. By definition, this force is equa.l to
the quantity —mg when the body is at the surface of the Earth, so mg = GMm/r2. Thus,
g = GM/r? is the acceleration of gravity at the Earth’s surface. Here r, is the radius of
the Earth (assumed to be spherical). Let x be the distance above the surface, so that
r=r,+x. Then, neglecting any other forces such as air resistance, we can write

2

Fx)=-mg :ex)z = mi

®We study Newton's law of gravity in more detail in Chapter 6.
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for the differential equation of motion of a vertically falling (or rising) body with the vari-
ation of gravity taken into account. To integrate, we set X = vdv/dx. Then

0
—mg =1 modv
xo(f‘ +x)2 '[Do
of 1 1 12 1 .3
r - =_mo°—zmo
mge[r+x r+on 2 g0

This is just the energy equation in the form of Equation 2.3.6. The potential energy is
V(x) = —mg[rZ/(r, + x)] rather than mgz.

Maximum Height: Escape Speed

Suppose a body is projected upward with initial speed v, at the surface of the Earth,
%o = 0. The energy equation then yields, upon solving for v*, the following result:

-1
0% = u§—2gx(l+iJ

re

This reduces to the result for a uniform gravitational field of Example 2.2.1, if x is very
small compared to r, so that the term x/r,, can be neglected. The turning point (maxi-
mum height) is found by setting v = 0 and solving for x. The result is

2 2 \1
o == ”_o(l_“_o]
28\ 2gr,

Again we get the formula of Example 2.2.1 if the second term in the parentheses can
be ignored, that is, if vj is much smaller than 2gr,.

Using this last, exact expression, we solve for the value of v, that gives an infinite value
for h. This is called the escape speed, and it is found by setting the quantity in paren-
theses equal to zero. The result is

v, = (2gr)"
This gives, for g =9.8 m/s”* and r, = 6.4 x 10° m,
v, = 11km/s = 7 mi/s

for the numerical value of the escape speed from the surface of the Earth.

In the Earth’s atmosphere, the average speed of air molecules (O, and N,) is about
0.5 km/s, which is considerably less than the escape speed, so the Earth retains its
atmosphere. The moon, on the other hand, has no atmosphere; because the escape
speed at the moon’s surface, owing to the moon’s small mass, is considerably smaller than
that at the Earth’s surface, any oxygen or nitrogen would eventually disappear. The
Earth’s atmosphere, however, contains no significant amount of hydrogen, even though
hydrogen is the most abundant element in the universe as a whole. A hydrogen atmos-
phere would have escaped from the Earth long ago, because the molecular speed of
hydrogen is large enough (owing to the small mass of the hydrogen molecule) that at
any instant a significant number of hydrogen molecules would have speeds exceeding
the escape speed.
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EXAMPLE 2.3.3

The Morse function V(x) approximates the potential energy of a vibrating diatomic mol-
ecule as a function of x, the distance of separation of its constituent atoms, and is given by

V@) = Vo[L-e 08 -,

where Vy, %y, and & are parameters chosen to describe the observed behavior of a partic-
ular pair of atoms. The force that each atom exerts on the other is given by the derivative
of this function with respect to x. Show that x, is the separation of the two atoms when the
potential energy function is a minimum and that its value for that distance of separation is
V(xo) =—V,. (When the molecule is in this configuration, we say that it is in equilibrium.)

Solution:

The potential energy of the diatomic molecule is a minimum when its derivative with
respect to x, the distance of separation, is zero. Thus,

dV(x) _
dx

2%(1 _ e-(x_xo)/s)( e_<x-xo)/a) -0
1= e =508 _

In(1)=—(x—x,)/6=0

SX = Xo

F(x)=- 0=

The value of the potential energy at the minimum can be found by setting x = x, in the
expression for V(x). This gives V(xy) = -V,

EXAMPLE 2.3.4

Shown in Figure 2.3.2 is the potential energy function for a diatomic molecule. Show
that, for separation distances x close to x, the potential energy function is parabolic and
the resultant force on each atom of the pair is linear, always directed toward the equi-
librium position.

V(x)

Figure 2.3.2 Potential energy function for a
diatomic molecule.

_Vo e —
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Solution:

All we need do here is expand the potential energy function near the equilibrium

position.
2
V(x) =V, [1 - [1 - (3‘—‘630—))] -V,

—g(x xo) -V

dv(x) _ 2V0( B
d

(Note: The force is linear and is directed in such a way as to restore the diatomic
molecule to its equilibrium position.)

F(x)=-

%)

EXAMPLE 2.3.5

The bmdmg energy (-V,) of the diatomic hydrogen molecule Hy is ~4.52 eV (1 eV =
1.6 x 107" joules; 1 joule=1 N - m) The values of the constants x, and & are .074
and .036 nm, respectively (1 nm = 10~° m). Assume that at room temperature the total
energy of the hydrogen molecule is about AE = 1/40 eV higher than its binding
energy. Calculate the maximum separation of the two atoms in the diatomic hydro-
gen molecule.

Solution:

Because the molecule has a little more energy than its minimum possible value, the two
atoms will vibrate between two values of x, where their kinetic energy is zero. At these
turning points, all the energy is potential; hence,

V(x)=-V, +AE = %(x—xo)z -V

x=x,%0 ’%
0

Putting in numbers, we see that the hydrogen molecule vibrates at room temperature
a distance of about £4% of its equilibrium separation.

For this situation where the oscillation is small, the two atoms undergo a symmetri-
cal displacement about their equilibrium position. This arises from approximating the
potential function as a parabola near equilibrium. Note from Figure 2.3.2 that, farther
away from the equilibrium position, the potential energy function is not symmetrical,
being steeper at smaller distances of separation. Thus, as the diatomic molecule is
“heated up,” on the average it spends an increasingly greater fraction of its time sepa-
rated by a distance greater than their separation at equilibrium. This is why most sub-
stances tend to expand when heated.
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2.4| Velocity-Dependent Forces: Fluid Resistance
and Terminal Velocity

It often happens that the force that acts on a body is a function of the velocity of the
body. This is true, for example, in the case of viscous resistance exerted on a body
moving through a fluid. If the force can be expressed as a function of v only, the dif-
ferential equation of motion may be written in either of the two forms

F,+F(v)=m % @4.1)
dv

E, + F(v) =mv— 2.4.2)
dx

Here F, is any constant force that does not depend on v. Upon separating variables, inte-
gration yields either ¢ or x as a function of v. A second integration can then yield a functional
relationship between x and ¢.

For normal fluid resistance, including air resistance, F(v) is not a simple function and
generally must be found through experimental measurements. However, a fair approxi-
mation for many cases is given by the equation

F(v)=—c,0—cyo|v|=~0(c, +¢, |v]) (2.4.3)

in which ¢; and ¢, are constants whose values depend on the size and shape of the body.
(The absolute-value sign is necessary on the last term because the force of fluid resist-
ance is always opposite to the direction of v.) If the above form for F(v) is used to find
the motion by solving Equation 2.4.1 or 2.4.2, the resulting integrals are somewhat
messy. But for the limiting cases of small v and large v, respectively, the linear or the
quadratic term in F(v) dominates, and the differential equations become somewhat more
manageable.

For spheres in air, approximate values for the constants in the equation for F(v) are,
in ST units,

¢, =155%107"D
¢, =0.22D*

where D is the diameter of the sphere in meters. The ratio of the quadratic term cyv|v|
to the linear term c;v is, thus,

0.220 |v| D?

85 x 100D ~ L4%10° [l D

This means that, for instance, with objects of baseball size (D ~ 0.07 m), the quadratic
term dominates for speeds in excess of 0.01 m/s(1 cm/s), and the linear term dominates
for speeds less than this value. For speeds around this value, both terms must be taken
into account. (See Problem 2.15.)
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EXAMPLE 2.4.1

Horizontal Motion with Linear Resistance

Suppose a block is projected with initial velocity v, on a smooth horizontal surface and
that there is air resistance such that the linear term dominates. Then, in the direction
of the motion, Fy = 0 in Equations 2.4.1 and 2.4.2, and F(v) = —c,v. The differential
equation of motion is then

dv
—co=m—

dt
which gives, upon integrating,

v mdv m (UJ
t=1 - =——In| —

% €U o \1y

Solution:

We can easily solve for v as a function of ¢ by multiplying by —c,/m and taking the expo-
nential of both sides. The result is
o= er—clt/m

Thus, the velocity decreases exponentially with time. A second integration gives
_ t —c;tim
x= Jo vee "dt

mo -
=____O_(l_e clﬂm)
a

showing that the block approaches a limiting position given by x,, = mvy/c;.

EXAMPLE 2.4.2

Horizontal Motion with Quadratic Resistance

If the parameters are such that the quadratic term dominates, then for positive v we can write

—c,0% = m@
2 dt
which gives
v~mdv mfl 1
ray
% Co co\ v v,
Solution:

Solving for v, we get

U=l+kt
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where k = cyvo/m. A second integration gives us the position as a function of time:

t vydt
01+ kt

Thus, as t — oo, v decreases as 1/, but the position does not approach a limit as was
obtained in the case of a linear retarding force. Why might this be? You might guess that
a quadratic retardation should be more effective in stopping the block than is a linear
one. This is certainly true at large velocities, but as the velocity approaches zero, the quad-
ratic retarding force goes to zero much faster than the linear one—enough to allow the
block to continue on its merry way, albeit at a very slow speed.

x(t) = = %m 1 +kt)

Vertical Fall Through a Fluid: Terminal Velocity

(a) Linear case. For an object falling vertically in a resisting fluid, the force F, in
Equations 2.4.1 and 2.4.2 is the weight of the object, namely, —mg for the x-axis
positive in the upward direction. For the linear case of fluid resistance, we then
have for the differential equation of motion

—mg-op=m % 2.4.4)

Separating variables and integrating, we find

t= J‘om—du=_ﬂln_m’£+c_lu (2.4.5)

o ~Mg ~ ;0 ¢, mg+e,

in which v, is the initial velocity at ¢ = 0. Upon multiplying by —c,/m and taking the
exponential, we can solve for v:

o= ———m§+(—m§+uo]e_cl”m (2.4.6)

51 51

The exponential term drops to a negligible value after a sufficient time (¢ >> m/c,),
and the velocity approaches the limiting value —mg/c,. The limiting velocity of a
falling body is called the terminal velocity; it is that velocity at which the force of resist-
ance is just equal and opposite to the weight of the body so that the total force is zero,
and so the acceleration is zero. The magnitude of the terminal velocity is the termi-
nal speed.

Let us designate the terminal speed mg/c, by v,, and let us write 7 (which we may
call the characteristic time) for m/c;. Equation 2.4.6 may then be written in the more
significant form

v=—0,l-€") +v,e"" 2.4.7

These two terms represent two velocities: the terminal velocity v,, which exponen-
tially “fades in,” and the initial velocity vy, which exponentially “fades out” due to the
action of the viscous drag force.

In particular, for an object dropped from rest at time ¢ =0, v, = 0, we find

v=—v,(1 %) (2.4.8)
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Thus, after one characteristic time the speed is 1 - ¢ times the terminal speed, after
two characteristic times it is the factor 1 — ¢ of v,, and so on. After an interval of
57, the speed is within 1% of the terminal value, namely, (1 - e_s)vt =0.993 v,.

(b) Quadratic case. In this case, the magnitude of F(v) is proportional to v°. To ensure
that the force remains resistive, we must remember that the sign preceding the F(v)
term depends on whether or not the motion of the object is upward or downward. This
is the case for any resistive force proportional to an even power of velocity. A general
solution usually involves treating the upward and downward motions separately. Here,
we simplify things somewhat by considering only the situation in which the body is
either dropped from rest or projected downward with an initial velocity v,. We leave
it as an exercise for the student to treat the upward-going case. We take the downward
direction to be the positive y direction. The differential equation of motion is

m%:—= mg—0202 = mg(l—%vz)

(2.49)
do_ (1.2
d & v’
where
v, = c% (terminal speed) (2.4.10)
2
Integrating Equation 2.4.9 gives ¢ as a function of v,
v do v 0
t—t,=| ———=1|tanh™ ——tanh™ 2
0 LO 7 T( e, e ,,t) (2.4.11)
g o
where
r=2t= | (Characteristic time) 2.4.12)
g C28
Solving for v, we obtain
v= vttanh(t mi tanh™ U—O) (2.4.13)
T v,
If the body is released from rest at time ¢ =0,
t e2t/‘l.' _ 1
— o.tanht = -1 2.4.14)
v U tan T vt(e2t/‘l.' +1]

The terminal speed is attained after the lapse of a few characteristic times; for exam-
ple, att =57, the speed is 0.99991 v,. Graphs of speed versus time of fall for the linear
and quadratic cases are shown in Figure 2.4.1.
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1 .0 1 I

= Linear resistance

2 Quadratic resistance

- 05 -

8

2,

w)
Figure 2.4.1 Graphs of speed (units 0 L ! i
of terminal speed) versus time (units 0 1 2 3 4
of time constant 7) for a falling body. Time (#/f)

In many instances we would like to know the speed attained upon falling a given
distance. We could find this out by integrating Equation 2.4.13, obtaining y as a
function of time, and then eliminating the time parameter to find speed versus distance.
A more direct solution can be obtained by direct modification of the fundamen-
tal differential equation of motion so that the independent variable is distance instead
of time. For example, because

do_dvdy _,dv* 2.4.15)

2 2
B g1 (2.4.16)
dy vy
We solve this equation as follows:
: dy v} dy o}
o2
u=u(y=0)e 2eylot but wy=0)=1--2
Ut
2 2
u= (1 - Ug Je_zgylo‘ 1 25-
t Uy
. 02 = ‘D?(l _ e—2gy/o%)+ Uge—2gy/o? (2417)

Thus, we see that the squares of the initial velocity and terminal velocity exponen-
tially fade in and out within a characteristic length of v2/2g.
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Falling Raindrops and Basketballs

Calculate the terminal speed in air and the characteristic time for (a) a very tiny spher-
ical raindrop of diameter 0.1 mm = 10 m and (b) a basketball of diameter 0.25 m and
mass 0.6 kg.

Solution:

To decide which type of force law to use, quadratic or linear, we recall the expression
that glves the ratio of the quadratic to the linear force for air resistance, namely,
1.4x 10°|o|D. For the raindrop this is 0.14v, and for the basketball it is 3500, numeri-
cally, where v is in meters per second. Thus, for the raindrop, v must exceed 1/0.14 =
7.1 m/s for the quadratic force to dominate. In the case of the basketball, v must exceed
only 1/350 = 0.0029 m/s for the quadratic force to dominate. We conclude that the
linear case should hold for the falling raindrop, while the quadratic case should be cor-
rect for the basketball. (See also Problem 2.15.)

The volume of the ra.lndrop is £D/6 = 0.52 X 10 m®, so, multiplying by the den-
sity of water, 10 kg/m®, glves the mass m=052x 107 kg, For the drag coefficient we get
¢;=155% 107D =1.55x 10° N - s/m. This gives a terminal speed

-9
b, =8 052X10_x98 e o 033mss
o 155x10

The characteristic time is

_b 0.33 m/s = 0.034 s

g  98ms®

For the basketball the drag constant is ¢, = 0.22D%=0.22 x (0.25)* =0.0138 N - s¥m”®,
and so the terminal speed is

" 0.6x9.8)2
Dt=[‘%) =( - - ) m/s = 20.6 m/s

0.0138
and the characteristic time is

=&=20'6m/:=2.1s
g 98ms

Thus, the raindrop practically attains its terminal speed in less than 1 s when starting
from rest, whereas it takes several seconds for the basketball to come to within 1% of
the terminal value.

For more information on aerodynamic drag, the reader is referred to an article by
C. Frohlich in Am. J. Phys., 52, 325 (1984) and the extensive list of references cited
therein.
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*2.5| Vertical Fall Through a Fluid:
Numerical Solution

Many problems in classical mechanics are described by fairly complicated equations of
motion that cannot be solved analytically in closed form. When one encounters such a
problem, the only available alternative is to try to solve the problem numerically. Once one
decides that such a course of action is necessary, many alternatives open up. The wide-
spread use of personal computers (PCs) with large amounts of memory and hard-disk
storage capacity has made it possible to implement a wide variety of problem-solving
tools in high-level languages without the tedium of programming. The tools in most
widespread use among physicists include the software packages Mathcad, Mathematica
(see Appendix I), and Maple, which are designed specifically to solve mathematical
problems numerically (and symbolically).

As we proceed through the remaining chapters in this text, we use one or another
of these tools, usually at the end of the chapter, to solve a problem for which no closed-
form solution exists. Here we have used Mathcad to solve the problem of an object
falling vertically through a fluid. The problem was solved analytically in the preceding
section, and we use the solution we obtained there as a check on the numerical result
we obtain here, in hopes of illustrating the power and ease of the numerical problem-
solving technique.

Linear and quadratic cases revisited. The first-order differential equation of motion
for an object falling vertically through a fluid in which the retarding force is linear was
given by Equation 2.4.4:

—eo=m® (2.5.1a)
mg—cpp=m—

Here, though, we have chosen the downward y direction to be positive, because we con-
sider only the situation in which the object is dropped from rest. The equation can be put
into a much simpler form by expressing it in terms of the characteristic time 7= m/c; and
terminal velocity v, = mg/c;.

dolv, 12

= 2.5.1b
dilt v, ( )

Now, in the above equation, we “scale” the velocity v and the time of fall # in units of
v, and 7, respectively; that is, we let 4 = v/v, and T = t/7. The preceding equation
becomes

Linear: éz = u' =1-u (2510)
dar

where we denote the first derivative of u by u’.

*Sections in the text marked with * may be skipped with impunity.
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An analysis similar to the one above leads to the following “scaled” first-order dif-
ferential equation of motion for the case in which the retarding force is quadratic (see
Equation 2.4.9).

Quadratic: j—; =u'=1-u® (2.5.2)

The Mathcad software package comes with the rkfixed function, a general-purpose
Runge—Kutta solver that can be used on nth-order differential equations or on systems
of differential equations whose initial conditions are known. This is the situation that
faces us in both of the preceding cases. All we need do, it turns out, to solve these two
differential equations is to “supply” them to the rkfixed function in Mathcad. This function
uses the fourth-order Runge—Kutta method™ to solve the equations. When called in
Mathcad, it returns a two-column matrix in which

o the left-hand (or Oth) column contains the data points at which the solution to the
differential equation is evaluated (in the case here, the data points are the times T);

o the right-hand (or first) column contains the corresponding values of the solution
(the values u,).

The syntax of the call to the function and the arguments of the function is:
rkfixed(y, xo, %y, npoints, D)

y = avector of n initial values, where n is the order of the differential equation
or the size of the system of equations you're solving. For a single first-order
differential equation, like the one in this case, the vector degenerates to a
single initial value, y(0) = y(x;).

%, % = the endpoints of the interval within which the solutions to the differential
equation are to be evaluated. The initial values of y are the values at .

npoints = the number of points beyond the initial point at which the solution is to be
evaluated. This value sets the number of rows to (1 + npoints) in the matrix
rkfixed.

D(x,y) = an n-element vector function containing the first derivatives of the unknown
functions y. Again, for a single first-order differential equation, this vector
function degenerates to a single function equal to the first derivative of the
single function y.

We show on the next two pages an example of a Mathcad worksheet in which we obtained
a numerical solution for the above first-order differential equations (2.5.1c and 2.5.2).
The worksheet was imported to this text directly from Mathcad. What is shown there should
be self-explanatory, but exactly how to implement the solution might not be. We discuss the
details of how to do it in Appendix I. The important thing here is to note the simplicity of
the solution (as evidenced by the brevity of the worksheet) and its accuracy (as can be seen
by comparing the numerical solutions shown in Figure 2.5.1 with the analytic solutions
shown in Figure 2.4.1). The accuracy is further detailed in Figure 2.5.2, where we have

YSee, for example, R. L. Burden and J. Douglas Faires, Numerical Analysis, 6th ed, Brooks/Cole, Pacific
Grove, ITP, 1977.



2.5 Vertical Fall Through a Fluid: Numerical Solution 77

1.0 . e
uL;
g 05 =
& uoi
Figure 2.5.1 Numerical o5 ' ' ' .
solution of speed versus time for 1 2 3
a falling body. uL, linear case; 1Q, Ti
quadratic case. Time
6108 T T T
AuL; 40108 |- ]
3:;- AuQ;
Figure 2.5.2 Difference
between analytic and numerical
solutions for the speed of a falling 0 1 2 3 4
object. AuL, linear case; AuQ, T;
quadratic case. Time

plotted the percent difference between the numerical and analytic solutions. The worst error,
about 5 x 107°, occurs in the quadratic solution. Even greater accuracy could be achieved
by dividing the time interval (0—4) into even more data points than the 100 chosen here.

Mathcad Solution for Speed of Falling Object:
Linear Retarding Force.

uy:=0 « Define initial value (use [ to make the
subscript)

DT u):==1-u « Define function for first derivative v’

Y :=rkfixed(u, 0,4,100,D) < Evaluates solution at 100 points

between 0 and 4 using fourth-order
Runge—Kutta.
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i:=0.rows(Y)—-1

uL, = (Y,

« i denotes each element pair in the

matrix Y (a 101 X 2 matrix). First column
contains data points (time T') where
solution (velocity u) is evaluated. Second
column contains u values.

¢ Rename normalized velocity, linear case

Mathcad Solution for Speed of Falling Object:

Quadratic Retarding Force.

uO — 0

DT, u):=1-u?

Z := rkfixed (u,0,4,100, D)
T, := 0.04i

uQ, = (Z%),

Difference Between Analytic
and Numerical Solutions.

T,
U; :=1—€ !

(T -1

u;:
T )

_(v,—uLy)

_ (u; —uQ;)

Problems

 Define initial value (use [ to make the
subscript)

 Define function for first derivative u’

« Evaluates solution at 100 points between
0 and 4 using fourth-order Runge—Kutta.

¢« Define time in terms of array element

 Rename normalized velocity, quadratic
case

< Analytic solution for linear retarding force

« Analytic solution for quadratic retarding
force

« Difference, linear case

« Difference, quadratic case

2.1  Find the velocity % and the position x as functions of the time ¢ for a particle of mass m,
which starts from rest at x = 0 and ¢ =0, subject to the following force functions:

(a) F,=F,+ct
(b) F,=F,sinct
(c) F,=Foe”

where F; and ¢ are positive constants.

2.2  Find the velocity % as a function of the displacement x for a particle of mass m, which starts
from rest at x = 0, subject to the following force functions:

(@) F,=F,+cx
(b) F,=Fpe™
(c) F,=F,coscx

where F; and ¢ are positive constants.
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Find the potential energy function V(x) for each of the forces in Problem 2.2.

A particle of mass m is constrained to lie along a frictionless, horizontal plane subject to
a force given by the expression F(x) = —kx. It is projected from x = 0 to the right along
the positive x direction with initial kinetic energy Ty = 1/2 kA% k and A are positive con-
stants. Find (a) the potential energy function V(x) for this force; (b) the kinetic energy,
and (c) the total energy of the particle as a function of its position. (d) Find the turning
points of the motion. (e) Sketch the potentlal kinetic, and total energy functions.
(Optional: Use Mathcad or Mathematica to plot these functions. Set k and A each equal
to l.)

As in the problem above, the particle is prolected to the right with initial kinetic
energy T, but subject to a force F(x) = —kx + kx*/A®, where k and A are positive con-
stants. Find (a) the potential energy function V(x) for this force; (b) the kinetic energy,
and (c) the total energy of the particle as a function of its position. (d) Find the turning
points of the motion and the condition the total energy of the particle must satisfy if its
motion is to exhibit turning points. (e) Sketch the potential, kinetic, and total energy func-
tions. (Optional: Use Mathcad or Mathematica to plot these functions. Set k and A each
equal to 1.)

A particle of mass m moves along a frictionless, horizontal plane with a speed given by
o(x)= ot/x, where x is its distance from the origin and @is a positive constant. Find the force
F(x) to which the particle is subject.

A block of mass M has a string of mass m attached toit. A force F is applied to the string,
and it pulls the block up a frictionless plane that is inclined at an angle 8 to the horizontal.
Find the force that the string exerts on the block.

Given that the velocity of a particle in rectilinear motion varies with the displacement x
according to the equation

%=bxS

where b is a positive constant, find the force acting on the particle as a function of x.
(Hint: F = m& = mz dildx.)

A baseball (radius = .0366 m, mass = .145 kg) is dropped from rest at the top of the Empire
State Building (height = 1250 ft). Calculate (a) the initial potential energy of the baseball,
(b) its final kinetic energy, and (c) the total energy dissipated by the falling baseball by com-
puting the line integral of the force of air resistance along the baseball’s total distance of
fall. Compare this last result to the difference between the baseball’s initial potential energy
and its final kinetic energy. (Hint: In part (c) make approximations when evaluating the
hyperbolic functions obtained in carrying out the line integral.)

A block of wood is projected up an inclined plane with initial speed v,. If the inclination of
the plane is 30° and the coefficient of sliding friction u, = 0.1, find the total time for the
block to return to the point of projection.

A metal block of mass m slides on a horizontal surface that has been lubaricated with a
heavy oil so that the block suffers a viscous resistance that varies as the 3 power of the
speed:

F(v) = —cv™®

If thei Ilmual speed of the block is v at x = 0, show that the block cannot travel farther than
2moy*fc.
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A gun is fired straight up. Assuming that the air drag on the bullet varies quadratically with
speed, show that the speed varies with height according to the equations

v? = A —% (upward motion)

o= %— Be*™  (downward motion)

in which A and B are constants of integration, g is the acceleration of gravity, and k = ¢o/m
where ¢, is the drag constant and m is the mass of the bullet. (Note: x is measured positive
upward, and the gravitational force is assumed to be constant.)

Use the above result to show that, when the bullet hits the ground on its return, the speed
is equal to the expression

Do¥;
(ug + uf)m
in which v, is the initial upward speed and
v = (1)1{;/02)1/2 = terminal speed = (g/k)l/2

(This result allows one to find the fraction of the initial kinetic energy lost through air
friction.)

A particle of massm is released from rest a distance b from a fixed origin of force that attracts
the particle according to the inverse square law:

Fr)=—kx"
Show that the time required for the particle to reach the origin is
i ( b ]1/2
8k
Show that the terminal speed of a falling spherical object is given by

0= [(mgleg) + (cr/2¢2)™1"* = (c/2¢5)

when both the linear and the quadratic terms in the drag force are taken into account.

Use the above result to calculate the terminal speed of a soap bubble of mass 10 kg and
diameter 10 m. Compare your value with the value obtained by using Equation 2.4.10.

Given: The force acting on a particle is the product of a function of the distance and a func-
tion of the velocity: F(x, v) = f(x)g(v). Show that the differential equation of motion can be
solved by integration. If the force is a product of a function of distance and a function of
time, can the equation of motion be solved by simple integration? Can it be solved if the
force is a product of a function of time and a function of velocity?

The force acting on a particle of mass m is given by
F=kox

inwhich k is a positive constant. The particle passes through the origin with speed v, at time
t =0. Find x as a function of £.

A surface-going projectile is launched horizontally on the ocean from a stationary war-
ship, with initial speed vy. Assume that its propulsion system has failed and it is slowed
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by a retarding force given by F(v) = —~A¢®”. (a) Find its speed as a function of time, v(t).
Find (b) the time elapsed and (c) the distance traveled when the projectile finally comes
to rest. A and o are positive constants.

2.20  Assume that a water droplet falling though a humid atmosphere gathers up mass at a rate
that is proportional to its cross-sectional area A. Assume that the droplet starts from rest
and that its initial radius Ry is so small that it suffers no resistive force. Show that (a) its radius
and (b) its speed increase linearly with time.

Computer Problems

C 2.1 A parachutist of mass 70 kg jumps from a plane at an altitude of 32 km above the surface
of the Earth. Unfortunately, the parachute fails to open. (In the following parts, neglect hor-
izontal motion and assume that the initial velocity is zero.)

(a) Calculate the time of fall (accurate to 1 s) until ground impact, given no air resistance
and a constant value of g.

(b) Calculate the time of fall (accurate to 1 s) until ground impact, given constant g and a
force of air resistance given by

F(v) = —cov|v|

where ¢, is 0.5 in SI units for a falling man and is constant.
(c) Calculate the time of fall (accurate to 1 s) until ground impact, given ¢, scales with atmos-
pheric density as

/H
Co = 0.5e_'"

where H = 8 km is the scale height of the atmosphere and y is the height above ground.
Furthermore, assume that g is no longer constant but is given by

g 98 o

2
1{6

where R, is the radius of the Earth and is 6370 km.
(d) For case (c), plot the acceleration, velocity, and altitude of the parachutist as a function
of time. Explain why the acceleration becomes positive as the parachutist falls.
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the Rule or Law of Nature in every springing body is, th t the force or power .
thereof torestore itself to its natural position is always proportlonate to the:
distance or space-it is removed therefrom—" ‘

Robert Hooke—De Potentia Restitutiva, 1678

3.1] Introduction

The solar system was the most fascinating and intensively studied mechanical system
known to early humans. It is a marvelous example of periodic motion. It is not clear how
long people would have toiled in mechanical ignorance were it not for this periodicity
or had our planet been the singular observable member of the solar system. Everywhere
around us we see systems engaged in a periodic dance: the small oscillations of a pen-
dulum clock, a child playing on a swing, the rise and fall of the tides, the swaying of a
tree in the wind, the vibrations of the strings on a violin. Even things that we cannot
see march to the tune of a periodic beat: the vibrations of the air molecules in the
woodwind instruments of a symphony, the hum of the electrons in the wires of our
modern civilization, the vibrations of the atoms and molecules that make up our bodies.
It is fitting that we cannot even say the word vibration properly without the tip of the
tongue oscillating.

The essential feature that all these phenomena have in common is periodicity, a
pattern of movement or displacement that repeats itself over and over again. The
pattern may be simple or it may be complex. For example, Figure 3.1.1(a) shows a
record of the horizontal displacement of a supine human body resting on a nearly fric-
tionless surface, such as a thin layer of air. The body oscillates horizontally back and forth
due to the mechanical action of the heart, pumping blood through and around the aortic

82
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o

Figure 3.1.1 (a) Recoil vibrations
of a human subject resting on a
frictionless surface (in response to N

L1 1 & 1 1 1
the pumping action of the heart). T 0 12345678
(b) Horizontal displacement of a
simple pendulum about equilibrium. (b)

arch. Such a recording is called a ballistocardiogram.! Figure 3.1.1(b) shows the almost
perfect sine curve representing the horizontal displacement of a simple pendulum exe-
cuting small oscillations about its equilibrium position. In both cases, the horizontal axis
represents the steady advance of time. The period of the motion is readily identified as
the time required for one complete cycle of the motion to occur.

It is with the hope of being able to describe all the complicated forms of periodic
motion Mother Nature exhibits, such as that shown in Figure 3.1.1(a), that we undertake
an analysis of her simplest form—simple harmonic motion (exemplified in Fig. 3.1.1(b)).

Simple harmonic motion exhibits two essential characteristics. (1) It is described by
a second-order, linear differential equation with constant coefficients. Thus, the super-
position principle holds; that is, if two particular solutions are found, their sum is also a
solution. We will see evidence of this in the examples to come. (2) The period of the motion,
or the time required for a particular configuration (not only position, but velocity as well)
to repeat itself, is independent of the maximum displacement from equilibrium. We have
already remarked that Galileo was the first to exploit this essential feature of the pendulum
by using it as a clock. These features are true only if the displacements from equilibrium
are “small.” “Large” displacements result in the appearance of nonlinear terms in the
differential equations of motion, and the resulting oscillatory solutions no longer obey
the principle of superposition or exhibit amplitude-independent periods. We briefly
consider this situation toward the end of this chapter.

1George B. Benedek and Felix M. H. Villars, Physics —with Illustrative Examples from Medicine and Biology,
Addison-Wesley, New York, 1974.
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3.2| Linear Restoring Force: Harmonic Motion

One of the simplest models of a system executing simple harmonic motion is a mass on
a frictionless surface attached to a wall by means of a spring. Such a system is shown in
Figure 3.2.1. If X_is the unstretched length of the spring, the mass will sit at that posi-
tion, undisturbed, if initially placed there at rest. This position represents the equilibrium
configuration of the mass, that is, the one in which its potential energy is a minimum
or, equivalently, where the net force on it vanishes. If the mass is pushed or pulled away
from this position, the spring will be either compressed or stretched. It will then exert a
force on the mass, which will always attempt to restore it to its equilibrium configuration.

We need an expression for this restoring force if we are to calculate the motion of the
mass. We can estimate the mathematical form of this force by appealing to arguments based
on the presumed nature of the potential energy of this system. Recall from Example 2.3.3
that the Morse potential —the potential energy function of the diatomic hydrogen mol-
ecule, a bound system of two particles—has the shape of a well or a cup. Mathematically,
it was given by the following expression:

V(@) = V(1 - exp(-x/8))2 -V, (3.2.1)

We showed that this function exhibited quadratic behavior near its minimum and that the
resulting force between the two atoms was linear, always acting to restore them to their
equilibrium configuration. In general, any potential energy function can be described
approximately by a polynomial function of the displacement « for displacements not too
far from equilibrium

V) =ay+ax +agx?+ax3+ - (3.2.2a)

Furthermore, because only differences in potential energies are relevant for the behav-
ior of physical systems, the constant term in each of the above expressions may be taken
to be zero; this amounts to a simple reassignment of the value of the potential energy at
some reference point. We also argue that the linear term in the above expression must
be identically zero. This condition follows from the fact that the first derivative of any
function must vanish at its minimum, presuming that the function and its derivatives
are continuous, as they must be if the function is to describe the behavior of a real,
physical system. Thus, the approximating polynomial takes the form

V) =a,x2 +a,x% + - (3.2.2b)

For example, Figure 3.2.2(a) is a plot of the Morse potential along with an approxi-
mating eighth-order polynomial “best fit.” The width & of the potential and its depth

Equilibrium
position

Figure 3.2.1 A model of the simple harmonic
oscillator.




3.2 Linear Restoring Force: Harmonic Motion 85

Vix)
2

V(x)

Figure 3.2.2 (a) The Morse
potential, its eighth-order
approximating polynomial and
the quadratic term only. (b)
Same as (a) but magnified in
scale around x = 0.

-25 0 o ] .25

(b) X s

(the V, coefficient) were both set equal to 1.0 (the bare constant V,  was set equal to 0). The
fit was made over the rather sizable range Ax = [-1,4] = 58. The result is

8
V(x) = Zaix" (3.2.2c)
i=0
ay= 1015-10* a, = 0007 a,= 0995
a; =-1.025 a,= 0611 a;=-0243
ag = 0.061 4, =—0009 ag= 5.249-107

The polynomial function fits the Morse potential quite well throughout the quoted dis-
placement range. If one examines closely the coefficients of the eighth-order fit, one
sees that the first two terms are essentially zero, as we have argued they should be.
Therefore, we also show plotted only the quadratic term V(x) = a, - x2. It seems as though
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this term does not agree very well with the Morse potential. However, if we “explode”
the plot around x = 0 (see Fig. 3.2.2(b)), we see that for small displacements—say,
—0.16 £ x < +0.16—there is virtually no difference among the purely quadratic term,
the eighth-order polynomial fit, and the actual Morse potential. For such small dis-
placements, the potential function is, indeed, purely quadratic. One might argue that
this example was contrived; however, it is fairly representative of many physical systems.

The potential energy function for the system of spring and mass must exhibit simi-
lar behavior near the equilibrium position at X, dominated by a purely quadratic term.
The spring’s restoring force is thus given by the familiar Hooke’s law,

_dv(x) _
==

where k = 2a, is the spring constant. In fact, this is how we define small displacements
from equilibrium, that is, those for which Hooke’s law is valid or the restoring force is linear.
That the derived force must be a restoring one is a consequence of the fact that the
derivative of the potential energy function must be negative for positive displacements
from equilibrium and vice versa for negative ones. Newton’s second law of motion for the
mass can now be written as

F(x) = —(2a,)x = —kx (3.2.3)

mi 4k = 0 (3.2.4a)
i+ ix =0 (3.2.4b)
m

Equation 3.2.4b can be solved in a wide variety of ways. It is a second-order, linear
differential equation with constant coefficients. As previously stated, the principle of super-
position holds for its solutions. Before solving the equation here, we point out those char-
acteristics we expect the solution to exhibit. First, the motion is both periodic and bounded.
The mass vibrates back and forth between two limiting positions. Suppose we pull the mass
out to some position ,,; and then release it from rest. The restoring force, initially equal
to —kx,,;, pulls the mass toward the left in Figure 3.2.1, where it vanishes at x = 0, the
equilibrium position. The mass now finds itself moving to the left with some velocity v,
and so it passes on through equilibrium. Then the restoring force begins to build up
strength as the spring compresses, but now directed toward the right. It slows the mass
down until it stops, just for an instant, at some position, —x, ,. The spring, now fully com-
pressed, starts to shove the mass back toward the right. But again momentum carries it
through the equilibrium position until the now-stretching spring finally manages to stop it—
we might guess—at x, ,, the initial configuration of the system. This completes one cycle
of the motion—a cycle that repeats itself, apparently forever! Clearly, the resultant func-
tional dependence of x upon t must be represented by a periodic and bounded function.
Sine and/or cosine functions come to mind, because they exhibit the sort of behavior
we are describing here. In fact, sines and cosines are the real solutions of Equation 3.2.4b.
Later on, we show that other functions, imaginary exponentials, are actually equivalent
to sines and cosines and are easier to use in describing the more complicated systems soon
to be discussed.

A solution is given by

x = A sin(@gt + @) (3.2.5)
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Figure 3.2.3 Displacement
versus @yt for the simple
harmonic oscillator.

which can be verified by substituting it into Equation 3.2.4b

0, =& (3.2.6)
m

is the angular frequency of the system. The motion represented by Equation 3.2.5 is a
sinusoidal oscillation about equilibrium. A graph of the displacement x versus ot is
shown in Figure 3.2.3. The motion exhibits the following features. (1) It is character-
ized by a single angular frequency @,. The motion repeats itself after the angular argu-
ment of the sine function (@t + ¢,) advances by 27 or after one cycle has occurred
(hence, the name angular frequency for w,). The time required for a phase advance of
2mis given by

@yt +Ty) + ¢y = Wyt + ¢y +21
_2n (3.2.7)

o T
0 o,

T, is called the period of the motion. (2) The motion is bounded; that is, it is confined
within the limits —A <x < +A. A, the maximum displacement from equilibrium, is called
the amplitude of the motion. It is independent of the angular frequency . (3) The phase
angle ¢, is the initial value of the angular argument of the sine function. It determines
the value of the displacement x at time ¢ = 0. For example, at ¢ =0 we have

%(t = 0) = A sin(@,) (3.2.8)

The maximum displacement from equilibrium occurs at a time ¢, given by the condition
that the angular argument of the sine function is equal to 7/2, or
3
wotm = E —
One commonly uses the term frequency to refer to the reciprocal of the period of the
oscillation or

%o (3.2.9)

fo=— (3.2.10)
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where f, is the number of cycles of vibration per unit time. It is related to the angular
frequency @, by

2nf, = w, (3.2.11a)
11 [k
_1_1 |k (3.2.11b)
fo T, 2z\m

The unit of frequency (cycles per second, or s7!) is called the hertz (Hz) in honor of
Heinrich Hertz, who is credited with the discovery of radio waves. Note that 1 Hz=1s71,
The word frequency is used sloppily sometimes to mean either cycles per second or radi-
ans per second (angular frequency). The meaning is usually clear from the context.

Constants of the Motion and Initial Conditions

Equation 3.2.5, the solution for simple harmonic motion, contains two arbitrary con-
stants, A and ¢,. The value of each constant can be determined from knowledge of the
initial conditions of the specific problem at hand. As an example of the simplest and most
commonly described initial condition, consider a mass initially displaced from equilibrium
to a position x,,, where it is then released from rest. The displacement at ¢ = 0 is a maxi-
mum. Therefore, A=x,_ and ¢, = 7/2.

As an example of another simple situation, suppose the oscillator is at rest at x =0,
and at time ¢ = 0 it receives a sharp blow that imparts to it an initial velocity v, in the pos-
itive x direction. In such a case the initial phase is given by ¢, = 0. This automatically
ensures that the solution yields x = 0 at ¢ = 0. The amplitude can be found by differenti-
ating x to get the velocity of the oscillator as a function of time and then demanding that
the velocity equal v, at t = 0. Thus,

o(t) = %(t) = Wy A cos(@ot + @) (3.2.12a)
0(0) = vy = WA (3.2.12b)
A=Y

A= (3.2.12¢)

For a more general scenario, consider a mass initially displaced to some position x,
and given an initial velocity v,. The constants can then be determined as follows:

2(0) = Asing, = x, (3.2.13a)
tan ¢, = 0% (3.2.13¢)
Vo
02
Al =xl+ w—g (3.2.13d)

This more general solution reduces to either of those described above, as can easily be
seen by setting v, or x,, equal to zero.
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Simple Harmonic Motion as the Projection
of a Rotating Vector

Imagine a vector A rotating at a constant angular velocity @,. Let this vector denote the
position of a point P in uniform circular motion. The projection of the vector onto a line
(which we call the x-axis) in the same plane as the circle traces out simple harmonic
motion. Suppose the vector A makes an angle 8 with the x-axis at some time ¢, as shown
in Figure 3.2.4. Because 6§ = w,, the angle 6 increases with time according to

0=ayt +6, (3.2.14)
where 6 is the value of § at ¢ = 0. The projection of P onto the x-axis is given by
x = A cos 0= A cos(a)t + 6,) (3.2.15)

This point oscillates in simple harmonic motion as P goes around the circle in uniform
angular motion.

Our picture describes x as a cosine function of . We can show the equivalence of this
expression to the sine function given by Equation 3.2.5 by measuring angles to the
vector A from the y-axis, instead of the x-axis as shown in Figure 3.2.4. If we do this, the
projection of A onto the x-axis is given by

x= A sin(ayt + 9) (3.2.16)

We can see this equivalence in another way. We set the phase difference between ¢, and
6, to 71/2 and then substitute into the above equation, obtaining

60— 6, = % (3.2.17a)

(3.2.17b)

= sin(@yt + ¢,)

Figure 3.2.4 Simple harmonic motion as a
projection of uniform circular motion.
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We now see that simple harmonic motion can be described equally well by a sine func-
tion or a cosine function. The one we choose is largely a matter of taste; it depends upon
our choice of initial phase angle to within an arbitrary constant.

You might guess from the above commentary that we could use a sum of sine and
cosine functions to represent the general solution for harmonic motion. For example, we
can convert the sine solution of Equation 3.2.5 directly to such a form, using the trigono-
metric identity for the sine of a sum of angles:

x(t) = A sin(@yt +@,) = A sin@, cos@,t+ A cos@, sin@,t

3.2.18
=C cosyt + D sinwgt ( )

Neither A nor ¢ appears explicitly in the solution. They are there implicitly; that s,
tmgy==  A*=CP+D? (3.2.19)

There are occasions when this form may be the preferred one.

Effect of a Constant External Force
on a Harmonic Oscillator

Suppose the same spring shown in Figure 3.2.1 is held in a vertical position, supporting
the same mass m (Fig. 3.2.5). The total force acting is now given by adding the weight mg
to the restoring force,

F=—k(X—-X)+mg (3.2.20)

where the positive direction is down. This equation could be written F = —kx + mg by
defining x to be X — X, as previously. However, it is more convenient to define the vari-
able x in a different way, namely, as the displacement from the new equilibrium position

New
equilibrium

position E
y

4

Figure 3.2.5 The vertical case for the
harmonic oscillator.
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X; obtained by setting F = 0 in Equation 3.2.20: 0 = -k (X - X,) + mg, which gives
X; =X, + mglk. We now define the displacement as

x=x—x;=x-xe-% (3.2.21)

Putting this into Equation 3.2.20 gives, after a very little algebra,
F=—kx (3.2.22)

so the differential equation of motion is again

mi+kx=0 (3.2.23)

and our solution in terms of our newly defined x is identical to that of the horizontal case.
It should now be evident that any constant external force applied to a harmonic oscilla-
tor merely shifts the equilibrium position. The equation of motion remains unchanged if
we measure the displacement x from the new equilibrium position.

EXAMPLE 3.2.1

When a light spring supports a block of mass m in a vertical position, the spring is found
to stretch by an amount D, over its unstretched length. If the block is furthermore
pulled downward a distance D, from the equilibrium position and released—say, at
time ¢ = 0—find (a) the resulting motion, (b) the velocity of the block when it passes
back upward through the equilibrium position, and (c) the acceleration of the block at
the top of its oscillatory motion.

Solution:
First, for the equilibrium position we have
F =0=-kD, +mg

where x is chosen positive downward. This gives us the value of the stiffness constant:

k="8
Dl

From this we can find the angular frequency of oscillation:

0, = \/E gy
m D,
We shall express the motion in the form x(t) = A cos @,t + B sin@,¢. Then

% =-Aw, sinw,t + Bo, cos ayt.

From the initial conditions we find

xo=Dy=A t,=0=Baw, B

Il
(=]
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The motion is, therefore, given by

(a) x(t) = D, cos ( Bg—t]

1

in terms of the given quantities. Note that the mass m does not appear in the final
expression. The velocity is then

#(t) = D, —gl sin( —gl t]
and the acceleration
. g g
t)=-D, = =t
i(t) A D, cos[ 1 ]

As the block passes upward through the equilibrium position, the argument of the sine
term is 72/2 (one-quarter period), so

(b) t=-D, Di (center)

1

At the top of the swing the argument of the cosine term is 7 (one-half period), which
gives
© i=Dy L (top)

D,
In the case D, = D,, the downward acceleration at the top of the swing is just g. This
means that the block, at that particular instant, is in free fall; that is, the spring is exert-
ing zero force on the block.

EXAMPLE 3.2.2

The Simple Pendulum

The so-called simple pendulum consists of a small plumb bob of mass m swinging at the
end of a light, inextensible string of length [, Figure 3.2.6. The motion is along a circu-
lar arc defined by the angle 6, as shown. The restoring force is the component of the
weight mg acting in the direction of increasing 6 along the path of motion: F, = —mg sin 6.
If we treat the bob as a particle, the differential equation of motion is, therefore,

m§ = —mg sinf

Now s =16, and, for small 6, sin @ = 0 to a fair approximation. So, after canceling the m’s
and rearranging terms, we can write the differential equation of motion in terms of either
@ or s as follows:

é+%9=0 §+%s=0
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rd
&~ [FA
mg sin @

mg

Figure 3.2.6 The simple
pendulum.

Although the motion is along a curved path rather than a straight line, the differential
equation is mathematically identical to that of the linear harmonic oscillator,
Equation 3.2.4b, with the quantity g/l replacing k/m. Thus, to the extent that the approx-
imation sin@ = @ is valid, we can conclude that the motion is simple harmonic with

angular frequency

= |8
Wy =47
and period
@y g

This formula gives a period of very nearly 2 s, or a half-period of 1's, when the length
is 1 m. More accurately, for a half-period of 1 s, known as the “seconds pendulum,” the
precise length is obtained by setting T =2 s and solving for . This gives ! = g/#% numer-
ically, when g is expressed in m/s. At sea level at a latitude of 45°, the value of the accel-
eration of gravity is g = 9.8062 m/s2. Accordingly, the length of a seconds pendulum at
that location is 9.8062/9.8696 = 0.9936 m.

3.3| Energy Considerations in Harmonic Motion

Consider a particle under the action of a linear restoring force F, =—kx. Let us calculate
the work done by an external force F,, in moving the particle from the equilibrium posi-
tion (x = 0) to some position x. Assume that we move the particle very slowly so that it
does not gain any kinetic energy; that is, the applied external force is barely greater in mag-
nitude than the restoring force —kx; hence, F, ,=—F, =kx, so

W= [ R de= [ hede =5 (631
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In the case of a spring obeying Hooke’s law, the work is stored in the spring as potential
energy: W = V(x), where

V(x) = %kxz (3.3.2)

Thus, F, = ~dV/dx = —kx, as required by the definition of V. The total energy, when the
particle is undergoing harmonic motion, is given by the sum of the kinetic and potential
energies, namely,

= ;ma® + 2k (3.3.3)

This equation epitomizes the harmonic oscillator in a rather fundamental way: The kinetic
energy is quadratic in the velocity variable, and the potential energy is quadratic in the
displacement variable. The total energy is constant if there are no other forces except the
restoring force acting on the particle.

The motion of the particle can be found by starting with the energy equation (3.3.3).
Solving for the velocity gives
g \L/2

2E kx

i=1% P (3.3.4)

which can be integrated to give ¢ as a function of x as follows:

f= J- dx
+[(2E/m) - (kim)x>T*

= F(mlk)"? cos™ (x/A)+C (3.3.5)

in which C is a constant of integration and A is the amplitude given by

ve
A= (%) (3.3.6)

Upon solving the integrated equation for x as a function of ¢, we find the same relation-
ship as in the preceding section, with the addition that we now have an explicit value for
the amplitude. We can also obtain the amplitude directly from the energy equation (3.3.3)
by finding the turning points of the motion where & =0: The value of x must lie between
*A in order for % to be real. This is illustrated in Figure 3.3.1.

Figure 3.3.1 Graph of the
parabolic potential energy
function of the harmonic
oscillator. The turning points
defining the amplitude are
indicated for two different
values of the total energy.
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We also see from the energy equation that the maximum value of the speed, which
we callv, . occurs at x = 0. Accordingly, we can write

As the particle oscillates, the kinetic and potential energies continually change. The
constant total energy is entirely in the form of kinetic energy at the center, where x =0
and % =+v, . and it is all potential energy at the extrema, where % =0 and x = $A.

EXAMPLE 3.3.1

The Energy Function of the Simple Pendulum

The potential energy of the simple pendulum (Fig. 3.2.6) is given by the expression
V=mgh

where h is the vertical distance from the reference level (which we choose to be the level
of the equilibrium position). For a displacement through an angle 8 (Fig. 3.2.6), we see
thath=1-1cos8, so

V(0) =mgl(1 — cos 6)

Now the series expansion for the cosine is cos =1 — 6%2! + 644! — ---, so for small 6
we have approximately cos @ = 1 — 6%2. This gives

V(6) = mgl °
or, equivalently, because s =16,

_1mg o

V(S) =35 T $
Thus, to a first approximation, the potential energy function is quadratic in the dis-
placement variable. In terms of s, the total energy is given by

_1_ .2 1Mg o

E= 3 ms- + 3 T s

in accordance with the general statement concerning the energy of the harmonic oscil-
lator discussed above.

EXAMPLE 3.3.2

Calculate the average kinetic, potential, and total energies of the harmonic oscillator.
(Here we use the symbol K for kinetic energy and T, for the period of the motion.)

Solution:

2

_]. To _]. To1 .o
<K>_-T;j0 K(t)dt_?o-jo Loma? dt
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but

x = A sin(,t + ¢,)
x =y A cos(wyt + @)

Setting ¢, = 0 and letting u = @)t = (27/T,) - t, we obtain
1T g,0fh 9
(K)= F[émwoA J:) cos“(wyt) dt]
0
R N IR Y
= -z—rz[imwoA Io cos“udu
We can make use of the fact that
2
—LJ. § (sin?u + cos®u)du = —1—_[2” du=1
2 70 2m 40

to obtain

1

1 ¢2= 9 _
_é_r;J‘O cos udu—2

because the areas under the cos? and sin? terms throughout one cycle are identical. Thus,
(K)=1mwgA®
The calculation of the average potential energy proceeds along similar lines.
V =:ki® =kA® sin*wyt

IRTICE N LI
(Vy=3kA FOJ:) sin“w,t dt

_1.42 1 (27 g
=3kA 275":) sin“udu
_ 1742
=;kA
Now, because k/m = 3 or k = ma)g’ we obtain
(V) =1kA® = ;mofA® = (K)
(Ey=(K)+(V) = ;magA® = (kA® =E

The average kinetic energies and potential energies are equal; therefore, the average
energy of the oscillator is equal to its total instantaneous energy.

3.4| Damped Harmonic Motion

The foregoing analysis of the harmonic oscillator is somewhat idealized in that we have
failed to take into account frictional forces. These are always present in a mechanical system
to some extent. Analogously, there is always a certain amount of resistance in an electri-
cal circuit. For a specific model, let us consider an object of mass m that is supported by
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Figure 3.4.1 A model for the damped 1}:
harmonic oscillator.

alight spring of stiffness k. We assume that there is a viscous retarding force that is a linear
function of the velocity, such as is produced by air drag at low speeds.2 The forces are
indicated in Figure 3.4.1.

If x is the displacement from equilibrium, then the restoring force is —kx, and the
retarding force is —c%, where c is a constant of proportionality. The differential equation
of motion is, therefore, mi = —kx —c%, or

mi+ci+kx =0 (34.1)
As with the undamped case, we divide Equation 3.4.1 by m to obtain
s+li+Kio0 (3.4.2)
m m
If we substitute the damping factor ¥, defined as
_c (34.3)
r= 2m
and @3 (=k/m) into Equation 3.4.2, it assumes the simpler form
P+2yi+wix=0 (3.4.4)

The presence of the velocity-dependent term 2y% complicates the problem; simple sine
or cosine solutions do not work, as can be verified by trying them. We introduce a method
of solution that works rather well for second-order differential equations with constant

ZNonlinear drag is more realistic in many situations; however, the equations of motion are much more difficult
to solve and are not treated here.
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coefficients. Let D be the differential operator d/dt. We “operate” on x with a quadratic
function of D chosen in such a way that we generate Equation 3.4.4:

[D* +2yD+@}]x=0 (3.4.5a)

We interpret this equation as an “operation” by the term in brackets on x. The operation
by D? means first operate on x with D and then operate on the result of that operation with
D again. This procedure yields %, the first term in Equation 3.4.4. The operator equation
(Equation 3.4.5a) is, therefore, equivalent to the differential equation (Equation 3.4.4).
The simplification that we get by writing the equation this way arises when we factor the
operator term, using the binomial theorem, to obtain

[+ - -a}|[p+r+{r*-af]x=0 (34.5b)

The operation in Equation 3.4.5b is identical to that in Equation 3.4.5a, but we have
reduced the operation from second-order to a product of two first-order ones. Because
the order of operation is arbitrary, the general solution is a sum of solutions obtained by
setting the result of each first-order operation on x equal to zero. Thus, we obtain

x2(t) = Aje TV 4 Ay (3.4.6)

g=Ay:-0? 347

The student can verify that this is a solution by direct substitution into Equation 3.4.4.
A problem that we soon encounter, though, is that the above exponents may be real
or complex, because the factor ¢ could be imaginary. We see what this means in just a
minute.

There are three possible scenarios:

where

L greal>0 Overdamping
IL. greal=0 Critical damping
IIL gimaginary  Underdamping

I. Overdamped. Both exponents in Equation 3.4.6 are real. The constants A, and
A, are determined by the initial conditions. The motion is an exponential decay
with two different decay constants, (¥ — q) and (¥ + ¢). A mass, given some ini-
tial displacement and released from rest, returns slowly to equilibrium, pre-
vented from oscillating by the strong damping force. This situation is depicted
in Figure 3.4.2.

IL. Critical damping. Here g = 0. The two exponents in Equation 3.4.6 are each equal
to 7. The two constants A, and A, are no longer independent. Their sum forms a single
constant A. The solution degenerates to a single exponential decay function. A com-
pletely general solution requires two different functions and independent constants
to satisfy the boundary conditions specified by an initial position and velocity. To find
a solution with two independent constants, we return to Equation 3.4.5b:

D+ND+px=0 (3.4.82)
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rest after an initial displacement. ‘

I

Switching the order of operation does not work here, because the operators are the
same. We have to carry out the entire operation on x before setting the result to zero.
To do this, we make the substitution u = (D + Y)x, which gives

D+7u =Z . (3.4.8b)
Uu=Ae"

Equating this to (D + y)x, the final solution is obtained as follows:

Ae =D+ y)x
A=e"(D + y)x = D(xe") (34.9)
. xe"=At+B o

x(t)=Ate ™" + Be™"

The solution consists of two different functions, te~” and ¢, and two constants of
integration, A and B, as required. As in case I, if a mass is released from rest after
an initial displacement, the motion is nonoscillatory, returning asymptotically to equi-
librium. This case is also shown in Figure 3.4.2. Critical damping is highly desir-
able in many systems, such as the mechanical suspension systems of motor vehicles.

Underdamping. If the constant 7 is small enough that ¥> — @} <0, the factor ¢ in
Equation 3.4.7 is imaginary. A mass initially displaced and then released from rest
oscillates, not unlike the situation described earlier for no damping force at all. The
only difference is the presence of the real factor —y in the exponent of the solution
that leads to the ultimate death of the oscillatory motion. Let us now reverse the fac-
tors under the square root sign in Equation 3.4.7 and write g as i®,. Thus,

ko c?
T (3.4.10)

where @) and @, are the angular frequencies of the undamped and underdamped
harmonic oscillators, respectively. We now rewrite the general solution represented
by Equation 3.4.6 in terms of the factors described here,

x(t) = C,e” 100" . ¢_g 7O

- e—yt(c+et‘a)dt +C—e—ia)dt)

(3.4.11)
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where the constants of integration are C, and C_. The solution contains a sum of imag-
inary exponentials. But the solution must be real—it is supposed to describe the real
world! This reality demands that C, and C_ be complex conjugates of each other, a
condition that ultimately allows us to express the solution in terms of sines and/or
cosines. Thus, taking the complex conjugate of Equation 3.4.11,

' (#) = e "(Cre " + Cle™ ) = x(t) (3.4.12a)

Because x(t) is real, x*(t) = x(), and, therefore,
nC,=C_=C .
c=c, =C (3.4.12b)

nox() = e TH(C et 4 Cent0t)

It looks as though we have a solution that now has only a single constant of integra-
tion. In fact, C is a complex number. It is composed of two constants. We can express
C and C* in terms of two real constants, A and 6, in the following way.

A

C.=C==¢"
2 (3.4.13)
C,=C =4 g
* 2

We soon see that A is the maximum displacement and 6, is the initial phase angle of
the motion. Thus, Equation 3.4.12b becomes

() = e—yt(_é_eﬂ'(a)dﬂao) + é_e-«m,,ﬂao)) (3.4.14)
2 2
We now apply Euler’s identity3 to the above expressions, thus obtaining
é e+i(mdt+90) —
2

A o i@at+0) _
2

% cos(@ t +6,) + 14 i;— sin(@,;t +6,)

% cos( t +6,) - i% sin(@,t + 6,) (3.4.15)

s x(t) = e (A cos(w,t +6,))

Following our discussion in Section 3.2 concerning the rotating vector construct, we
see that we can express the solution equally well as a sine function:

£(t) = T (A sin(@, ¢ + 9,)) (3.4.16)

The constants A, 6, and ¢, have the same interpretation as those of Section 3.2. In fact,
we see that the solution for the underdamped oscillator is nearly identical to that of the
undamped oscillator. There are two differences: (1) The presence of the real exponential
factor e~"*leads to a gradual death of the oscillations, and (2) the underdamped oscil-
lator’s angular frequency is @, not @y, because of the presence of the damping force.

3Euler’s identity relates imaginary exponentials to sines and cosines. It is given by the expression e = cos u +
i siny. This equality is demonstrated in Appendix D.
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Figure 3.4.3 Graph of
displacement versus time for the
underdamped harmonic oscillator.

The underdamped oscillator vibrates a little more slowly than does the undamped
oscillator. The period of the underdamped oscillator is given by

2n 2n

Figure 3.4.3 is a plot of the motion. Equation 3.4.15a shows that the two curves
given by x = Ae”"* and x = —~Ae™" form an envelope of the curve of motion because the
cosine factor takes on values between +1 and -1, including +1 and —1, at which points the
curve of motion touches the envelope. Accordingly, the points of contact are separated
by a time interval of one-half period, T;/2. These points, however, are not quite the
maxima and minima of the displacement. It is left to the student to show that the actual
maxima and minima are also separated in time by the same amount. In one complete
period the amplitude diminishes by a factor ¢™7"; also, in a time ¥~ = 2m/c the ampli-
tude decays by a factor ¢! = 0.3679.

In summary, our analysis of the freely running harmonic oscillator has shown that the
presence of damping of the linear type causes the oscillator, given an initial motion, to
eventually return to a state of rest at the equilibrium position. The return to equilibrium
is either oscillatory or not, depending on the amount of damping. The critical condition,
given by ¥ = @,, characterizes the limiting case of the nonoscillatory mode of return.

(3.4.17)

Energy Considerations

The total energy of the damped harmonic oscillator is given by the sum of the kinetic and
potential energies:

= ymi® + 2 kx® (3.4.18)
This is constant for the undamped oscillator, as stated previously. Let us differentiate the

above expression with respect to ¢:

‘fl—f =mxk +kxk = (m% + kx)x (3.4.19)
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Now the differential equation of motion is mx + cx + kx = 0, or m% + kx = —c#. Thus, we
can write

dE__ . (3.4.20)
dt

for the time rate of change of total energy. We see that it is given by the product of the
damping force and the velocity. Because this is always either zero or negative, the total
energy continually decreases and, like the amplitude, eventually becomes negligibly
small. The energy is dissipated as frictional heat by virtue of the viscous resistance to the
motion.

Quality Factor

The rate of energy loss of a weakly damped harmonic oscillator is best characterized by
asingle parameter Q, called the quality factor of the oscillator. It is defined to be 27 times
the energy stored in the oscillator divided by the energy lost in a single period of oscil-
lation T),. If the oscillator is weakly damped, the energy lost per cycle is small and Q is,
therefore, large. We calculate Q in terms of parameters already derived and show that
this is true.

The average rate of energy dissipation for the damped oscillator is given by
Equation 3.4.20, E =—c#?, so we need to calculate %. Equation 3.4.16 gives x(f):

x = Ae™" sin(a,t + @) (3.4.21a)
Differentiating it, we obtain
i =—Ae " (¥ sin(@,t + ) — @, cos(@ £ + @) (3.4.21b)
The energy lost during a single cycle of period T, = 27/, is

AE = joT" Edt (3.4.222)

If we change the variable of integration to 6 = @,t + @, then dt = d6/w, and the integral
over the period T, transforms to an integral, from @, to ¢, + 27. The value of the integral
over a full cycle doesn’t depend on the initial phase ¢, of the motion, so, for the sake of
simplicity, we drop it from the limits of integration:
AE=—["Fde
w, %
2 (3.4.22b)
= _% 027: e‘zyt[j/2 sin®@ — 2y, sin6 cosf + w3 cosze] dé

d
Now we can extract the exponential factor ¢ from inside the integral, because in the
case of weak damping (Y <« @) its value does not change very much during a single cycle
of oscillation:

_ —cA?

@,

AE o2 J‘:" (yz sinZ6 — 2y®,; sinf cos 6 + wﬁ cosze) deé (3.4.22¢)
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The integral of both sin?6 and cos®@ over one cycle is 7, while the integral of the sin 6
cos 8 product vanishes. Thus, we have

_ 2
AE = —cz—(&-—7l:e_27"(’}'2 + wj) =-cA’e" 0] (£]
a a (3.4.22d
= —ymlA% T, 4229

where we have made use of the relations &g = @} +7” and y=c/2m. Now, if we identify
the damping factor ¥ with a time constant 7, such that ¥ = (27)"), we obtain for the mag-
nitude of the energy loss in one cycle

AE = (—;-mAza)(z)e_'”)—T:d—
T (3.4.22¢)
AE_T;
E 1
where the energy stored in the oscillator (see Example 3.3.2) at any time ¢ is
E®t)= s mwjA’e™ (3.4.23)

Clearly, the energy remaining in the oscillator during any cycle dies away exponentially
with time constant 7. We, therefore, see that the quality factor Q is just 27 times the inverse
of the ratios given in the expression above, or

2r 2nt W,

Q = = =0 dT = —

(Tr) (2nlw,) 2y

For weak damping, the period of oscillation T, is much less than the time constant 7, which
characterizes the energy loss rate of the oscillator. Q is large under such circumstances.

Table 3.4.1 gives some values of Q for several different kinds of oscillators.

TABLE 3.4.1 ‘ -

(3.4.24)

Earth (for earthquake) 250-1400
Piano string 3000
Crystal in digital watch 10
Microwave cavity 10%
Excited atom 107
Neutron star 1012
Excited Fe5” nucleus 3x 1012

EXAMPLE 3.4.1

An automobile suspension system is critically damped, and its period of free oscillation
with no damping is 1 s. If the system is initially displaced by an amount x,, and released
with zero initial velocity, find the displacement at¢=1s.

Solution:

For critical damping we have ¥ = ¢/2m = (k/m)}2 = 3, = 27/T . Hence, ¥ = 2™ in our
case, because T, = 1 s. Now the general expression for the displacement in the critically
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damped case (Equation 3.4.9) is x(t) = (At + B)e™"*, so, for ¢ = 0, x = B. Differentiating,
we have %(t) = (A — yB — yAt)e™", which gives £j=A - yB=0, s0 A= yB = yx,in our
problem. Accordingly,

x@) =xy(1 + yt)e " =x (1 + 2mt)e 2™
is the displacement as a function of time. For ¢ = 15, we obtain

xo(1 + 2)e 2% = £(7.28)e 628 = 0.0136 2,

The system has practically returned to equilibrium.

EXAMPLE 3.4.2

The frequency of a damped harmonic oscillator is one-half the frequency of the same
oscillator with no damping. Find the ratio of the maxima of successive oscillations.

Solution:

We have @, =z, = (@f —y*)", which gives 03/4 =] -7 so v = wy3/4)"~.
Consequently,

YT, = 03/4)2 [21/(w,/2)] = 10.88
Thus, the amplitude ratio is
¢ i = ¢71%%8 — 0,00002

This is a highly damped oscillator.

EXAMPLE 3.4.3

Given: The terminal speed of a baseball in free fall is 30 m/s. Assuming a linear air
drag, calculate the effect of air resistance on a simple pendulum, using a baseball as
the plumb bob.

Solution:

In Chapter 2 we found the terminal speed for the case of linear air drag to be given by
v, =mg/c,, where ¢, is the linear drag coefficient. This gives

-2

=0_1=M=_§_=2-8&_1=0.163s‘1
2m 2m 2v, 60 ms

for the exponential damping constant. Consequently, the baseball pendulum’s ampli-
tude drops off by a factor ¢! in a time y~! = 6.13 s. This is independent of the length
of the pendulum. Earlier, in Example 3.2.2, we showed that the angular frequency of
oscillation of the simple pendulum of length [ is given by @, = (g/1)*/ for small ampli-
tude. Therefore, from Equation 3.4.17, the period of our pendulum is '

-1/2
T, =2n(0}-y2) " =2n (—%— ~0.0265 s_2)
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In particular, for a baseball “seconds pendulum” for which the half-period is 1 s in the
absence of damping, we have g/l = 72, so the half-period with damping in our case is

% = (n* —0.0265) V2 s =1.00134 s
Our solution somewhat exaggerates the effect of air resistance, because the drag func-

tion for a baseball is more nearly quadratic than linear in the velocity except at very low
velocities, as discussed in Section 2.4.

EXAMPLE 3.4.4

A spherical ball of radius 0.00265 m and mass 5 x 10~* kg is attached to a spring of
force constant k = .05 N/m underwater. The mass is set to oscillate under the action
of the spring. The coefficient of viscosity 7 for water is 10~ Ns/m?. (a) Find the
number of oscillations that the ball will execute in the time it takes for the amplitude
of the oscillation to drop by a factor of 2 from its initial value. (b) Calculate the Q of
the oscillator.

Solution:

Stokes’ law for objects moving in a viscous medium can be used to find ¢, the constant
of proportionality of the % term, in the equation of motion (Equation 3.4.1) for the
damped oscillator. The relationship is

c=6ranr=>5-10" Ns/m

The energy of the oscillator dies away exponentially with time constant 7, and the ampli-
tude dies away as A = Ae™2%. Thus,

- e—t/21:

(S

A
4o
S t=27In2
Consequently, the number of oscillations during this time is
n = t/I%n
=w,t(In2)/7w
=Q(n2)/x
Because a)g =k/m=100s2, t=m/c = 105, and y=1/27=0.05 571, we obtain
0 = (0% -7*)"7 = (100-0.0025)"* 10 = 100
n=Q(n2)/rw =22

If we had asked how many oscillations would occur in the time it takes for the ampli-
tude to drop to e7/2, or about 0.606 times its initial value, the answer would have been
Q/2m. Clearly Q is a measure of the rate at which an oscillator loses energy.
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*3.5| Phase Space

A physical system in motion that does not dissipate energy remains in motion. One that
dissipates energy eventually comes to rest. An oscillating or rotating system that does not
dissipate energy repeats its configuration each cycle. One that dissipates energy never does.
The evolution of such a physical system can be graphically illustrated by examining its
motion in a special space called phase space, rather than real space. The phase space for
a single particle whose motion is restricted to lie along a single spatial coordinate con-
sists of all the possible points in a “plane” whose horizontal coordinate is its position x
and whose vertical coordinate is its velocity x. Thus, the “position” of a particle on
the phase-space plane is given by its “coordinates” (x, x).4 The future state of motion of
such a particle is completely specified if its position and velocity are known simultane-
ously—say, its initial conditions x(¢,) and i (t,). We can, thus, picture the evolution of the
motion of the particle from that point on by plotting its coordinates in phase space. Each
point in such a plot can be thought of as a precursor for the next point. The trajectory of
these points in phase space represents the complete time history of the particle.

Simple Harmonic Oscillator: No Damping Force

The simple harmonic oscillator that we discuss in this section is an example of a particle
whose motion is restricted to a single dimension. Let’s examine the phase-space motion
of a simple harmonic oscillator that is not subject to any damping force. The solutions
for its position and velocity as functions of time were given previously by Equations 3.2.5
and 3.2.12a:

x(t) = A sin(@yt + @) (3.5.1a)
%(t) = Aw, cos(wyt +¢,) (3.5.1b)

Letting y = % we eliminate ¢ from these two parametric equations to find the equation
of the trajectory of the oscillator in phase space:

2
=*(t)+ yw—?) = A2 (sin® (@t + @) + cos®(@yt + ¢,)) = A”
s (35.2)
R A
A* A’w}

Equation 3.5.2 is the equation of an ellipse whose semimajor axis is A and whose semi-
minor axis is @,A. Shown in Figure 3.5.1 are several phase-space trajectories for the har-
monic oscillator. The trajectories differ only in the amplitude A of the oscillation.

Note that the phase-path trajectories never intersect. The existence of a point common
to two different trajectories would imply that two different future motions could evolve

* Again, as noted in Chapter 2, sections in the text marked with an asterisk may be skipped with impunity.

4Strictly speaking, phase space is defined as the ensemble of points (x, p) where x and p are the position and
momentum of the particle. Because momentum is directly proportional to velocity, the space defined here is
essentially a phase space.
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Figure 3.5.1 Phase-space . . ) .
plot for the simple harmonic 4 -3 -2 1 0 1 2 3 4
oscillator (a3, = 0.5 ™). No
damping force (y=0s71).

=

from a single set of conditions (x(z,), #(z,)) at some time ¢,. This cannot happen because,
starting with specific values of x(,) and %(t,), Newton’s laws of motion completely deter-
mine a unique future state of motion for the system.

Also note that the trajectories in this case form closed paths. In other words, the
motion repeats itself, a consequence of the conservation of the total energy of the har-
monic oscillator. In fact, the equation of the phase-space trajectory (Equation 3.5.2) is
nothing more than a statement that the total energy is conserved. We can show this by

substituting E = %kA2 and a)(z, = k/m into Equation 3.5.2, obtaining

x2 2
+ 7 (3.5.3a)
9E/k  2EIm

which is equivalent to (replacing y with %)

thx®+imi* =V+T=E (3.5.3b)

the energy equation (Equation 3.3.3) for the harmonic oscillator. Each closed phase-
space trajectory, thus, corresponds to some definite, conserved total energy.

EXAMPLE 3.5.1

Consider a particle of mass m subject to a force of strength +kx, where x is the dis-
placement of the particle from equilibrium. Calculate the phase space trajectories of the
particle.

Solution:

The equation of motion of the particle is m# = kx. Letting 0? =k/m we have ¥ — 0?x =
0. Letting y = % and y’ = dy/dx we have § = 1y’ = yy’ = ®’x or ydy = ®*xdx. The solu-
tion is y?> — @?x% =C in which C is a constant of integration. The phase space trajecto-
ries are branches of a hyperbola whose asymptotes are y =t ®x. The resulting phase
space plot is shown in Figure 3.5.2. The trajectories are open ended, radiating away from
the origin, which is an unstable equilibrium point.
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Place Space y vs. x

Figure 3.5.2 Phase space plot
for ¥ -~ @2x=0. x

The Underdamped Harmonic Oscillator

The phase-space trajectories for the harmonic oscillator subject to a weak damping
force can be calculated in the same way as before. We anticipate, though, that the tra-
jectories will not be closed. The motion does not repeat itself, because energy is con-
stantly being dissipated. For the sake of illustration, we assume that the oscillator is
started from rest at position x,. The solutions for x and % are given by Equations 3.4.21a
and b:

x = Ae ™" sin(@,t + ¢,) (3.5.4a)
i=—Ae™"(y sin(w,t + ¢y) — @, cos(@ t+ ¢,)) (3.5.4b)

Remember that because the initial phase angle ¢, is given by the condition that %,=0,
its value for the damped oscillator is not #/2 but ¢, = tan~le,/y. It is difficult to elimi-
nate t by brute force in the above parametric equations. Instead, we can illuminate the
motion in phase space by applying a sequence of substitutions and linear transformations
of the phase-space coordinates that simplifies the above expressions, leading to the form
we've already discussed for the harmonic oscillator. First, substitute p = Ae™” and

0=w,t+ ¢,
into the above equations, obtaining
x=psin0 (3.5.4¢c)
% =—p(y sinf-w, cosb) (3.5.4d)

Next, we apply the linear transformation y = % + ¥x to Equation 3.5.4d, obtaining
y=,;pcosf (3.5.5)
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We then square this equation and carry out some algebra to obtain

y? = wlp*(1—sin®6)

y* = wj(p” ~x") (3.5.6)
2

y __
o azpr !

Voila! Equation 3.5.6 is identical in form to Equation 3.5.2. But here the variable y is a
linear combination of x and # so the ensemble of points (x, y) represents a modified phase
space. The trajectory of the oscillator in this space is an ellipse whose major and minor
axes, characterized by p and @, p, decrease exponentially with time. The trajectory starts
off with a maximum value of x (= A sin ¢) and then spirals inward toward the origin. The
result is shown in Figure 3.5.3(a). The behavior of the trajectory in the x—% plane is sim-
ilar and is shown in Figure 3.5.3(b). Two trajectories are shown in the plots for the cases
of strong and weak damping. Which is which should be obvious.

As before, Equation 3.5.6 is none other than the energy equation for the damped har-
monic oscillator. We can compare it to the results we obtained in our discussion in
Section 3.4 for the rate of energy dissipation in the weakly damped oscillator. In the case
of weak damping, the damping factor ¥ is small compared to @, the undamped oscilla-
tor angular frequency (see Equation 3.4.10), and, thus, we have

x2

Wy = 0, y=% (3.5.7
Hence, Equation 3.5.6 becomes

2 2

25 =1 (3.5.8)
P P

Note that this equation is identical in form to Equation 3.5.6, and consequently the tra-
jectory seen in the x—% plane of Figure 3.5.3(b) for the case of weak damping is virtually
identical to the modified phase-space trajectory of the weakly damped oscillator shown

in Figure 3.5.3(a). Finally, upon substituting k/m for ®§ and A%e2" for p?, we obtain

Lt + Lni? = L paze o

(35.9)

_1 2,42 -2yt
= 3MWyA"e

If we compare this result with Equation 3.4.23, we see that it represents the total energy
remaining in the oscillator at any subsequent time #:

V(&) + T(t) = E(t) (3.5.10)

The energy of the weakly damped harmonic oscillator dies away exponentially with a
time constant 7 = (2y) . The spiral nature of its phase-space trajectory reflects this fact.

The Critically Damped Harmonic Oscillator
Equation 3.4.9 gave the solution for the critically damped oscillator:
= (At + B)e " (3.5.11)
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04 T T T T

Figure 3.5.3 (a) Modified phase-
space plot (see text) for the simple

harmonic oscillator. (b) Phase-space
plot (@, = 0.5 s71). Underdamped ]
case: (1) weak damping (y=0.05s71) x
and (2) strong damping (y=0.25s71). ®)

Taking the derivative of this equation, we obtain
i =—y(At+ B)e "' + Ae™" (35.12)
or
i+yx=Ae" (3.5.13)

This last equation indicates that the phase-space trajectory should approach a straight line
whose intercept is zero and whose slope is equal to —y. The phase-space plot is shown in
Figure 3.5.4 for motion starting off with the conditions (%p,%o) = (1,0).
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The Overdamped Oscillator

Overdamping occurs when the damping parameter ¥ is larger than the angular frequency
@,. Equation 3.4.6 then gives the solution for the motion:

x(t) = Ale—(Y—q)t + Aze—(7+q)t (3.5.14)
in which all the exponents are real. Taking the derivative of this equation, we find
i(t) = —yx + ge "(Ae” — Aye™) (3.5.15)

As in the case of critical damping, the phase path approaches zero along a straight line.
However, approaches along two different lines are possible. To see what they are, it is
convenient to let the motion start from rest at some displacement x,,. Given these con-
ditions, a little algebra yields the following values for A, and A,:

JNC NN ¢ du | 9 (3.5.16)
2q 2
Some more algebra yields the following for two different linear combinations of x and #:
£+ = qx= (¥~ Qxge” """ (3.5.17a)
T+ +Q)x=(y+q)mge " (3.5.17b)

The term on the right-hand side of each of the above equations dies out with time, and,
thus, the phase-space asymptotes are given by the pairs of straight lines:

t=—(y—q)x (3.5.18a)
==y +q)x (3.5.18b)

Except for special cases, phase-space paths of the motion always approach zero along the
asymptote whose slope is —(y — q). That asymptote invariably “springs into existence” much
faster than the other, because its exponential decay factor is (¥ + ) (Equations 3.5.17),
the larger of the two.

Figure 3.5.5 shows the phase-space plot for an overdamped oscillator whose motion
starts off with the values (x, %) = (1,0), along with the asymptote whose slope is —(y — q).
Note how rapidly the trajectory locks in on the asymptote, unlike the case of critical
damping, where it reaches the asymptote only toward the end of its motion. Obviously,
overdamping is the most efficient way to knock the oscillation out of oscillatory motion!



112 CHAPTER 3 Oscillations

0 T T T T
~-0.05
x
-0.1 ~ E
E+(f-@)x=0 .

Figure 3.5.5 Phase-space plot for
the simple harmonic oscillator ~0.15 ! L ) L
(@, =0.5 5™). Overdamping 0 0.2 04 0.6 0.8 1
(y=1s"). x

EXAMPLE 3.5.2

A particle of unit mass is subject to a damping force —% and a force that depends on its
displacement x from the origin that varies as +x — 2. (a) Find the points of equilibrium
of the particle and specify whether or not they are stable or unstable. (b) Use Mathcad
to plot phase-space trajectories for the particle for three sets of starting conditions:
(x,y) = (i) (-1,1.40) (i) (~1,1.45) (iii) (0.01,0) and describe the resulting motion.

Solution:
(a) The equation of motion is
F+i—x+x2=0
Let y=x. Then
y=—y+x— x
At equilibrium, both y =0 and § = 0. This is satisfied if
x—x3=x(1-2%)=x(1-x)(1+x)=0

Thus, there are three equilibrium points x =0 and x =+£1.

We can determine whether or not they are stable by linearizing the equation
of motion for small excursions away from those points. Let u represent a small
excursion of the particle away from an equilibrium point, which we designated by x,,.
Thus, x =x,+u and the equation of motion becomes

y=1u and § =—y+(x, +u)— (g + 1)’
Carrying out the expansion and dropping all terms non-linear in u, we get
y=-y +(1—3x(2,)u + xo(l— x%)

The last term is zero, so

y=—y+(1—3x(2,)u
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Phase Space y vs. x
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If (1 — 3x%) < 0 the motion is a stable, damped oscillation that eventually ceases at
x=x,. If (1 - 3x2) > 0 the particle moves away from x, and the equilibrium is unstable.
Thus, x = £1 are points of stable equilibrium and x,, is an unstable point.

(b) The three graphs in Figure 3.5.6 were generated by using Mathcad's rkfixed equa-
tion solver to solve the complete nonlinear equation of motion numerically. In all
cases, no matter how the motion is started, the particle veers away from x = 0 and
ultimately terminates at x = 1. The motion for the third set of starting conditions
is particularly illuminating. The particle is started at rest near, but not precisely at,
x = 0. The particle is repelled away from that point, goes into damped oscillation
about x = 1, and eventually comes to rest there. The points x = +1 are called attrac-
tors and the point x = 0 is called a repellor.

3.6| Forced Harmonic Motion: Resonance

In this section we study the motion of a damped harmonic oscillator that is subjected to
a periodic driving force by an external agent. Suppose a force of the form F,, cos @t is
exerted upon such an oscillator. The equation of motion is

mi = —kx — ¢k + F, cos ot (3.6.1)

The most striking feature of such an oscillator is the way in which it responds as a function of
the driving frequency even when the driving force is of fixed amplitude. A remarkable phe-
nomenon occurs when the driving frequency is close in value to the natural frequency @, of
the oscillator. It is called resonance. Anyone who has ever pushed a child on a swing knows
that the amplitude of oscillation can be made quite large if even the smallest push is made
at just the right time. Small, periodic forces exerted on oscillators at frequencies well above
or below the natural frequency are much less effective; the amplitude remains small. We ini-
tiate our discussion of forced harmonic motion with a qualitative description of the behav-
ior that we might expect. Then we carry out a detailed analysis of the equation of motion
(Equation 3.6.1), with our eyes peeled for the appearance of the phenomenon of resonance.

We already know that the undamped harmonic oscillator, subjected to any sort of dis-
turbance that displaces it from its equilibrium position, oscillates at its natural frequency,
@, =+/(k/m). The dissipative forces inevitably present in any real system changes the
frequency of the oscillator slightly, from @ to @, and cause the free oscillation to die out.
This motion is represented by a solution to the homogeneous differential equation
(Equation 3.4.1, which is Equation 3.6.1 without the driving force present). A periodic
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driving force does two things to the oscillator: (1) It initiates a “free” oscillation at its nat-
ural frequency, and (2) it forces the oscillator to vibrate eventually at the driving frequency
. For a short time the actual motion is a linear superposition of oscillations at these two
frequencies, but with one dying away and the other persisting. The motion that dies away
is called the transient. The final surviving motion, an oscillation at the driving frequency,
is called the steady-state motion. It represents a solution to the inhomogeneous equation
(Equation 3.6.1). Here we focus only upon the steady-state motion, whose anticipated fea-
tures we describe below. To aid in the descriptive process, we assume for the moment
that the damping term —c% is vanishingly small. Unfortunately, this approximation leads
to the physical absurdity that the transient term never dies out—a rather paradoxical sit-
uation for a phenomenon described by the word transient! We just ignore this difficulty
and focus totally upon the steady-state description, in hopes that the simplicity gained by
this approximation gives us insight that helps when we finally solve the problem of the
driven, damped oscillator.
In the absence of damping, Equation 3.6.1 can be written as

mi+ kx = F, cos ot (3.6.2)

The most dramatic feature of the resulting motion of this driven, undamped oscillator is
a catastrophically large response at @ = @,. This we shall soon see, but what response might
we anticipate at both extremely low (@ < @,) and high (@ > @,) frequencies? At low fre-
quencies, we might expect the inertial term m ¥ to be negligible compared to the spring
force —kx. The spring should appear to be quite stiff, compressing and relaxing very
slowly, with the oscillator moving pretty much in phase with the driving force. Thus, we
might guess that

x = A cos Wt
F
A=2L
k

At high frequencies the acceleration should be large, so we might guess that m# should
dominate the spring force —kx. The response, in this case, is controlled by the mass of the
oscillator. Its displacement should be small and 180° out of phase with the driving force,
because the acceleration of a harmonic oscillator is 180° out of phase with the displacement.
The veracity of these preliminary considerations emerge during the process of obtaining
an actual solution.

First, let us solve Equation 3.6.2, representing the driven, undamped oscillator. In
keeping with our previous descriptions of harmonic motion, we try a solution of the form

x(t) = A cos(wt — @)

Thus, we assume that the steady-state motion is harmonic and that in the steady state it
ought to respond at the driving frequency . We note, though, that its response might
differ in phase from that of the driving force by an amount ¢. ¢ is not the result of some
initial condition! (It does not make any sense to talk about initial conditions for a steady-
state solution.) To see if this assumed solution works, we substitute it into Equation 3.6.2,
obtaining

—mm?A cos(wt — §) + kA cos(wt — ¢) = F, cos ot
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This works if ¢ can take on only two values, 0 and 7. Let us see what is implied by this
requirement. Solving the above equation for ¢ = 0 and 7, respectively, yields

A=@)§O—% ¢=0 D < @y
=(w§+/72)§) o= >0,

We plot the amplitude A and phase angle ¢ as functions of @ in Figure 3.6.1. Indeed, as
can be seen from the plots, as @ passes through @,, the amplitude becomes catastrophi-
cally large, and, perhaps even more surprisingly, the displacement shifts discontinuously
from being in phase with the driving force to being 180° out of phase. True, these results
are not physically possible. However, they are idealizations of real situations. As we shall
soon see, if we throw in just a little damping, at @ close to o, the amplitude becomes large
but finite. The phase shift “smooths out”; it is no longer discontinuous, although the shift
is still quite abrupt.

(Note: The behavior of the system mimics our description of the low-frequency
and high-frequency limits.)

The 0° and 180° phase differences between the displacement and driving force can
be simply and vividly demonstrated. Hold the lighter end of a pencil or a pair of scissors
(closed) or a spoon delicately between forefinger and thumb, squeezing just hard enough
that it does not drop. To demonstrate the 0° phase difference, slowly move your hand back
and forth horizontally in a direction parallel to the line formed between your forefinger
and thumb. The bottom of this makeshift pendulum swings back and forth in phase with
the hand motion and with a larger amplitude than the hand motion. To see the 180°

Figure 3.6.1 (a) The amplitude of a
driven oscillator versus @ with no damping.
(b) The phase lag of the displacement
relative to the driving force versus @. ()
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phase shift, move your hand back and forth rather rapidly (high frequency). The bottom
of the pendulum hardly moves at all, but what little motion it does undergo is 180° out
of phase with the hand motion.

The Driven, Damped Harmonic Oscillator

We now seek the steady-state solution to Equation 3.6.1, representing the driven, damped
harmonic oscillator. It is fairly straightforward to solve this equation directly, but it is alge-
braically simpler to use complex exponentials instead of sines and /or cosines. First, we
represent the driving force as

F=Fye'* (3.6.3)
so that Equation 3.6.1 becomes
mi +cx + kx = Fpe'™ (3.6.4)

The variable x is now complex, as is the applied force F. Remember, though, that by Euler’s
identity the real part of F is F,, cos wt.? If we solve Equation 3.6.4 for x, its real part will
be a solution to Equation 3.6.1. In fact, when we find a solution to the above complex equa-
tion (Equation 3.6.4), we can be sure that the real parts of both sides are equal (as are
the imaginary parts). It is the real parts that are equivalent to Equation 3.6.1 and, thus,
the real, physical situation.

For the steady-state solution, let us, therefore, try the complex exponential

x(t) = Ag"@? (3.6.5)
where the amplitude A and phase difference ¢ are constants to be determined. If this

“guess” is correct, we must have

2
md_ A @9 4 o L foi00) g g Fe'™ (3.6.62)
dt* dt

be true for all values of ¢. Upon performing the indicated operations and canceling the
common factor ¢!*t, we find

-mo®A+iwcA + kA = Fe* = Fy(cos ¢ + isin¢) (3.6.6b)
Equating the real and imaginary parts yields the two equations

A(k—ma?®) = Fycos¢

(3.6.7a)
c@A = Fsin¢

Upon dividing the second by the first and using the identity tan ¢ = sin ¢/cos ¢, we obtain
the following relation for the phase angle:

c@
t: = (3.6.7b)
ang k-mo?

5For a proof of Euler’s identity, see Appendix D.
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By squaring both sides of Equations 3.6.7a and adding and employing the identity
sin? ¢ + cos? ¢ =1, we find

A’(k—-mo®)® +*w®A® = F} (3.6.7¢)
We can then solve for A, the amplitude of the steady-state oscillation, as a function of the
driving frequency:
Ey

A = may + 70T

(3.6.7d)

In terms of our previous abbreviations ®§ = k/m and y = ¢/2m, we can write the expres-
sions in another form, as follows:
2yw

tan¢ =
w; - o*

(3.6.8)

Fy/m
2 2)2 2 o T2
[(wo—w ) +4y°w }

A plot of the above amplitude A and phase difference ¢ versus driving frequency
o (Fig. 3.6.2) reveals a fetching similarity to the plots of Figure 3.6.1 for the case of
the undamped oscillator. As can be seen from the plots, as the damping term
approaches 0, the resonant peak gets larger and narrower, and the phase shift sharp-
ens up, ultimately approaching infinity and discontinuity, respectively, at @,. What is
not so obvious from these plots is that the amplitude resonant frequency is not @, when
damping is present (although the phase shift always passes through /2 at @,)!
Amplitude resonance occurs at some other value @_, which can be calculated by dif-
ferentiating A(®) and setting the result equal to zero. Upon solving the resultant equa-
tion for @, we obtain

A(w) = (3.6.9

o = g -2y* (3.6.10)

o_approaches @, as ¥, the damping term, goes to zero. Because the angular frequency
of the freely running damped oscillator is given by @, = (@5 -7*)"*, we have

o =w]-7" (3.6.11)

When the damping is weak, and only under this condition, the resonant frequency w,,
the freely running, damped oscillator frequency @, and the natural frequency @, of the
undamped oscillator are essentially identical.

At the extreme of strong damping, no amplitude resonance occurs if ¥ > a)O/w/é,
because the amplitude then becomes a monotonically decreasing function of . To see

this, consider the limiting case v? = w3l2. Equation 3.6.9 then gives

F,/m F,/m
Alw) = . =— 7"

[(wﬁ - w2)2 + 2w§w2}1/2 (0} +o

(3.6.12)

which clearly decreases with increasing values of o, starting with @=0.
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Figure 3.6.2 (a) Amplitude
A/(F/k) and (b) phase shift ¢ vs.
driving frequency (n = w/a,) for
values of the damping constant ¥
givenby y=27 ¢, (i=0,1...5).
Larger values of A and more
abrupt phase shifts correspond to
decreasing values of ¥.

EXAMPLE 3.6.1

A seismograph may be modeled as a mass suspended by springs and a dashpot from a
platform attached to the Earth (Figure 3.6.3). Oscillations of the Earth are passed
through the platform to the suspended mass, which has a “pointer” to record its dis-
placement relative to the platform. The dashpot provides a damping force. Ideally, the
displacement A of the mass relative to the platform should closely mimic the displace-
ment of the Earth D. Find the equation of motion of the mass m and choose parame-
ters @)y and 7y to insure that A lies within 10% of D. Assume during a ground tremor that
the Earth oscillates with simple harmonic motion at f= 10 Hz.

Solution:

First we calculate the equation of motion of the mass m. Suppose the platform moves
downward a distance z relative to its initial position and that m moves downward to
a position y relative to the platform. The plunger in the dashpot is moving downward with
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Figure 3.6.3 Seismograph model.

speed % while the pot containing the damping fluid is moving downward with speed § + %;
therefore, the retarding, damping force is given by cyj. Ifl is the natural length of the spring,
then

F =mg— o —k(y — ) = m(ij + %)

We let y = x + mg/k +1, so that « is the displacement of the mass from its equilibrium
position (see Figure 3.2.5), and, in terms of z, the equation of motion becomes

mi +cx + kx = —mz

During the tremor, as the platform oscillates with simple harmonic motion of amplitude

D and angular frequency o= 2xf, we have z = De!®. Thus,
mi + ¢k + kx = mD@* ™

Comparing with Equation 3.6.4, and associating Fo/m with D2, the solution for the
amplitude of oscillation given by Equation 3.6.9 can be expressed here as

of( 2 9\, .0 o]
A=Dow (a)o—w) +4ya)]
Dividing numerator and denominator by ®? we obtain

r a)2 9 2 -1/2
A=D (5‘;-—1] +4#]

Expanding the term in the denominator gives

o 2 e
A=D|1+—2+-= (27—}
[ w* a)z( 4 0)
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We can insure that A = D for reasonable values of @ by setting 2y* — @2 =0 and &/w < 0.
For example, for a fractional difference between A and D of 10%, we require that

D-A AR
—B—=l—(1+F] ”’EF<E or ,<084w
This means that the free-running frequency of the oscillator is
fo =wy/2n <8Hz
The damping parameter should be
7 = /N2 = 36.
Typically, this requires the use of “soft” springs and a heavy mass.

Amplitude of Oscillation at the Resonance Peak

The steady-state amplitude at the resonant frequency, which we call A, is obtained from
Equations 3.6.9 and 3.6.10. The result is

Fy/m

A = —T o 3.6.13a
2yyoi -7 ¢ )

In the case of weak damping, we can neglect y* and write

Apge = —2

py—— (3.6.13b)
Thus, the amplitude of the induced oscillation at the resonant condition becomes very
large if the damping factor ¥is very small, and conversely. In mechanical systems large
resonant amplitudes may or may not be desirable. In the case of electric motors, for
example, rubber or spring mounts are used to minimize the transmission of vibration. The
stiffness of these mounts is chosen so as to ensure that the resulting resonant frequency
is far from the running frequency of the motor.

Sharpness of the Resonance: Quality Factor

The sharpness of the resonance peak is frequently of interest. Let us consider the case of
weak damping ¥ < @, Then, in the expression for steady-state amplitude (Equation 3.6.9),
we can make the following substitutions:

w; - 0° = (0, + )W, - ®)
= 20, (0, — @)
47’0® = 4y°w} (3.6.14b)

(3.6.14a)
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These, together with the expression for A, ,, allow us to write the amplitude equation in
the following approximate form:

A®) = L A (3.6.15)
,/(wo -0)?+y? -

The above equation shows that when |@, — @| = ¥ or, equivalently, if

w=w,ty (3.6.16)
then
2 _ 1 42 3.6.17)
A*=1a2, (

This means that ¥ is a measure of the width of the resonance curve. Thus, 2y is the fre-
quency difference between the points for which the energy is down by a factor of % from
the energy at resonance, because the energy is proportional to A2.

The quality factor Q defined in Equation 3.4.24, which characterizes the rate of
energy loss in the undriven, damped harmonic oscillator, also characterizes the sharpness
of the resonance peak for the driven oscillator. In the case of weak damping, Q can be
expressed as

=9 Dy 3.6.18
Q o "3y ( )

Thus, the total width A at the half-energy points is approximately

Aw=2y=22 (3.6.192)
Q
or, because 0= 27xf,
Ao Af 1
—— == 3.6.19b
w fo ©Q ¢ )

giving the fractional width of the resonance peak.

This last expression for Q, so innocuous-looking, represents a key feature of feedback
and control in electrical systems. Many electrical systems require the existence of a well-
defined and precisely maintained frequency. High Q (of order 10) quartz oscillators,
vibrating at their resonant frequency, are commonly employed as the control element in
feedback circuits to provide frequency stability. A high Q results in a sharp resonance. If
the frequency of the circuit under control by the quartz oscillator starts to wander or drift
by some amount f away from the resonance peak, feedback circuitry, exploiting the
sharpness of the resonance, drives the circuit vigorously back toward the resonant fre-
quency. The higher the Q of the oscillator and, thus, the narrower 8f, the more stable the
output of the frequency of the circuit.
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The Phase Difference ¢

Equation 3.6.8 gives the difference in phase ¢ between the applied driving force and the
steady-state response:

L2
¢ = tan ‘[“i] (3.6.20)

oK —mz)

The phase difference is plotted in Figure 3.6.2(b). We saw that for the driven, undamped
oscillator, ¢ was 0° for @ < @, and 180° for @ > . These values are the low- and high-
frequency limits of the real motion. Furthermore, ¢ changed discontinuously at @ = @,.
This, too, is an idealization of the real motion where the transition between the two limits
is smooth, although for very small damping it is quite abrupt, changing essentially from
one limit to the other as @ passes through a region within 1y about @,.

At low driving frequencies @ < @,, we see that ¢ — 0 and the response is nearly in
phase with the driving force. That this is reasonable can be seen upon examination of the
amplitude of the oscillation (Equation 3.6.9). In the low-frequency limit, it becomes

A@—0)= p k/m % (3.6.21)
In other words, just as we claimed during our preliminary discussion of the driven oscil-
lator, the spring, and not the mass or the friction, controls the response; the mass is slowly
pushed back and forth by a force acting against the retarding force of the spring.

At resonance the response can be enormous. Physically, how can this be? Perhaps
some insight can be gained by thinking about pushing a child on a swing. How is it done?
Clearly, anyone who has experience pushing a swing does not stand behind the child
and push when the swing is on the backswing. One pushes in the same direction the
swing is moving, essentially in phase with its velocity, regardless of its position. To push
a small child, we usually stand somewhat to the side and give a very small shove for-
ward as the swing passes through the equilibrium position, when its speed is a maxi-
mum and the displacement is zero! In fact, this is the optimum way to achieve a
resonance condition; a rather gentle force, judiciously applied, can lead to a large ampli-
tude of oscillation. The maximum amplitude at resonance is given by Equation 3.6.13a
and, in the case of weak damping, by Equation 3.6.13b,A_ = F /2yma,. But from the
expression above for the amplitude as @ — 0, we have A((D N 0) Fy/me}. Hence, the
ratio is

A _ E/Qymay) _ @y

A@—0)  Ffmai) 2 =37=0Q (3.6.22)

The result is simply the Q of the oscillator. Imagine what would happen to the child on
the swing if there were no frictional losses! We would continue to pump little bits of
energy into the swing on a cycle-by-cycle basis, and with no energy loss per cycle, the ampli-
tude would soon grow to a catastrophic dimension.

Now let us look at the phase difference. At @ = @, ¢ = 7/2. Hence, the displacement
“lags,” oris behind, the driving force by 90°. In view of the foregoing discussion, this should

make sense. The optimum time to dump energy into the oscillator is when it swings
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through zero at maximum velocity, that is, when the power input F - v is a maximum. For
example, the real part of Equation 3.6.5 gives the displacement of the oscillator:

x(t) = A(@)Re(e" ) = A(w) cos(wt - ¢) (3.6.23)
and at resonance, for small damping, this becomes

x(t) = A(w,) cos(w,t — 7/2)

= A(@,) sinw,t (3.6.24)
The velocity, in general, is
1(t) = ~WA(®) sin(®t - @) (3.6.25)
which at resonance becomes
() = Wy A(®,) cos Wyt (3.6.26)
Because the driving force at resonance is given by
F = F, Re(e*™") = F, cos w,t (3.6.27)

we can see that the driving force is indeed in phase with the velocity of the oscillator, or
90° ahead of the displacement.

Finally, for large values of @, >> @,, $ — , and the displacement is 180° out of phase
with the driving force. The amplitude of the displacement becomes

A0 > @) = —2; (3.6.28)
1)

In this case, the amplitude falls off as 1/w? The mass responds essentially like a free object,
being rapidly shaken back and forth by the applied force. The main effect of the spring

is to cause the displacement to lag behind the driving force by 180°.

Electrical-Mechanical Analogs

When an electric current flows in a circuit comprising inductive, capacitative, and resis-
tive elements, there is a precise analogy with a moving mechanical system of masses and
springs with frictional forces of the type studied previously. Thus, if a current i = dg/dt
(g being the charge) flows through an 1nductance L, the potential difference across the
inductance is L§, and the stored energy is Lq2 Hence, inductance and charge are
analogous to mass and displacement, respectlvely, and potential difference is analogous
to force. Similarly, if a capamtance C carries a charge g, the potential difference is C™g,
and the stored energy is C'¢2. Consequently, we see that the reciprocal of C is anal-
ogous to the stiffness constant of a spring. Finally, for an electric current i flowing
through a resistance R, the potential difference is iR = ¢R, and the rate of energy dis-
sipation is R = ¢ 2R in analogy with the quantity c%? for a mechanical system. Table 3.6.1
summarizes the situation.
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TABLE 3.6.1 = .. . i NI IR Gl
Mechanical Electrical
x  Displacement q Charge
% Velocity g=i  Current
m  Mass L Inductance
k  Stiffness cl Reciprocal of capacitance
¢ Damping resistance R Resistance
F  Force A% Potential difference

EXAMPLE 3.6.2

The exponential damping factor ¥ of a spring suspension system is one-tenth the criti-
cal value. If the undamped frequency is @, find (a) the resonant frequency, (b) the qual-
ity factor, (c) the phase angle ¢ when the system is driven at a frequency @= @,/2, and
(d) the steady-state amplitude at this frequency.

Solution:

(a) We have y=7,,/10 = @,/10, from Equation 3.4.7, so from Equation 3.6.10,
o, =[0} - 20,/10)°] " = ©,(0.98) = 0.9,
(b) The system can be regarded as weakly damped, so, from Equation 3.6.18,

@By Oy

0= 5y = Awy0) -

(¢) From Equation 3.6.8 we have

¢=tan'l[ ) J=tan_l[2(w0/10)(w0/2)}

.- @ 0 —(0,/2)*
=tan" 0.133 = 7.6°

(d) From Equation 3.6.9 we first calculate the value of the resonance denominator:
v
D(@ = 0,/2) = [(wﬁ - a)§/4)2 + 4((00/10)2((00/2)2}
= [(916) + (1100)[* 0% = 0.7566 2
From this, the amplitude is

F,/ F,
0_m2 =1.329—-0 >
0.7566@, ma,

AW = @yl2) =

Notice that the factor (Fy/m®;) = Fy/k is the steady-state amplitude for zero driv-
ing frequency.
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*3.7| The Nonlinear Oscillator: Method
of Successive Approximations

When a system is displaced from its equilibrium position, the restoring force may vary in
a manner other than in direct proportion to the displacement. For example, a spring may
not obey Hooke’s law exactly; also, in many physical cases the restoring force function is
inherently nonlinear, as is the case with the simple pendulum discussed in the example
to follow.

In the nonlinear case the restoring force can be expressed as

F(x) = —kx + €(x) 3.7.1)

in which the function €(x) represents the departure from linearity. It is necessarily
quadratic, or higher order, in the displacement variable x. The differential equation of
motion under such a force, assuming no external forces are acting, can be written in the
form

mi +kx = €(x) = €, + €55 + - 3.7.2)

Here we have expanded e(x) as a power series.

Solving the above type of equation usually requires some method of approximation.
To illustrate one method, we take a particular case in which only the cubic term in e(x)
is of importance. Then we have

mi + kx = €;x° (3.7.3)

Upon division by m and introduction of the abbreviations @y = k/m and €,/m = A, we can
write

i+ogx = Ax° (3.74)

We find the solution by the method of successive approximations.
Now we know that for 2 =0 a solution is x = A cos @) t. Suppose we try a first approx-
imation of the same form,

x=A cosat (8.7.5)

where, as we see, @ is not quite equal to @,. Inserting our trial solution into the differ-
ential equation gives

-A@? coswt+ Aw? coswt = AA® cos’wt = AA3(% cosmt +; cos3a)t) (3.7.6a)

In the last step we have used the trigonometric identity cos>u = > cosu + % cos 3u, which
is easily derived by use of the relation cos®u = [(¢™ + ¢)/2]3. Upon transposing and col-
lecting terms, we get

(—a)2 +0i - %Z,AZ)A cos Ot — %X,A:3 cos3wt =0 (3.7.6b)

Excluding the trivial case A = 0, we see that our trial solution does not exactly satisfy the
differential equation. However, an approximation to the value of @, which is valid for small



126 CHAPTER 3 Oscillations

A, is obtained by setting the quantity in parentheses equal to zero. This yields

o’ =wp -314° (3.7.7a)
3142 )"
o= wo(l - WJ (3.7.7b)
for the frequency of our freely running nonlinear oscillator. As we can see, it is a func-

tion of the amplitude A.

To obtain a better solution, we must take into account the dangling term in
Equation 3.7.6b involving the third harmonic, cos 3w¢. Accordingly, we take a second trial
solution of the form

x=A cos ot + B cos 3ot 3.7.8)
Putting this into the differential equation, we find, after collecting terms,

2 9 3 39 2 2 1 3
(-0 + 05 - §18%)A cosor +(-9Bo” +@}B -~ 14° | cos 30t (3.7.92)

+(terms involving BA and higher multiples of wt) = 0
Setting the first quantity in parentheses equal to zero gives the same value for @ found
in Equations 3.7.7. Equating the second to zero gives a value for the coefficient B, namely,

7A4° AA° AA°
=—t—s= 2 7 =~ ) (3.7.9b)
90" +0, -—-320;+271A 320,
where we have assumed that the term in the denominator involving 1A is small enough
to neglect. Our second approximation can be expressed as
3
x=A cos®t— A4 3 cos3mt (3.7.10)
32w,

We stop at this point, but the process could be repeated to find yet a third approxima-
tion, and so on.

The above analysis, although it is admittedly very crude, brings out two essential fea-
tures of free oscillation under a nonlinear restoring force; that is, the period of oscillation
is a function of the amplitude of vibration, and the oscillation is not strictly sinusoidal but
can be considered as the superposition of a mixture of harmonics. The vibration of a non-
linear system driven by a purely sinusoidal driving force is also distorted; that is, it contains
harmonics. The loudspeaker of a stereo system, for example, may introduce distortion (har-
monics) over and above that introduced by the electronic amplifying system.

EXAMPLE 3.7.1

The Simple Pendulum as a Nonlinear Oscillator

In Example 3.2.2 we treated the simple pendulum as a linear harmonic oscillator by using
the approximation sin @ = 6. Actually, the sine can be expanded as a power series,
3 g5
sing=9-2+2 ..
3 3
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so the differential equation for the simple pendulum, 6 +(g/l)sin6 = 0, may be writ-
ten in the form of Equation 3.7.2, and, by retaining only the linear and the cubic terms
in the expansion for the sine, the differential equation becomes

2
§+ol0=20g
3!

in which @§ = g/l. This is mathematically identical to Equation 3.7.4 with the constant
A= 0}/3!= 0}/6. The improved expression for the angular frequency, Equation 3.7.7b,

then gives
9n A2 TV2 N
a)=w0[1——3(w°/62)A ] =w0[1_A_J
407 8

and

o 1 A" A"
T=L-op |- |1-2-] =7|1-2
o g 8 8

for the period of the simple pendulum. Here A is the amplitude of oscillation expressed
in radians. Our method of approximation shows that the period for nonzero amplitude
is longer by the factor (1 — A%/8) /2 than that calculated earlier, assuming sin 8= 6. For
instance, if the pendulum is swinging with an amplitude of 90° = 7/2 radians (a fairly
large amplitude), the factor is (1 — #%/32)71/2 = 1.2025, so the period is about 20% longer
than the period for small amplitude. This is considerably greater than the increase due
to damping of the baseball pendulum, treated in Example 3.4.3.

*The Self-Limiting Oscillator: Numerical Solution

Certain nonlinear oscillators exhibit an effect that cannot be generated by any linear
oscillator—the limit cycle, that s, its oscillations are self-limiting. Examples of nonlinear
oscillators that exhibit self-limiting behavior are the van der Pol oscillator, intensively
studied by van der Pol® in his investigation of vacuum tube circuits, and the simple
mechanical oscillator subject to dry friction (see Computer Problem 3.5), studied by
Lord Rayleigh in his investigation of the vibrations of violin strings driven by bow strings.”
Here we discuss a variant of the van der Pol equation of motion that describes a nonlin-
ear oscillator, exhibiting self-limiting behavior whose limit cycle we can calculate explic-
itly rather than numerically. Consider an oscillator subject to a nonlinear damping force,
whose overall equation of motion is

.2
5&—1/[A2—x2—%}'c+0)§x=0 3.7.11)

8B. van der Pol, Phil. Mag. 2,978 (1926). Also see T. L. Chow, Classical Mechanics, New York, NY Wiley, 1995.
7P. Smith and R. Smith, Mechanics, Chichester, England Wiley, 1990.
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Van der Pol’s equation is identical to Equation 3.7.11 without the third term in parentheses,
the velocity-dependent damping factor, %2 (see Computer Problem 3.3). The limit cycle
becomes apparent with a slight rearrangement of the above terms and a substitution of
the phase-space variable y for #:

2 2
g—yAﬂ}—[%E+;§ﬁgﬂy+aﬁx=0 (3.7.12)

The nonlinear damping term is negative for all points (x, y) inside the ellipse given by

2 2
%?+;§B§=1 (3.7.13)
It is zero for points on the ellipse and positive for points outside the ellipse. Therefore,
no matter the state of the oscillator (described by its current position in phase space), it
is driven toward states whose phase-space points lie along the ellipse. In other words, no
matter how the motion is started, the oscillator ultimately vibrates with simple harmonic
motion of amplitude A; its behavior is said to be “self-limiting,” and this ellipse in phase
space is called its limit cycle. The van der Pol oscillator behaves this way, but its limit cycle
cannot be seen quite so transparently.

A complete solution can only be carried out numerically. We have used Mathcad
to do this. For ease of calculation, we have set the factors A, f, and @, equal to one.
This amounts to transforming the elliptical limit cycle into a circular one of unit radius
and scaling angular frequencies of vibration to @,. Thus, Equation 3.7.12 takes on the
simple form

g-yl-2*—yP)y+x=0 (3.7.14)

A classic way to solve a single second-order differential equation is to turn it into an
equivalent system of first-order ones and then use Runge—Kutta or some equivalent
technique to solve them (see Appendix I). With the substitution of y for %, we obtain the
following two first-order differential equations:

1=y (3.7.15)
g=—x+y1-%* -4y

In fact, these equations do not have to be solved numerically. One can easily verify that
they have analytic solutions x = cost and y =—sin¢, which represent the final limiting motion
on the unit circle x* + y% = 1. It is captivating, however, to let the motion start from arbi-
trary values that lie both within and without the limit cycle, and watch the system evolve
toward its limit cycle. This behavior can be observed only by solving the equations
numerically—for example, using Mathcad.

As in the preceding chapter, we use the Mathcad equation solver, rkfixed, which
employs the fourth-order Runge—Kutta technique to numerically solve first-order dif-
ferential equations. We represent the variables x and y in Mathcad as x, and x,, the
components of a two-dimensional vector x = (x,, x,).
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Mathcad Procedure

e Define a two-dimensional vector x = (x;, x,) containing initial values (x,, y,);

that is,
_(-05
*lo

(This starts motion off at (x,, y,) = (0.5, 0).)
e Define a vector-valued function D(t,x) containing the first derivatives of the
unknown functions x(¢) and y(¢) (Equations 3.7.15):

Xy
Dt x) = [—xl + 'y(l—xf - xé)x!]

e Decide on time interval [0, T] and the number of points, npts, within that interval
where solutions are to be evaluated.

e Pass this information to the function rkfixed (or Rkadapt if the motion changes too
rapidly within small time intervals somewhere within the time interval [0, T] that
you have selected); that is,

Z = rkfixed(x, 0, T, npts, D)
or
Z = Rkadapt(x, 0, T, npts, D)

The function rkfixed (or Rkadapt) returns a matrix Z (in this case, two rows and three
columns) whose first column contains the times ¢, where the solution was evaluated and
whose remaining two columns contain the values of x(¢,) and y(¢,). Mathcad’s graphing
feature can then be used to generate the resulting phase-space plot, a two-dimensional
scatter plot of y(t,) versus x(z,).

Figure 3.7.1 shows the result of a numerical solution to the above equation of motion.
Indeed, as advertised, the system either spirals in or spirals out, finally settling on the limit
cycle in which the damping force disappears. Once the oscillator “locks in” on its limit
cycle, its motion is simply that of the simple harmonic oscillator, repetitive and completely
predictable.

*3.8 | The Nonlinear Oscillator: Chaotic Motion

When do nonlinear oscillations occur in nature? We answer that question with a tautol-
ogy: They occur when the equations of motion are nonlinear. This means that if there are
two (or more) solutions, x, (t) and x,(t), to a nonlinear equation of motion, any arbitrary
linear combination of them, ¢x, () + Bx,(t) is, in general, not linear. We can illustrate this
with a simple example. The first nonlinear oscillator discussed in Section 3.7 was described
by Equation 3.7.4:

i+oix = A3 (3.8.1)
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Assume that x, and x, individually satisfy the above equation. First, substitute their linear
combination into the left side,

ok, + B, + 03 (ax, + Pry) = a(éc‘l + wﬁxl) + ﬁ(a’c’z + wﬁxz)
= oAa7) + B(Ax3)

where the last step follows from the fact that x, and x, are assumed to be solutions to
Equation 3.8.1. Now substitute the linear combination into the right side of Equation 3.8.1
and equate it to the result of Equation 3.8.2:

(3.8.2)

(0 + Pxy)° = (o2} + i3 (38.32)
With a little algebra, Equation 3.8.3a can be rewritten as
a(a? - 1)x +3a’Bxix, + 3o fixxs + BB —-1)xi = 0 (3.8.3b)

x, and ,, are solutions to the equation of motion that vary with time ¢. Thus, the only way
Equation 3.8.3b can be satisfied at all times is if & and B are identically zero, which vio-
lates the postulate that they are arbitrary factors. Clearly, if x, and x,, are solutions to the
nonlinear equation of motion, any linear combination of them is not. It is this nonlinear-
ity that gives rise to the fascinating behavior of chaotic motion.

The essence of the chaotic motion of a nonlinear system is erratic and unpredictable
behavior. It occurs in simple mechanical oscillators, such as pendula or vibrating objects,
that are “overdriven” beyond their linear regime where their potential energy function is
a quadratic function of distance from equilibrium (see Section 3.2). It occurs in the
weather, in the convective motion of heated fluids, in the motion of objects bound to our
solar system, in laser cavities, in electronic circuits, and even in some chemical reactions.
Chaotic oscillation in such systems manifests itself as nonrepetitive behavior. The oscil-
lation is bounded, but each “cycle” of oscillation is like none in the past or future. The
oscillation seems to exhibit all the vagaries of purely random motion. Do not be confused
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Fcos ot
Figure 3.8.1 A simple pendulum driven in a resistive
medium by a sinusoidally varying force, F cos &)¢. The --Ll---
force is applied tangential to the arc path of the 0

pendulum. mg

by this statement. “Chaotic” behavior of classical systems does not mean that they do not
obey deterministic laws of nature. They do. Given initial conditions and the forces to which
they are subject, classical systems do evolve in time in a way that is completely determined.
We just may not be able to calculate that evolution with any degree of certainty.

We do not treat chaotic motion in great detail. Such treatment is beyond the mis-
sion of this text. The reader who wishes to remedy this deficiency is referred to many
fine treatments of chaotic motion elsewhere.® Here we are content to introduce the
phenomenon of chaos with an analysis of the damped simple pendulum that also can be
driven into a chaotic state. We show that slight changes in the driving parameter can lead
to wide divergences in the resulting motion, thus rendering prediction of its long-term
evolution virtually impossible.

The Driven, Damped Harmonic Oscillator

We developed the equation of motion for the simple pendulum in Example 3.2.2. With
the addition of a damping term and a forcing term, it becomes

m§ = —cs—mg sinf + F cos @t (3.8.4)

where we have assumed that the driving force, F cos )+, is applied tangent to the path
of the pendulum whose arc distance from equilibrium is s (see Fig. 3.8.1).°
Lets =16, y=c/m, w; =g/l, and &= F/ml, and apply a little algebra to obtain

0+ y0 + a)(z, sinf = & cos ot (3.8.5)

8]. B. Marion and S. T. Thornton, Classical Dynamics, 5th ed., Brooks/Cole— Thomson Learning, Belmont,
CA, 2004.

9The equation of motion of the simple pendulum in terms of the angular variable 6 can be derived most
directly using the notion of applied torques and resulting rates of change of angular momentum. These con-
cepts are not fully developed until Chapter 7.
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Figure 3.8.2 Three-dimensional phase-space
plot of a driven, damped simple pendulum. The
driving parameter is &= 0.9. The driving angular
frequency @ and damping parameter ¥ are % and %
respectively. Coordinates plotted are

x =027y = 0,2 = ot/2T.

In our earlier discussion of the simple pendulum, we restricted the analysis of its
motion to the regime of small oscillations where the approximation sin 8 = 8 could be used.
We do not do that here. It is precisely when the pendulum is driven out of the small-angle
regime that the nonlinear effect of the sin 8 term manifests itself, sometimes in the form
of chaotic motion.

We simplify our analysis by scaling angular frequencies in units of @, (in essence, let
@, = 1), and we simplify notation by lettingx = §and ® = @,. The above equation becomes

£+ Y%+ sin x = & cos Wt (3.8.6)

Exactly as before, we transform this second-order differential equation into three first-
order ones by letting y = % and z = wt:

x=y
y=—sinx—yy+a cosz (3:8.7)
=0

Remember, these equations are dimensionless, and the driving angular frequency wis a
multiple of @,

We use Mathcad as in the preceding example to solve these equations under a vari-
ety of conditions. For the descriptions that follow, we vary the driving “force” eand hold
fixed both the driving frequency  and the damping parameter ¥ at % and %, respectively.
The starting coordinates (x,, ¥,, z,) of the motion are (0,0,0) unless otherwise noted.

e Driving parameter: ¢ = 0.9
These conditions lead to periodic motion. The future behavior of the pendulum is
predictable. We have allowed the motion to evolve for a duration T equivalent to 10
driving cycles.® We show in Figure 3.8.2 a three-dimensional phase-space trajec-
tory of the motion. The vertical axis represents the z-coordinate, or the flow of
time, while the horizontal axes represent the two phase-space coordinates x and y.
The trajectory starts at coordinates (0,0,0) and spirals outward and upward in
corkscrew-like fashion with the flow of time. There are 10 spirals corresponding to

10The duration of one driving cycle is 7= 2n/a.
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Phase Space y vs. x X vs.t Poincaré Section
0=0.9
T
1
0
0=1.07
T T
1 |
o=1.15 0
\I/\’)
Figure 3.8.3 Damped, driven W "L\ -
pendulum for different driving force L i
parameters ¢. (i) Phase-space plots on ¥
the left (ii) angle vs. time in the center i T
(iiii) Poincaré sections on the right. Only
phase-space plots of first two and last two
cycles shown for & = 1.15. Each plot
represents two sets of starting conditions
in which the initial angular velocities

differ by only 1 part in 105.

the evolution of the motion over 10 driving cycle periods. The transient behavior dies
out after the first few cycles as the pendulum attains a state of stable, steady-state
oscillation. This is evident upon examination of the first of the top row of graphs in
Figure 3.8.3. It is a two-dimensional projection of the three-dimensional, phase-
space plot during the last 5 of the 10 total driving cycles. The resulting closed curve
actually consists of five superimposed projected curves. The perfect superposition
and closure demonstrates the stability and exact repeatability of the oscillation.
The second graph in the first row of Figure 3.8.3 is a plot of the angular posi-
tion of the pendulum x as a function of the number of elapsed driving cycles n
(=wt/2m). The repeatability of the oscillation, cycle after cycle, is evident here as well.
The third graph in the top row is a Poincaré section plot of the motion. Think
of it as a stroboscopic snapshot of the three-dimensional, phase-space trajectory
taken every drive cycle period. The times at which the snapshots are taken can be
envisioned as a series of two-dimensional planes parallel to the x—y plane sepa-
rated by a single drive cycle period. The intersection of the trajectory with any of
these horizontal planes, or “slices,” is a single point whose (x, y) phase-space
coordinates represent the current state of the motion. The single point shown in
the plot for this driving cycle parameter is actually five different superimposed
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Poincaré sections taken during the last five cycles of the motion. This means that
after the initial transient effects die out, the (x,y) phase-space coordinates repeat
exactly every subsequent drive cycle period. In other words, the pendulum is oscil-
lating at a single frequency, the drive cycle frequency, as one might expect.
Driving parameter: o0 =1.07
This value leads to an interesting effect shown in the second row of graphs in
Figure 3.8.3, known as period doubling, in which the motion repeats itself exactly
every other drive cycle. Close examination of the phase-space plot reveals two
closed loops, one for each drive cycle. You might need glasses to see the effect in
the second plot (angle vs. time), but close scrutiny reveals that there is a slight ver-
tical displacement between adjacent cycles and that every other cycle is identical.
The Poincaré section shows the effect best: two discrete points can be seen indi-
cating that the motion consists of two different but repetitive oscillations.
Driving parameter: a = 1.15
starting coordinates: (—0.9,0.54660,0) and (-0.9, 0.54661,0)
This particular value of driving parameter leads to chaotic motion and allows us to
graphically illustrate one of its defining characteristics: unpredictable behavior. Take
a look at the two phase-space plots defined by & = 1.15 in the third and fourth row
of Figure 3.8.3. The first one is a phase-space plot of the first two cycles of the
motion, for two different trials, each one started with the two slightly different set of
starting coordinates given above. In each trial, the pendulum was started from the
position, x =—0.9 at time ¢ =0, but with slightly different angular velocities y that dif-
fered by only 1 part in 10°. The trajectory shown in the first plot is thus two trajec-
tories, one for each trial. The two trajectories are identical indicating that the motion
for the two trials during the first two cycles are virtually indistinguishable. Note that
in each case, the pendulum has moved one cycle to the left in the phase-space coor-
dinate x when it reaches its maximum speed y in the negative direction. This tells us
that the pendulum swung through one complete revolution in the clockwise direction.
However, the second graph, where we have plotted the two phase-space tra-
jectories for the 99th and 100th cycles, shows that the motion of the pendulum has
diverged dramatically between the two trials. The trajectory for the first trial is cen-
tered on x = —2 on the left-hand side of the graph, indjcating that after 98 drive
cycle periods have elapsed, the pendulum has made two more complete 27 clock-
wise revolutions than it did counterclockwise. The trajectory for the second trial
is centered about x = 6 on the right-hand side of the graph, indicating that its
slightly different starting angular velocity resulted in the pendulum making six
more counterclockwise revolutions than it did clockwise. Furthermore, the phase-
space trajectories for the two trials now have dramatically different shapes, indi-
cating that the oscillation of the pendulum is quite different at this point in the two
trials. An effect such as this invariably occurs if the parameters @, ¥, and @ are set
for chaotic motion. In the case here, if we were trying to predict the future motion
of the pendulum by integrating the equations of motion numerically with a preci-
sion no better than 1075, we would fail miserably. Because any numerical solution
has some precisional limit, even a completely deterministic system, such as we
have in Newtonian dynamics, ultimately behaves in an unpredictable fashion—in
other words, in a chaotic way.
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e Driving parameter: o0 = 1.5

This value for the driving parameter also leads to chaotic motion. The three graphs
in the last row of Figure 3.8.3 illustrate a second defining characteristic of chaotic
motion, namely, nonrepeatability. Two hundred drive cycles have been plotted and
during no single cycle is the motion identical to that of any other. If we had plotted
y vs. x modulo 2, as is done in many treatments of chaotic motion (thus, dis-
counting all full revolutions by restricting the angular variable to the interval
[-=, 7)), the entire allowed area on the phase-space plot would be filled up, a clear
signature of chaotic motion. The signature is still obvious in the Poincaré section
plot, which actually consists of 200 distinct points, indicating that the motion never
repeats itself during any drive cycle.

Finally, the richness of the motion of the driven, damped pendulum discussed here was
elicited by simply varying the driving parameter within the interval [0.9, 1.5]. We saw that
one value led to periodic behavior, one led to period doubling and two led to chaotic
motion. Apparently, when one deals with driven, nonlinear oscillators, chaotic motion lurks
just around the corner from the rather mundane periodic behavior that we and our pred-
ecessors have beat into the ground in textbooks throughout the past several hundred
years. We urge each student to investigate these motions for him- or herself using a com-
puter. It is remarkable how the slightest change in the parameters governing the equa-
tions of motion either leads to or terminates chaotic behavior, but, of course, that’s what
chaos is all about.

*3.9| Nonsinusoidal Driving Force: Fourier Series

To determine the motion of a harmonic oscillator that is driven by an external periodic
force that is other than “pure” sinusoidal, it is necessary to employ a somewhat more
involved method than that of the previous sections. In this more general case it is con-
venient to use the principle of superposition. The principle is applicable to any system
governed by a linear differential equation. In our application, the principle states that if
the external driving force acting on a damped harmonic oscillator is given by a superpo-
sition of force functions

F,, =Y F,() (3.9.1)
such that the differential equation
mi, +ct, +kx, = F, () (3.9.2)

is individually satisfied by the functions x,(t), then the solution of the differential equa-
tion of motion

mi+cx+kx=F,, (3.9.3)

is given by the superposition

()= Y x,(t) (3.9.4)
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The validity of the principle is easily verified by substitution:

mi+ci+kx=Y (m#, +ct, +kx,) =Y F,()=F,, (3.9.5)

n

In particular, when the driving force is periodic—that is, if for any value of the
time ¢

F(¢)=F,¢t+T) (3.9.6)

where T is the period—then the force function can be expressed as a superposition of
harmonic terms according to Fourier’s theorem. This theorem states that any periodic func-
tion f(¢) can be expanded as a sum as follows:

f@ = %ao + i [a, cos(n@t)+b, sin(nwt)] 3.9.7)

n=1

The coefficients are given by the following formulas (derived in Appendix G):

Q T2
a, = ?j_m f(#) cos(not)ds n=0,12,... (3.9.82)
ba = %ITJZ f@) sin(notydt  n=12,... (3.9.8b)

Here T is the period and @ = 2#/T is the fundamental frequency. If the function f{¢) is
an even function—that is, if f{t) = f(—¢t)—then the coefficients b, = 0 for all n. The
series expansion is then known as a Fourier cosine series. Similarly, if we have an odd
function so that f{t) = —f(~t), then the a_ vanish, and the series is called a Fourier sine
series. By use of the relation e = cos u + i sin u, it is straightforward to verify that
Equations 3.9.7 and 3.9.8a and b may also be expressed in complex exponential form as
follows:

ft)=Y c,e™ n=01112,... (3.9.9)

1 e ino
=7 j ft)e ™ dt (3.9.10)

~T/2

Thus, to find the steady-state motion of our harmonic oscillator subject to a given peri-
odic driving force, we express the force as a Fourier series of the form of Equation 3.9.7
or 3.9.9, using Equations 3.9.8a and b or 3.9.10 to determine the Fourier coefficients a,
and b , or c,. For each value of n, corresponding to a given harmonic n® of the funda-
mental driving frequency @, there is a response function x, (¢). This function is the steady-
state solution of the driven oscillator treated in Section 3.6. The superposition of all
the x_(t) gives the actual motion. In the event that one of the harmonics of the driving
frequency coincides, or nearly coincides, with the resonance frequency @,, then the
response at that harmonic dominates the motion. As a result, if the damping constant y
is very small, the resulting oscillation may be very nearly sinusoidal even if a highly non-
sinusoidal driving force is applied.
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EXAMPLE 3.9.1

Periodic Pulse

To illustrate the above theory, we analyze the motion of a harmonic oscillator that is
driven by an external force consisting of a succession of rectangular pulses:

F.(t)=F, NT - AT St SNT+,AT
E_(t)=0 Otherwise

where N=0,+1,%2, ..., T is the time from one pulse to the next, and AT is the width
of each pulse as shown in Figure 3.9.1. In this case, F, (t) is an even function of ¢,
so it can be expressed as a Fourier cosine series. Equation 3.9.8a gives the coeffi-
cients a_,

9 (+AT2
a, = ?J‘_Am F, cos(not)dt

+AT/2

2y [Mﬁ] (3.9.11a)
T no ~AT/2

9sin(nwATIT)
0 nmw

where in the last step we use the fact that @ = 27/T. We see also that

gy = -i- [ Fdt=F, % (3.9.11b)

-atre 0
Thus, for our periodic pulse force we can write
F,.t)=F [ATT + —?t- sin (n ATT) cos(wt) + % sin (271: ATT) cos(2mt)

+£sin(3n ﬂ) cos(3at)+:-+ (3.9.12)
3r T

Figure 3.9.1 Rectangular-pulse

driving force.
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The first term in the above series expansion is just the average value of the external force:
F = F(AT/T). The second term is the Fourier component at the fundamental fre-
quency o. The remaining terms are harmonics of the fundamental: 2@, 3@, and so on.
Referring to Equations 3.6.5 and 3.9.4, we can now write the final expression for
the motion of our pulse-driven oscillator. It is given by the superposition principle,

x(t) - Z xn (t) = Z An COS (nwt - ¢n) (3913)

in which the respective amplitudes are (Equation 3.6.9)

_a,/m _ (Fy/m)2/nrm)sin(nmAT/T)

D,(w) _[(wg_nzw P apta? 2]1’2 (3.9.14)

and the phase angles (Equation 3.6.8)
0, = tm—l(ﬂ.) (3.9.15)

wp —n*w’

Here m is the mass, 7y is the decay constant, and @, is the frequency of the freely run-
ning oscillator with no damping.

As a specific numerical example, let us consider the spring suspension system of
Example 3.6.1 under the action of a periodic pulse for which the pulse width is one tenth
the pulse period: AT/T = 0.1. As before, we shall take the damping constant to be one-
tenth critical, ¥=0.1 @,, and the pulse frequency to be one-half the undamped frequency
of the system: @ = @,/2. The Fourier series for the driving force (Equation 3.9.12) is then

F.,t)=F [0.1 + 2 sin(0.17) cos(wt) + 21 sin (0.27) cos (2wt)
T T

+£ sin (0.37) cos(3wt)+-- :|
3r
= F,[0.1+0.197 cos(wt)+0.187 cos(2mt)+0.172 cos (3wt) + -]

The resonance denominators in Equation 3.9.14 are given by

o2 V2 o2 12
D, = |:(a>0-n2 “;"J +4(0.1)%w2n® “;"] [(I_TJ +0.01n2] P

Thus,
D, = w; D, =0.757w; D, = 0.20; D, =1.2850;
The phase angles (Equation 3.9.15) are

¢n = tan_l 0. 2”(00/22 tan_l( 0.4”2 )
w; —n*wi/4 4-n

6, =0 ¢, = tan"1(0.133) = 0.132
¢, = tan™ oo = /2 ¢, = tan™'(—0.24) = -0.236

which gives
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The steady-state motion of the system is, therefore, given by the following series

(Equation 3.9.13):

x(t) = lz))z [0.1+0.26 cos (@t — 0.132) + 0.935 sin (2wt) + 0.134 cos (3wt + 0.236) +- -]
ma

The dominant term is the one involving the second harmonic 2@ = @, because @ is close
to the resonant frequency. Note also the phase of this term:

cos (2wt — m/2) = sin(2wt).

Problems

3.1 A guitar string vibrates harmonically with a frequency of 512 Hz (one octave above middle
C on the musical scale). If the amplitude of oscillation of the centerpoint of the string
is 0.002 m (2 mm), what are the maximum speed and the maximum acceleration at that
point?

3.2  Apiston executes simple harmonic motion with an amplitude of 0.1 m. If it passes through
the center of its motion with a speed of 0.5 m/s, what is the period of oscillation?

3.3 A particle undergoes simple harmonic motion with a frequency of 10 Hz. Find the dis-
placement x at any time ¢ for the following initial condition:

t=0 x=0.25m £=0.1m/s

3.4 Verify the relations among the four quantities C, D, ¢, and A given by Equation 3.2.19.

3.5  Aparticle undergoing simple harmonic motion has a velocity %, when the displacement is
x; and a velocity %, when the displacement is «,. Find the angular frequency and the ampli-
tude of the motion in terms of the given quantities.

3.6 Onthe surface of the moon, the acceleration of gravity is about one-sixth that on the Earth.
What is the half-period of a simple pendulum of length 1 m on the moon?

3.7  Two springs having stiffness k; and k,, respectively, are used in a vertical position to
support a single object of mass m. Show that the angular frequency of oscillation is
[(k, + k,)'m]"2 if the springs are tied in parallel, and [k,k,/(k, + k,)m]2 if the springs

are tied in series.

3.8 A spring of stiffness k supports a box of mass M in which is placed a block of mass m. If
the system is pulled downward a distance d from the equilibrium position and then
released, find the force of reaction between the block and the bottom of the box as a func-
tion of time. For what value of d does the block just begin to leave the bottom of the box
at the top of the vertical oscillations? Neglect any air resistance.

3.9  Show that the ratio of two successive maxima in the displacement of a damped harmonic
oscillator is constant. (Note: The maxima do not occur at the points of contact of the dis-
placement curve with the curve Ae™"".)

3.10 A damped harmonic oscillator with m = 10 kg, k = 250 N/m, and ¢ = 60 kg/s is subject to a
driving force given by F, cos ¢, where F,= 48 N.
(a) What value of @ results in steady-state oscillations with maximum amplitude? Under this
condition:
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3.11

3.12

3.13

3.14

3.15

3.16

3.17
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(b) What is the maximum amplitude?
(c) What is the phase shift?

A mass m moves along the x-axis subject to an attractive force given by 178%max/2 and a

retarding force given by 3fm %, where x is its distance from the origin and B s a constant.

A driving force given by mA cos wt, where A is a constant, is applied to the particle along

the x-axis.

(a) What value of @ results in steady-state oscillations about the origin with maximum
amplitude?

(b) What is the maximum amplitude?

The frequencyf, of a damped harmonic oscillator is 100 Hz, and the ratio of the amplitude

of two successive maxima is one half.

(a) What is the undamped frequency f; of this oscillator?
(b) What is the resonant frequency f,?

Given: The amplitude of a damped harmonic oscillator drops to 1/e of its initial value after
n complete cycles. Show that the ratio of period of the oscillation to the period of the same
oscillator with no damping is given by

T, 1 )“2 1
o | =14——
T, ( 4n’n? 8r*n?

where the approximation in the last expression is valid if n is large. (See the approximation
formulas in Appendix D.)

Work all parts of Example 3.6.2 for the case in which the exponential damping factor ¥ is
one-half the critical value and the driving frequency is equal to 2a,.

For a lightly damped harmonic oscillator ¥ <« @, show that the driving frequency for which
the steady-state amplitude is one-half the steady-state amplitude at the resonant frequency
is given by @ = @, +y4/3.

If a series LCR circuit is connected across the terminals of an electric generator that pro-
duces a voltage V=V ¢!®, the flow of electrical charge q through the circuit is given by the
following second-order differential equation:

dzq dg 1 ot
L—L+R--2L+—g=V,
ar tg eIt

(a) Verify the correspondence shown in Table 3.6.1 between the parameters of a driven
mechanical oscillator and the above driven electrical oscillator.

(b) Calculate the Q of the electrical circuit in terms of the coefficients of the above differ-
ential equation.

(¢) Show that, in the case of small damping, Q can be written as Q = Ry/R, where R, = m
is the characteristic impedance of the circuit.

A damped harmonic oscillator is driven by an external force of the form
F,,=F,sinot
Show that the steady-state solution is given by
x(t) = A(®) sin(wt — ¢)
where A(w) and ¢ are identical to the expressions given by Equations 3.6.9 and 3.6.8.
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Solve the differential equation of motion of the damped harmonic oscillator driven by a
damped harmonic force:

F,, (t)=Fye ™ cos wt

(Hint: e cos ot = Re(e~%*'%) = Re(eP?), where B=—a+iw. Assume a solution of the form
AePt-i9)

A simple pendulum of length [ oscillates with an amplitude of 45°.

(a) What is the period?

{b) If this pendulum is used as a laboratory experiment to determine the value of g, find
the error included in the use of the elementary formula T = 27(l/g)!/2.

(c) Find the approximate amount of third-harmonic content in the oscillation of the pen-
dulum.

Verify Equations 3.9.9 and 3.9.10 in the text.

Show that the Fourier series for a periodic square wave is
_A4r. 1. 1.,
f@®)= —[sm((ot) + 3 sin(3@?) + 5 sin(5¢) + - ]
T

where

fey=+1 for 0 < wt < 7, 2w < @t < 37, and so on
fey=-1 for #< wt < 27, 3w < wt < 47, and so on

Use the above result to find the steady-state motion of a damped harmonic oscillator that
is driven by a periodic square-wave force of amplitude F,. In particular, find the relative
amplitudes of the first three terms, A}, A,, and A; of the response function x(¢) in the case
that the third harmonic 3@ of the driving frequency coincides with the frequency @, of the
undamped oscillator. Let the quality factor Q = 100.

(a) Derive the first-order differential equation, dy/dx, describing the phase-space trajec-
tory of the simple harmonic oscillator.
{b) Solve the equation, proving that the trajectory is an ellipse.

Let a particle of unit mass be subject to a force x — x® where x is its displacement from the
coordinate origin.

{a) Find the equilibrium points, and tell whether they are stable or unstable.

(b) Calculate the total energy of the particle, and show that it is a conserved quantity.

(¢) Calculate the trajectories of the particle in phase space.

A simple pendulum whose length [ = 9.8 m satisfies the equation
6+sin@=0
(a) If ©, is the amplitude of oscillation, show that its period T is given by

/2 de¢ .

T= 4J.0 W where o = sm2 %@0

(b) Expand the integrand in powers of o, integrate term by term, and find the period T as
a power series in ¢ Keep terms up to and including O(c?).

(¢) Expand arin a power series of O, insert the result into the power series found in (b),
and find the period T as a power series in ©,. Keep terms up to and including O(63).
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Computer Problems

C3.1

C3.2

C33

The exact equation of motion for a simple pendulum of length L (see Example 3.2.2) is
given by

6+w@isind=0

where ! =g/L. Find 6(t) by numerically integrating this equation of motion. Let L =

1.00 m. Let the initial conditions be 6, = 7/2 rad and §,=0 rad/s.

(a) Plot 6(t) from ¢ = 0 to 4 s. Also, plot the solution obtained by using the small-angle
approximation (sin @ = 6) on the same graph.

(b) Repeat (a) for 6,=3.10 rad.

(c) Plot the period of the pendulum as a function of the amplitude 6, from 0 to 3.10 rad.
At what amplitude does the period deviate by more than 2% from 2z,/L/g?

Assume that the damping force for the damped harmonic oscillator is proportional to the
square of its velocity; that is, it is given by —¢,% |%|. The equation of motion for such an
oscillator is thus

i+2yk k| +@3x =0

where y=c,/2m and @? =k/m. Find x(t) by numerically integrating the above equation of

motion. Let ¥ =0.20 m™ and @, = 2.00 rad/s. Let the initial conditions be x(0) = 1.00 m

and %(0)=0m/s.

(a) Plotx() from ¢ =0 to 20 s. Also, on the same graph, plot the solution for the damped
harmonic oscillator where the damping force is linearly proportional to the velocity;
that is, it is given by —c, %. Again, let y=c¢,/2m = 0.20 s! and @, =2.00 rad/s.

(b) For the case of linear damping, plot the log of the absolute value of the successive
extrema versus their time of occurrence. Find the slope of this plot, and use it to esti-
mate ¥. (This method works well for the case of weak damping.)

(¢) Find the value of y that results in critical damping for the linear case. Plot this solu-
tion from ¢ =0 to 5s. Can you find a well-defined value of y that results in critical damp-
ing for the quadratic case? If not, what value of yis required ta limit the first negative
excursion of the oscillator to less than 2% of the initial amplitude?

The equation of motion for the van der Pol oscillator is
i—y(A® -2t +wix=0

Let A =1 and @, = 1. Solve this equation numerically, and make a phase-space plot of its
motion. Let the motion evolve for 10 periods (1 period = 27/@,). Assume the following
conditions.

(@) y=0.05, (x,, ;) = (-1.5,0).

(b) y =0.05, (x,, £,) =(0.5,0).

(¢, d) Repeat (a) and (b) with ¥ =0.5. Does the motion exhibit a limit cycle? Describe it.

C 3.4 The driven van der Pol oscillator is described by the equation of motion

F—y(1—x2)k+x =0 coswt

where a is the amplitude of the driving force and @ is the driving frequency. Letx =x, y
= X, and z = wt. Solve the equation numerically in terms of these variables. Let the oscil-
lator start at (x,, 45, 2,) = (0,0,0). Let the motion evolve for 100 drive cycles (1 drive period
= 27/@). (1) Make a phase-space plot of its motion. (2} Make a plot of its position versus
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number of drive cycles. (3) Make a three-dimensional phase-space plot of the first 10 drive
cycles. Assume the following conditions.

(@) =01, y=0.05 o=1.

(b) a=5, y=>5, @=2.466. Which state is periodic? Chaotic?

Consider a simple harmonic oscillator resting on a roller belt, as shown in Figure C.3.5.

Assume that the frictional force exerted on the block by the roller belt depends on the slip
velocity, % —u, where u is the speed of the belt, and that it is given by

Bo x—u>v
B—u) |x—u|<0o
-Bv x—u<v

In other words, the force is constant when the slip velocity is outside the limits given by

the constant v and is proportional to the slip velocity when it is within those limits.

{a) Write down the equation of motion for this oscillator. Solve it numerically, and make
a phase-space plot for the following conditions: k=1,m =1, f=5,v=0.2,u =0.1
Assume the following starting conditions.

(b) (g, xo) =(0,0).

(c) (xo, xo) =(2,0).

Figure C3.5



Sir Isaac Newton, and his followers, have alsc a very odd opinion concerning
the work of God. According to their doctrine, God almighty needs to wind up his
watch from time to time; otherwise it would cease to move. He had not, it seems,
sufficient foresight to make it a perpetual motion.

Nay, the machine of God’s making, is so imperfect, according to these
gentlemen, that He is obliged to clean it now and then by an extraordinary
concourse, and even to mend it, as a clockmaker mends his work; who must
consequently be so much the more unskillful a workman, as He is often
obliged to mend his work and set it right. According to my opinion, the
same force and vigour [energy] remains always in the world, and only passes
from one part to another, agreeable to the laws of nature, and the beautiful
pre-established order—

Gottfried Wilhelm Leibniz—Letter to Caroline, Princess of Wales, 1715; The Leibniz-Clarke
Correspondence, Manchester, Manchester Univ. Press, 1956

4.1| Introduction: General Principles

We now examine the general case of the motion of a particle in three dimensions. The
vector form of the equation of motion for such a particle is

O “.1.1)

144
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in which p = mv is the linear momentum of the particle. This vector equation is equiva-
lent to three scalar equations in Cartesian coordinates.

E, = m
F, = mjj (4.1.2)
E, =mZ

The three force components may be explicit or implicit functions of the coordinates,
their time and spatial derivatives, and possibly time itself. There is no general method for
obtaining an analytic solution to the above equations of motion. In problems of even the
mildest complexity, we might have to resort to the use of applied numerical techniques;
however, there are many problems that can be solved using relatively simple analytical
methods. It may be true that such problems are sometimes overly simplistic in their rep-
resentation of reality. However, they ultimately serve as the basis of models of real phys-
ical systems, and so it is well worth the effort that we take here to develop the analytical
skills necessary to solve such idealistic problems. Even these may prove capable of taxing
our analytic ability.

It is rare that one knows the explicit way in which F depends on time; therefore, we
do not worry about this situation but instead focus on the more normal situation in which
F is known as an explicit function of spatial coordinates and their derivatives. The sim-
plest situation is one in which F is known to be a function of spatial coordinates only. We
devote most of our effort to solving such problems. There are many only slightly more
complex situations, in which F is a known function of coordinate derivatives as well. Such
cases include projectile motion with air resistance and the motion of a charged particle
in a static electromagnetic field. We will solve problems such as these, too. Finally, F may
be an implicit function of time, as in situations where the coordinate and coordinate
derivative dependency is nonstatic. A prime example of such a situation involves the
motion of a charged particle in a time-varying electromagnetic field. We will not solve prob-
lems such as these. For now, we begin our study of three-dimensional motion with a
development of several powerful analytical techniques that can be applied when F is a
known function of r and/or ¥.

The Work Principle

Work done on a particle causes it to gain or lose kinetic energy. The work concept was
introduced in Chapter 2 for the case of motion of a particle in one dimension. We would
like to generalize the results obtained there to the case of three-dimensional motion. To
do so, we first take the dot product of both sides of Equation 4.1.1 with the velocity v

dp d(mv)
Fov=—"- y=——-~. A
v 7 v p v (4.1.3)

Because d(v-v)/dt = 2v-v, and assuming that the mass is constant, independent of the
velocity of the particle, we may write Equation 4.1.3 as

dar

414
% (4.1.4)

F.v=_d_(1mv.v)=

de \?
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dr F

Figure 4.1.1 The work done by a force F is the
line integral J§ F - dr. A

in which T is the kinetic energy, mv”/2. Because v = dr/dt, we can rewrite Equation 4.1.4
and then integrate the result to obtain
dr _dT

F o (4.1.5a)

w[F-dr=[dT=T;-T = AT (4.1.5b)

The left-hand side of this equation is a line integral, or the integral of F, dr, the com-
ponent of F parallel to the particle’s displacement vector dr. The integral is carried out
along the trajectory of the particle from some initial point in space A to some final point B.
This situation is pictured in Figure 4.1.1. The line integral represents the work done on
the particle by the force F as the particle moves along its trajectory from A to B. The
right-hand side of the equation is the net change in the kinetic energy of the particle. F
is the net sum of all vector forces acting on the particle; hence, the equation states that
the work done on a particle by the net force acting on it, in moving from one position in
space to another, is equal to the difference in the kinetic energy of the particle at those
two positions.

Conservative Forces and Force Fields

In Chapter 2 we introduced the concept of potential energy. We stated there that if the
force acting on a particle were conservative, it could be derived as the derivative of a scalar
potential energy function, F, =—dV(x)/dx. This condition led us to the notion that the work
done by such a force in moving a particle from point A to point B along the x-axis was
[F,dx=-AV=V(A)-V(B), or equal to minus the change in the potential energy of the par-
ticle. Thus, we no longer required a detailed knowledge of the motion of the particle from
A to B to calculate the work done on it by a conservative force. We needed to know only
that it started at point A and ended up at point B. The work done depended only upon the
potential energy function evaluated at the endpoints of the motion. Moreover, because the
work done was also equal to the change in kinetic energy of the particle, AT = T(B) — T(A),
we were able to establish a general conservation of total energy principle, namely,
E,,; = V(A) + T(A) = V(B) + T(B) = constant throughout the motion of the particle.
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components are F, = -by and \\\\ L

F,=+bx.

This principle was based on the condition that the force acting on the particle was
conservative. Indeed, the very name implies that something is being conserved as the par-
ticle moves under the action of such a force. We would like to generalize this concept for
a particle moving in three dimensions, and, more importantly, we would like to define just
what is meant by the word conservative. Clearly, we would like to have some prescription
that tells us whether or not a particular force is conservative and, thus, whether or not a
potential energy function exists for the particle. Then we could invoke the powerful con-
servation of energy principle in solving the motion of a particle.

In searching for such a prescription, we first describe an example of a nonconserva-
tive force that, in fact, is a well-defined function of position but cannot be derived from
a potential energy function. This should give us a hint of the critical characteristic that a
force must have if it is to be conservative. Consider the two-dimensional force field
depicted in Figure 4.1.2. The term force field simply means that if a small test particle’
were to be placed at any point (x;, ;) on the xy plane, it would experience a force F. Thus,
we can think of the xy plane as permeated, or “mapped out,” with the potential for gen-
erating a force.

This situation can be mathematically described by assigning a vector F to every
point in the xy plane. The field is, therefore, a vector field, represented by the function
F(x, y). Its components are F, =—by and F, = +bx, where b is some constant. The arrows

' A test particle is one whose mass is small enough that its presence does not alter its environment. Conceptually,
we might imagine it placed at some point in space to serve as a “test probe” for the suspected presence of forces.
The forces are “sensed” by observing any resultant acceleration of the test particle. We further imagine that its
presence does not disturb the sources of those forces.
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in the figure represent the vector F = —iby + jbx evaluated at each point on which the
center of the arrow is located. You can see by looking at the figure that there seems to
be a general counterclockwise “circulation” of the force vectors around the origin. The
magnitude of the vectors increases with increasing distance from the origin. If we were
to turn a small test particle loose in such a “field,” the particle would tend to circulate
counterclockwise, gaining kinetic energy all the while.

This situation, at first glance, does not appear to be so unusual. After all, when you
drop a ball in a gravitational force field, it falls and gains kinetic energy, with an accom-
panying loss of an equal amount of potential energy. The question here is, can we even
define a potential energy function for this circulating particle such that it would lose an
amount of “potential energy” equal to the kinetic energy it gained, thus preserving its over-
all energy, as it travels from one point to another? That is not the case here. If we were
to calculate the work done on this particle in tracing out some path that came back on
itself (such as the rectangular path indicated by the dashed line in Figure 4.1.2), we would
obtain a nonzero result! In traversing such a loop over and over again, the particle would
continue to gain kinetic energy equal to the nonzero value of work done per loop. But if
the particle could be assigned a potential energy dependent only upon its (x, ) position,
then its change in potential energy upon traversing the closed loop would be zero. It should
be clear that there is no way in which we could assign a unique value of potential energy
for this particle at any particular point on the xy plane. Any value assigned would depend
on the previous history of the particle. For example, how many loops has the particle
already made before arriving at its current position?

We can further expose the nonuniqueness of any proposed potential energy function
by examining the work done on the particle as it travels between two points A and B but
along two different paths. First, we let the particle move from (x, y) to (x + Ax, y + Ay) by
traveling in the +x direction to (x + Ax, ) and then in the +y direction to (x + Ax, y +Ay).
Then we let the particle travel first along the +y direction from (x,y) to (x,y + Ay) and
then along the +x direction to (x + Ax, y + Ay). We see that a different amount of work
is done depending upon which path we let the particle take. If this is true, then the work
done cannot be set equal to the difference between the values of some scalar potential
energy function evaluated at the two endpoints of the motion, because such a difference
would give a unique, path-independent result. The difference in work done along these
two paths is equal to 2bAxAy (see Equation 4.1.6). This difference is just equal to the
value of the closed-loop work integral; therefore, the statement that the work done in
going from one point to another in this force field is path-dependent is equivalent to the
statement that the closed-loop work integral is nonzero. The particular force field rep-
resented in Figure 4.1.2 demands that we know the complete history of the particle to
calculate the work done and, therefore, its kinetic energy gain. The potential energy con-
cept, from which the force could presumably be derived, is rendered meaningless in this
particular context.

The only way in which we could assign a unique value to the potential energy would
be if the closed-loop work integral vanished. In such cases, the work done along a path
from A to B would be path-independent and would equal both the potential energy loss
and the kinetic energy gain. The total energy of the particle would be a constant, inde-
pendent of its location in such a force field! We, therefore, must find the constraint that
a particular force must obey if its closed-loop work integral is to vanish.
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To find the desired constraint, let us calculate the work done in taking a test particle
counterclockwise around the rectangular loop of area AxAy from the point (x,) and
back again, as indicated in Figure 4.1.2. We get the following result:

W= §F-dr

= J:HM E (y)dx+ J:+Ay F (x+Ax) dy

x Y
+L+Axp;(y+Ay)dx+jy+AyFy(x)dy

= J':+Ay(Fy(x+Ax)—Fy(x)) dy (4.1.6)

x+Ax
+[ T E@-Ey+Ay)dx
=(b(x+Ax)-bx) Ay +(b(y+ Ay) - by) Ax
= 2bAx Ay

The work done is nonzero and is proportional to the area of the loop, AA = Ax - Ay, which
was chosen in an arbitrary fashion. If we divide the work done by the area of the loop and
take limits as AA — 0, we obtain the value 2b. The result is dependent on the precise
nature of this particular nonconservative force field.

If we reverse the direction of one of the force components—say, let F, = +by (thus
“destroying” the circulation of the force field but everywhere preserving its magnitude)—
then the work done per unit area in traversing the closed loop vanishes. The resulting force
field is conservative and is shown in Figure 4.1.3. Clearly, the value of the closed-loop

force field whose components
are F, =by and F, =bx.
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Figure 4.1.3 A conservative / \\\
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integral depends upon the precise way in which the vector force F changes its direction
as well as its magnitude as we move around on the xy plane.

There is obviously some sort of constraint that F must obey if the closed-loop work
integral is to vanish. We can derive this condition of constraint by evaluating the forces
atx + Ax and y + Ay using a Taylor expansion and then inserting the resultant expansion
into the closed-loop work integral of Equation 4.1.6. The result follows:

oF,
E(y+Ay)=E(y)+ ay" Ay
oF, 4.1.7)
Fy(x+Ax) = Fy(x)+—5x—Ax
+ay( OF, +ax( oF,
§F-dr=JZ (gyAx]dy—J.: (ay y]dx
4.1.8)

oF, oF
=| —L =2 |AxAy = 2bAxA
(ax ay]xy Y

This last equation contains the term (aFy/ax — 0F,/dy), whose zero or nonzero value rep-
resents the test we are looking for. If this term were identically equal to zero instead of 2b,
then the closed-loop work integral would vanish, which would ensure the existence of a
potential energy function from which the force could be derived.

This condition is a rather simplified version of a very general mathematical theorem
called Stokes’ theorem.” It is written as

§F - dr =LcurlF-ﬁda

oF, 9F,
o222

The theorem states that the closed-loop line integral of any vector function F is equal to
curl F - n da integrated over a surface S surrounded by the closed loop. The vector n is
a unit vector normal to the surface-area integration element da. Its direction is that of the
advance of a right-hand screw turned in the same rotational sense as the direction of tra-
versal around the closed loop. In Figure 4.1.2, n would be directed out of the paper. The
surface would be the rectangular area enclosed by the dashed rectangular loop. Thus, a
vanishing curl F ensures that the line integral of F around a closed path is zero and, thus,
that F is a conservative force.

4.1.9)

See any advanced calculus textbook (e.g., S. I. Grossman and W. R. Derrick, Advanced Engineering
Mathematics, Harper Collins, New York, 1988) or any advanced electricity and magnetism textbook
{e.g., ]. R. Reitz, F. ]. Milford, and R. W. Christy, Foundations of Electromagnetic Theory, Addison-Wesley,
New York, 1992).
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4.2| The Potential Energy Function in
Three-Dimensional Motion: The Del Operator
Assume that we have a test particle subject to some force whose curl vanishes. Then all

the components of curl F in Equation 4.1.9 vanish. We can make certain that the curl van-
ishes if we derive F from a potential energy function V(x,y,%) according to

aV aV v
F =—— F =-—— F =—— 421
* ox ooy oz #21
For example, the z component of curl F becomes
2 oF, 2 2 oF,
oF, 0oV oy __0V L% .__y_an:__O 4.2.9)

This last step follows if we assume that V is everywhere continuous and differentiable.
We reach the same conclusion for the other components of curl F. One might wonder
whether there are other reasons why curl F might vanish, besides its being derivable from
a potential energy function. However, curl F =0 is a necessary and sufficient condition
for the existence of V(x,y,2) such that Equation 4.2.1 holds.?

We can now express a conservative force F vectorially as

F=—ia—V—ja—V—ka—V (4.2.3)
ox “dy oz
This equation can be written more succinctly as
F=-VV (4.2.4)
where we have introduced the vector operator del:
il ol w9

The expression VV is also called the gradient of V and is sometimes written grad V.
Mathematically, the gradient of a function is a vector that represents the maximum spa-
tial derivative of the function in direction and magnitude. Physically, the negative gradi-
ent of the potential energy function gives the direction and magnitude of the force that
acts on a particle located in a field created by other particles. The meaning of the nega-
tive sign is that the particle is urged to move in the direction of decreasing potential
energy rather than in the opposite direction. This is illustrated in Figure 4.2.1. Here the
potential energy function is plotted out in the form of contour lines representing the curves
of constant potential energy. The force at any point is always normal to the equipotential
curve or surface passing through the point in question.

3See, for example, S. I. Grossman, op cit. Also, Feng presents an interesting discussion of conservancy criteria
when the force field contains singularities in Amer. J. Phys. 37, 616 (1969).
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V = constant

F
High V LowV

We can express curl F using the del operator. Look at the components of curl F in
Equation 4.1.9. They are the components of the vector V X F. Thus, V X F = curl F.
The condition that a force be conservative can be written compactly as

oF, OoF, oF, OF oF, oF
VXF=i| —2 - YL l4pi| ———2 |4kl L -—"x21=0 426
x 1( Jﬂ( W )+ ( ay) (4.2.6)

Furthermore, if V X F =0, then F can be derived from a scalar function V by the oper-
ation F =-VV, since V X VV =0, or the curl of any gradient is identically 0.

We are now able to generalize the conservation of energy principle to three dimen-
sions. The work done by a conservative force in moving a particle from point A to point
B can be written as

Figure 4.2.1 A force field represented by
equipotential contour curves.

B _ (B _ (B dV B, oV B, OV
[[Fedr=-]V Ve)-dr=-[ Shde-[ Sy, Sode

g 4.2.7)
= jA dV(r)=-AV = V(A)-V(B)

The last step illustrates the fact that VV . dr is an exact differential equal to dV. The work
done by any net force is always equal to the change in kinetic energy, so

j:F-dr = AT = —AV
~AT+V)=0 4.2.8)
~T(A)+V(A)=T(B)+V(B) = E = constant

and we have arrived at our desired law of conservation of total energy.

If F’ is a nonconservative force, it cannot be set equal to —VV. The work increment
F’ . dr is not an exact differential and cannot be equated to —dV. In those cases where
both conservative forces F and nonconservative forces F’ are present, the total work
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increment is (F + F') . dr = —dV + F’ . dr = dT, and the generalized form of the work
energy theorem becomes

[[F"dr = AT +V)=AE (4.2.9)

The total energy E does not remain a constant throughout the motion of the particle but
increases or decreases depending upon the nature of the nonconservative force F’. In the
case of dissipative forces such as friction and air resistance, the direction of F is always
opposite the motion; hence, F’- dr is negative, and the total energy of the particle decreases
as it moves through space.

EXAMPLE 4.2.1

Given the two-dimensional potential energy function

V(r) =V, - 1k8%
where r =ix + jy and V,, k, and & are constants, find the force function.

Solution:

We first write the potential energy function as a function of x and y,
RN
V(x,y)=V, -3 ké% =ty 08

and then apply the gradient operator:

.0  .d
= —‘VV = —[1 o +j ay]V(x,y)
= —k(ix + jy)e ¢

280
=—kre /6

Notice that the constant V;, does not appear in the force function; its value is arbitrary.
It simply raises or lowers the value of the potential energy function by a constant every-
where on the x, y plane and, thus, has no effect on the resulting force function.

We have plotted the potential energy function in Figure 4.2.2(a) and the resulting
force function in Figure 4.2.2(b). The constants were taken to be V=1, 6>=1/3, and
k = 6. The “hole” in the potential energy surface reaches greatest depth at the origin,
which is obviously the location of a source of attraction. The concentric circles around
the center of the hole are equipotentials—lines of constant potential energy. The radial
lines are lines of steepest descent that depict the gradient of the potential energy sur-
face. The slope of a radial line at any point on the plane is proportional to the force that
a particle would experience there. The force field in Figure 4.2.2(b) shows the force vec-
tors pointing towards the origin. They weaken both far from and near to the origin, where
the slope of the potential energy function approaches zero.
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Figure 4.2.2a The potential
energy function V(x, y) =
5 .
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Figure 4.2.2b Force field PR N SN
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EXAMPLE 4.2.2

Suppose a particle of mass m is moving in the above force field, and at time £ = 0 the
particle passes through the origin with speed vy. What will the speed of the particle be
at some small distance away from the origin given by r = e,A, where A < 6?

Solution:

The force is conservative, because a potential energy function exists. Thus, the total
energy E =T + V = constant,

E = zmv® +V(r) = gmog +V(0)
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and solving for v, we obtain
2 2, 2
v° =vy +—[V(0)-V(r)]
m
= of + = (Vo - 1 k%)~ (v, - TRe%e~")|

s ké® —A2/82]

=0 —7[1—6

2
zog—%[l—(l—&/az)]
= og —%Az

The potential energy is a quadratic function of the displacement A from the origin for
small displacements, so this solution reduces to the conservation of energy for the simple
harmonic oscillator

EXAMPLE 4.2.3

Is the force field F = ixy + jxz + kyz conservative? The curl of F is

i j k
VXF=|dlox dldy d/oz|=i(z—x)+jo+k(z—x)
xy Xz yz

The final expression is not zero for all values of the coordinates; hence, the field is not
conservative.

EXAMPLE 4.2.4

For what values of the constants @, b, and ¢ is the force F =i(ax + byz) +jexy conserva-
tive? Taking the curl, we have

i i k
VXF=| 0/dx ddy 0/oz|=k(c—-2b)y
ax+by®> cxy O

This shows that the force is conservative, provided ¢ = 2b. The value of @ is immaterial.
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EXAMPLE 4.2.5

Show that the inverse-square law of force in three dimensions F = (—k/r2)e, is con-
servative by the use of the curl. Use spherical coordinates. The curl is given in
Appendix F as

e, egr e,rsind
S CEC IS
rZsing|or 90 9¢

F, rFy 1F,sinf

VXF=

We have F,. = —k/r® F 9= 0, Fy= 0. The curl then reduces to

- e -
vxpet () 83 ()
rsinf dg\ r r a0\ r
which, of course, vanishes because both partial derivatives are zero. Thus, the force in
question is conservative.

4.3| Forces of the Separable Type:
Projectile Motion

A Cartesian coordinate system can be frequently chosen such that the components of a
force field involve the respective coordinates alone, that is,

F=iF,(x) + jF,(y) + kF,(z) (4.3.1)
Forces of this type are separable. The curl of such a force is identically zero:
i j k

E(x) F(y) E(2)

The x component is dF,(z)/dy ~ oF ,(y)/0z and a similar expression holds for the other com-
ponents; therefore, the field is conservative because each partial derivative is of the mixed
type and vanishes identically, because the coordinates x, y, and z are independent vari-
ables. The integration of the differential equations of motion is then very simple because
each component equation is of the type mi = F,(x). In this case the equations can be
solved by the methods described under rectilinear motion in Chapter 2.

In the event that the force components involve the time and the time derivatives of
the respective coordinates, then it is no longer true that the force is necessarily conser-
vative. Nevertheless, if the force is separable, then the component equations of motion
are of the form mi = F (x,,t) and may be solved by the methods used in Chapter 2.
Some examples of separable forces, both conservative and nonconservative, are discussed
here and in the sections to follow.
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Motion of a Projectile in a Uniform
Gravitational Field

While a professor at Padua, Italy, during the years 1602-1608, Galileo spent much of
his time projecting balls horizontally into space by rolling them down an inclined plane
at the bottom of which he had attached a curved deflector. He hoped to demonstrate
that the horizontal motion of objects would persist in the absence of frictional forces. If
this were true, then the horizontal motion of heavy projectiles should not be affected
much by air resistance and should occur at a constant speed. Galileo had already demon-
strated that balls rolling down inclined planes attained a speed that was proportional to
their time of roll, and so he could vary the speed of a horizontally projected ball in a con-
trolled way. He observed that the horizontal distance traveled by a projectile increased
in direct proportion to its speed of projection from the plane, thus, experimentally
demonstrating his conviction. During these investigations, he was stunned to find that
the paths these projectiles followed were parabolas! In 1609, already knowing the answer
(affirming as gospel what every modern, problem-solving student of physics knows from
experience), Galileo was able to prove mathematically that the parabolic trajectory of pro-
jectiles was a natural consequence of horizontal motion that was unaccelerated—and an
independent vertical motion that was. Indeed, he understood the consequences of this
motion as well. Before finally publishing his work in 1638 in Discourse of Two New
Sciences, he wrote the following in a letter to one of his many scientific correspondents,
Giovanni Baliani:

... I treat also of the motion of projectiles, demonstrating various properties, among which
is the proof that the projectile thrown by the projector, as would be the ball shot by firing
artillery, makes its maximum flight and falls at the greatest distance when the piece is ele-
vated at half a right angle, that is at 45°; and moreover, that other shots made at greater
or less elevation come out equal when the piece is elevated an equal number of degrees
above and below the said 45°.*

Not unlike the funding situation that science and technology finds itself in today, fun-
damental problems in the fledgling science of Galileo’s time, which piqued the interest
of the interested few, stood a good chance of being addressed if they related in some way
to the military enterprise. Indeed, solving the motion of a projectile is one of the most
famous problems in classical mechanics, and it is no accident that Galileo made the dis-
covery partially supported by funds ultimately derived from wealthy patrons attempting
to gain some military advantage over their enemies.

In 1597, Galileo had entered into a 10-year collaboration with a toolmaker, Marc’
antonio Mazzoleni. In Galileo’s day, the use of cannons to pound away at castle walls was
more art than science. The Marquis del Monte in Florence and General del Monte in
Padua, with whom Galileo had worked earlier, wondered if it were possible to devise alight-
weight military “compass” that could be used to gauge the distance and height of a target,

*See for example, S. Drake and J. MacLachlan, Galileo’s Discovery of the Parabolic Trajectory, Scienti. Amer.
232, 102-110, (March, 1975). Also see S. Drake, Galileo at Work, Mineola, NY, Dover, 1978.
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to measure the angle of elevation of the cannon and to track the path of its projectile.
Galileo solved the problem and developed the military compass, which his toolmaker
produced in quantity in his workshop. There was a ready market for these devices, and
they sold well. However, Galileo gained most of the support that enabled him to carry
out his own investigation of motion by instructing students in the use of the compass and
charging them 120 lire for the privilege. Though, like many professors today with which
many readers of this text are likely familiar, Galileo more than resented any labor that pre-
vented him from pursuing his own interests. “I'm always at the service of this or that person.
I have to consume many hours of the day— often the best ones—in the service of others.”
Fortunately, he found enough time to carry out his experiments with rolling balls, which
led to his discovery of the parabolic trajectory and ultimately helped lead Newton to the
discovery of the classical laws of motion.

In 1611, Galileo informed Antonio de’Medici of his work on projectiles, which no doubt
the powerful de’Medici family of Florence put to good use . . . and no doubt, went a long
way towards helping Galileo secure their undying gratitude and unending patronage.

So with undying gratitude to Galileo and his successor, Newton, here we take only a
few minutes—and not years—to solve the projectile problem.

No Air Resistance

For simplicity, we first consider the case of a projectile moving with no air resistance. Only
one force, gravity, acts on the projectile, and, consistent with Galileo’s observations as we
shall see, it affects only its vertical motion. Choosing the z-axis to be vertical, we have the
following equation of motion:

d’r
m 7l =—kmg (4.3.3)
In the case of projectiles that don't rise too high or travel too far, we can take the accel-
eration of gravity, g, to be constant. Then the force function is conservative and of the sep-
arable type, because it is a special case of Equation 4.3.1. v is the initial speed of the
projectile, and the origin of the coordinate system is its initial position. Furthermore, there
is no loss of generality if we orient the coordinate system so that the x-axis lies along the
projection of the initial velocity onto the xy horizontal plane. Because there are no hor-
izontally directed forces acting on the projectile, the motion occurs solely in the xz verti-
cal plane. Thus, the position of the projectile at any time is (see Figure 4.3.1)

r=ix+kz (4.3.4)

The speed of the projectile can be calculated as a function of its height, z, using the
energy equation (Equation 4.2.8)

Fm(E* +2%) + mge = L mog (4.3.52)
or equivalently,

v® =g ~2gz (4.3.5b)
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Figure 4.3.1 The parabolic path of a
projectile.

We can calculate the velocity of the projectile at any instant of time by integrating
Equation 4.3.3

dr
v= E =-kgt+v, (4.3.63)

The constant of integration is the initial velocity v,. In terms of unit vectors, the veloc-
ity is

v =iv, cosa +k(v, sina — gt) (4.3.6b)
Integrating once more yields the position vector
r= —k%gt2 + vt +r, 4.3.7a)

The constant of integration is the initial position of the projectile, ry, which is equal to
zero; therefore, in terms of unit vectors, Equation 4.3.7a becomes

r =1i(y, cosoz)t+k((u0 sina)t ——%gtz) (4.3.7b)
In terms of components, the position of the projectile at any instant of time is

x =%t = (v, cos o)t
y=yt=0
1

2=t — 3 gt® = (v sina)t— 5 gt

(4.3.7¢)

2

g =vpcos @, Y, =0, and %, =1, sin o are the components of the initial velocity v.
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We can now show, as Galileo did in 1609, that the path of the projectile is a parabola.
We find z(x) by using the first of Equations 4.3.7c to solve for ¢ as a function of x and then
substitute the resulting expression in the third of Equations 4.3.7c

X

t= (4.3.8)

0, COS &

- g 2
z = (tana)x [203 coszaJx 4.3.9)
Equation 4.3.9 is the equation of a parabola and is shown in Figure 4.3.1.

Like Galileo, we calculate several properties of projectile motion: (1) the maximum
height, z,,,,, of the projectile, (2) the time, t,,,, it takes to reach maximum height, (3) the
time of flight, T, of the projectile, and (4) the range, R, and maximum range, R,,,,, of the
projectile.

e First, we calculate the maximum height obtained by the projectile by using
Equation 4.3.5b and noting that at maximum height the vertical component of the
velocity of the projectile is zero so that its velocity is in the horizontal direction and
equal to the constant horizontal component, v, cos . Thus

O% COS2 o= 0(2) - 2gzm (4'3'10)
We solve this to obtain
2 . 32
2, =050 % (4.3.11)
2g

o The time it takes to reach maximum height can be obtained from Equation 4.3.6b
where we again make use of the fact that at maximum height, the vertical component
of the velocity vanishes, so

Vg sino — gtmm = O
or

0, Sina
Lnge = T (4.3.12)

¢ We can obtain the total time of flight T of the projectile by setting z = 0 in the last
of Equations 4.3.7c, which yields

_ 20, sina

g

T (4.3.13)

This is twice the time it takes the projectile to reach maximum height. This
indicates that the upward flight of the projectile to the apex of its trajectory is
symmetrical to its downward flight away from it.
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o Finally, we calculate the range of the projectile by substituting the total time of flight,
T, into the first of Equations 4.3.7c, obtaining

_ vgsin®2a

g

R=x (4.3.14)

R has its maximum value R, =v3/gat o= 45°.

Linear Air Resistance

We now consider the motion of a projectile subject to the force of air resistance. In this
case, the motion does not conserve total energy, which continually diminishes during the
flight of the projectile. To solve the problem analytically, we assume that the resisting force
varies linearly with the velocity. To simplify the resulting equation of motions, we take the
constant of proportionality to be mYy where m is the mass of the projectile. The equation
of motion is then

2

m -Zt—: =-myv-kmg (4.3.15)

Upon canceling m’s, the equation simplifies to

d2
:lt_: =—yv-kg (4.3.16)

Before integrating, we write Equation 4.3.16 in component form

i=-yx
ij=-yy 4.3.17)
Z=-yz—g

We see that the equations are separated; therefore, each can be solved individually by the
methods of Chapter 2. Using the results from Example 2.4.1, we can write down the solu-
tions immediately, noting that here y = ¢,/m, ¢, being the linear drag coefficient. The
results are

i =xpe "
§ =g 4.3.18)

izt " ~E 1=
Y

for the velocity components. As before, we orient the coordinate system such that the x-axis
lies along the projection of the initial velocity onto the xy horizontal plane. Then y =g, =0
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and the motion is confined to the xz vertical plane. Integrating once more, we obtain the
position coordinates

x=200-0m
(4.3.19)

=248 la-m)-E4
Y ¥ %

We have taken the initial position of the projectile to be zero, the origin of the coordinate
system. This solution can be written vectorially as

Yo kel oy k& (4.3.20)
Yy ¥ %

which can be verified by differentiation.

Contrary to the case of zero air resistance the path of the projectile is not a parabola,
but rather a curve that lies below the corresponding parabolic trajectory. This is illustrated
in Figure 4.3.2. Inspection of the x equation shows that, for large ¢, the value of x
approaches the limiting value

Yo (4.3.21)

This means that the complete trajectory of the projectile, if it did not hit anything, would
have a vertical asymptote as shown in Figure 4.3.2.

In the actual motion of a projectile through the atmosphere, the law of resistance is
by no means linear; it is a very complicated function of the velocity. An accurate calcula-
tion of the trajectory can be done by means of numerical integration methods. (See the
reference cited in Example 2.4.3.)

Figure 4.3.2 Comparison of the paths
of a projectile with and without air
resistance.
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Horizontal Range

The horizontal range of a projectile with linear air drag is found by setting z = 0 in the
second of Equations 4.3.19 and then eliminating ¢ among the two equations. From the first
of Equations 4.3.19, we have 1 — yx/%, =™, so0 t = -y In(1 - yx/%,). Thus, the hori-
zontal range x,,,,, is given by the implicit expression

Z 8 |¥x g Yx
20,8 | fimar o & 1pl ) fme |
(}, yzj % ¥ ( % ] (4.3.22)

This is a transcendental equation and must be solved by some approximation method to
find x;,. We can expand the logarithmic term by use of the series

In(l—u) = —u— “? —————— (4.3.23)

which is valid for |u| < 1. With u = yx,,,,/%,, it is left as a problem to show that this leads
to the following expression for the horizontal range:

iz, 8ok
Ky, = 000 TR0 4y

¢ 3 gz (4.3.24a)

max

If the projectile is fired at angle of elevation a with initial speed vy, then %; = v, cos a,
%= vp sine, and 2#yz, = 20¢ sin¢ cos & = vg sin2¢. An equivalent expression is then

2 . 3 :
_% sin 20 _ 4v, sm2;x sin o e (4.3.24b)
g 3g

max

The first term on the right is the range in the absence of air resistance. The remainder is
the decrease due to air resistance.

EXAMPLE 4.3.1

Horizontal Range of a Golf Ball

For objects of baseball or golf-ball size traveling at normal speeds, the air drag is more
nearly quadratic in v, rather than linear, as pointed out in Section 2.4. However, the approx-
imate expression found above can be used to find the range for flat trajectories by
“linearizing” the force function given by Equation 2.4.3, which may be written in three
dimensions as

F(v)==v(c1+cz|v])

To linearize it, we set | v| equal to the initial speed vy, and so the constant y is given

by

_C1+60

m
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(A better approximation would be to take the average speed, but that is not a given quan-
tity.) Although this method exaggerates the effect of air drag, it allows a quick ballpark
estimate to be found easily.

For a golf ball of diameter D = 0.042 m and mass m = 0.046 kg, we find that c, is
negligible and so

_cyvy _ 0.22D%v,
r= m B m

_0.22(0.042)% v,

0046

= 0.00840,

numerically, where v is in ms . For a chip shot with, say, vy = 20 ms *, we find
y=0.0084 x20=0.17 s\, The horizontal range is then, for a=30°,
. o (20)°sin60°  4(20)°sin60°sin30°x0.17
mas 9.8 3(9.8)%
=353m-82m=271m

Our estimate, thus, gives a reduction of about one-fourth due to air drag on the ball.

EXAMPLE 4.3.2

A "Tape Measure” Home Run

Here we calculate what is required of a baseball player to hit a tape measure home run,
or one that travels a distance in excess of 500 feet. In Section 2.4, we mentioned that
the force of air drag on a baseball is essentially proportional to the square of its speed
that is, Fp(v) = —¢; |v] v. The actual air drag force on a baseball is more complicated
than that. For example, the “constant” of proportionality ¢, varies somewhat with the
speed of the baseball, and the air drag depends, among other things, on its spin and the
way its cover is stitched on. We assume, however, for our purposes here that the above
equation describes the situation adequately enough with the caveat that we take c;=0.15
instead of the value 0.22 that we used previously. This value “normalizes” the air drag
factor of a baseball traveling at speeds near 100 mph to that used by Robert Adair in
The Physics of Baseball.*

Trajectories of bodies subject to an air drag force that depends upon the square of
its speed cannot not be calculated analytically, so we use Mathematica, a computer soft-
ware tool (see Appendix I), to find a numerical solution for the trajectory of a baseball
in fight. Our goal is to find the minimum velocity and optimum angle of launch that a
baseball batter must achieve to propel a baseball to maximum range. The situation we
analyze concerns the longest home run ever hit in a regular-season, major league base-
ball game according to the Guinness Book of Sports Records, namely, a ball struck by

‘R. K. Adair, The Physics of Baseball, 2nd ed., New York, Harper Collins.



4.3 Forces of the Separable Type: Projectile Motion

Figure 4.3.3a Trajectory
of Mickey Mantle’s home run
on April 17, 1953, in Griffith
Stadium, Washington, D.C.

Figure 4.3.3b Trajectory
of Mantle’s home run as seen
from the batter’s perspective.
(Mantle, a switch hitter, was

actually batting right-handed
against the left-handed
Stobbs. This photo, showing
him batting left-handed, is for
the sake of illustration only.)
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Mickey Mantle in 1953 that is claimed to have traveled 565 feet over the left field
bleachers in old Griffith Stadium in Washington, D.C. The following is an account of
that historic home run,’ which one of your authors (GLC) was privileged to see while
watching the baseball game as a bright-eyed young boy from those very left field bleach-

ers for which he paid an entrance fee of 25¢ (oh, how times have changed).

The Yankees were playing the Senators at Griffith Stadium in Washington, D.C. (The
Washington Senators baseball club and Griffith Stadium no longer exist.) The stadium was
alittle sandbox of a ballpark but, as Mickey Mantle said, “It wasn’t that easy to hit a home
run there. There was a 90-foot wall in centerfield and there always seemed to be a breeze
blowing in.”

Lefty Chuck Stobbs was on the mound. A light wind was blowing out from home plate
for a change. It was two years to the day since Mickey's first major league game. Mickey
stepped up to the plate. Stobbs fired a fast ball just below the letters, right where the
Mick liked them, and he connected full-on with it. The ball took off toward the 391-foot
sign in left-centerfield. It soared past the fence, over the bleachers and was headed out
of the park when it ricocheted off a beer sign on the auxiliary football scoreboard (see
Figures 4.3.3a and b). Although, slightly impeded, it continued its flight over neighboring

5This account of Mantle’s Guinness Book of Sports Records home run can be found at the website,
http://www.themick.com/10homers.html.
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Fifth Street and landed in the backyard of 434 Oakdale Street, several houses up the
block.

Billy Martin was on third when Mickey connected and, as a joke, he pretended to tag
up like it was just a long fly ball. Mickey didn’t notice Billy’s shenanigans (“I used to keep
my head down as I rounded the bases after a home run. I didn’t want to show up the pitcher.
Ifigured he felt bad enough already”) and almost ran into Billy! If not for third base coach,
Frank Crosetti, he would have. Had Mickey touched Billy he would have automatically
been declared out and would have been credited with only a dauble.

Meanwhile, up in the press box, Yankees PR director, Red Patterson, cried out, “That
one’s got to be measured!” He raced out of the park and around to the far side of the
park where he found 10-year-old Donald Dunaway with the ball. Dunaway showed Red
the ball’s impact in the yard and Red paced off the distance to the outside wall of Griffith
Stadium. Contrary to popular myth, he did not use a tape measure, although he and
Mickey were photographed together with a giant tape measure shortly after the historic
blast. Using the dimensions of the park, its walls, and the distance he paced off, Patterson
calculated the ball traveled 565 feet. However, sports writer Joe Trimble, when adding
together the distances, failed to account for the three-foot width of the wall and came
up with the 562-foot figure often cited. However, 565 feet is the correct number.

This was the first ball to ever go over Griffith Stadium’ leftfield bleachers. Most
believe the ball would have gone even further had it not hit the scoreboard (see Figure
4.3.3b). At any rate, it became one of the most famous home runs ever. It was headline
news in a number of newspapers and a major story across the country. From that date
forward, long home runs were referred to as “tape measure home runs.”

So, did Mickey Mantle really hit a 565 foot home run, and, if so, at what angle did he
strike the ball and what initial velocity did he impart to it? The equation of motion of a
baseball subject to quadratic air drag is

mi =—c, |v| v—mgk
This separates into two component equations
mE=—c, |v|x
mz =—c, |v|2—mg
Letting ¥ =c,/m, we obtain
i = -y +2°)"%
E=-y(* +3°) %3¢
Understandably, the game of baseball being the great American pastime, the weight

(5.125 0z) and diameter (2.86 in) of the baseball are given in English units. In metric units,
they are m = 0.145 kg and D = 0.0728 m respectively, so

=l 0.15D% _ 0.15(0.0728)

meters™! = 0.0055 meters ™
m m 0.145

The numerical solution to these second-order, coupled nonlinear differential equations
can be generated by using the discussion of Mathematica given in Appendix I. Here we
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Baseball trajectories
80 +
no drag

~60 +
Figure 43.4 Thecalculasted <
range of a baseball with ) w04
quadratic air drag and & quadratic drag
without air drag. The range
of the baseball is 172.2 m 20 T
(565 ft) for an initial speed of
143.2 mph and elevation } } t R— x(m)
angle of 39 degrees. 100 200 300 400

simply outline the solution process, which involves an iterative procedure.

* First, we make reasonable guesses for the initial velocity (vy) and angle (6,) of the
baseball and then solve the coupled differential equations using these values.

* Plot the trajectory and find the x-axis intercept (the range)

¢ Hold v, fixed, and repeat the above using different values of 6, until we find the
value of 6, that yields the maximum range

* Hold 6, fixed at the value found above (that yields the maximum range), and repeat:
the procedure again, but varying v, until we find the value that yields the required
range of Mickey’s tape measure home run, 565 feet (172.2 m)

The resultant trajectory is shown in Figure 4.3.4 along with the parameters that gener-
ated that trajectory. For comparison, we also show the trajectory of a similarly struck base-
ball in the absence of air resistance. We find that Mickey had to strike the ball at an
elevation angle of 6, = 39° with an initial velocity of vy = 143.2 mph. Are these values rea-
sonable? We would guess that the initial angle ought to be a bit less than the 45° one finds
for the case of no air resistance. With resistance, a smaller launch angle (rather than one
greater than 45°) corresponds to less time spent in flight during which air resistance can
effectively act. What about the initial speed? Chuck Stobbs threw a baseball not much
faster than 90 mph. Mantle could swing a bat such that its speed when striking the ball
was approximately 90 mph. The coefficient of restitution (see Chapter 7) of baseballs is
such that the resultant velocity imparted to the batted ball would be about 130 mph, so
the value we've estimated is somewhat high but not outrageously so. If the ball Mantle
hit in Griffith Stadium was assisted by a moderate tailwind, his Herculean swat seems pos-
sible. Wouldn't it have been spectacular to have seen Mantle hit one like that—in a vacuum?

4.4| The Harmonic Oscillator
in Two and Three Dimensions

Consider the motion of a particle subject to a linear restoring force that is always directed
toward a fixed point, the origin of our coordinate system. Such a force can be repre-
sented by the expression

F=—kr (44.1)
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1}'

——
X
Figure 4.4.1 A model of a three-dimensional {
harmonic oscillator.
Accordingly, the differential equation of motion is simply expressed as
d’r
m—s; = —kr (4.4.2)
dt*

The situation can be represented approximately by a particle attached to a set of elastic
springs as shown in Figure 4.4.1. This is the three-dimensional generalization of the linear
oscillator studied earlier. Equation 4.4.2 is the differential equation of the linear isotropic
oscillator.

The Two-Dimensional Isotropic Oscillator

In the case of motion in a single plane, Equation 4.4.2 is equivalent to the two compo-
nent equations

mi = ks (4.4.3)
mij = —ky
These are separated, and we can immediately write down the solutions in the form
x =A cos(0t + &) y =B cos(wt + ) (4.4.4)
in which
Ve
©= (—k—) (4.4.5)
m

The constants of integration A, B, o, and 8 are determined from the initial conditions in
any given case.

To find the equation of the path, we eliminate the time ¢ between the two equations.
To do this, let us write the second equation in the form

y =B cos(wt + a+A) (4.4.6)
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where
A=B-«a 4.47)
Then
y = Blcos(wt + @) cosA — sin (wt + ) sinA] (4.4.8)

Combining the above with the first of Equations 4.4.4, we then have

N
cosA— 1—% sinA (4.4.9)

o e

x
A
and upon transposing and squaring terms, we obtain

2
x 2cosA y —sin2A (4.4.10)

AL YA B
which is a quadratic equation in x and y. Now the general quadratic
ax’ +bxy +cy’ +dx+ey=f (4.4.11)
represents an ellipse, a parabola, or a hyperbola, depending on whether the discriminant
b — 4ac (4.4.12)

is negative, zero, or positive, respectively. In our case the discriminant is equal to
—(2 sin A/ABY’, which is negative, so the path is an ellipse as shown in Figure 4.4.2.

In particular, if the phase difference A is equal to 71/2, then the equation of the path
reduces to the equation

+L -1 (4.4.13)

Figure 4.4.2 The elliptical path of a
two-dimensional isotropic oscillator.




170 CHAPTER 4 General Motion of a Particle in Three Dimensions

which is the equation of an ellipse whose axes coincide with the coordinate axes. On the
other hand, if the phase difference is 0 or 7, then the equation of the path reduces to that
of a straight line, namely,

y= i%,c (4.4.14)

The positive sign is taken if A =0, and the negative sign, if A = 7. In the general case it is
possible to show that the axis of the elliptical path is inclined to the x-axis by the angle v,
where

2ABcosA (4.4.15)

tan2y = O

The derivation is left as an exercise.

The Three-Dimensional Isotropic
Harmonic Oscillator

In the case of three-dimensional motion, the differential equation of motion is equiva-
lent to the three equations

mi = —kx mij = —ky mz=—kz (4.4.16)
which are separated. Hence, the solutions may be written in the form of Equations 4.4.4,
or, alternatively, we may write
x = A, sinwt+ B, coswt
y=A, sin®t+ B, cos@t (4.4.17a)
2= A, sin@t+ B; coswt

The six constants of integration are determined from the initial position and veloc-
ity of the particle. Now Equations 4.4.16 can be expressed vectorially as

r=A sinwt + B coswt (4.4.17b)

in which the components of A are A}, A,, and A3, and similarly for B. It is clear that the
motion takes place entirely in a single plane, which is common to the two constant vec-
tors A and B, and that the path of the particle in that plane is an ellipse, as in the two-
dimensional case. Hence, the analysis concerning the shape of the elliptical path under
the two-dimensional case also applies to the three-dimensional case.

Nonisotropic Oscillator

The previous discussion considered the motion of the isotropic oscillator, wherein the
restoring force is independent of the direction of the displacement. If the magnitudes
of the components of the restoring force depend on the direction of the displacement,
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we have the case of the nonisotropic oscillator. For a suitable choice of axes, the differ-
ential equations for the nonisotropic case can be written

mi = —kx
mij = —kyy (4.4.18)
mZ = —k,z

Here we have a case of three different frequencies of oscillation, @, = /k/m, @, = \/ky/m,
and @, = 4/k;/m, and the motion is given by the solutions

x = Acos(mt + )
y = Beos(w,t + B) (4.4.19)
z=Ccos(myt +7)
Again, the six constants of integration in the above equations are determined from the
initial conditions. The resulting oscillation of the particle lies entirely within a rectangu-

lar box (whose sides are 24, 2B, and 2C) centered on the origin. In the event that @,, o,
and @; are commensurate—that is, if

W _ 0y 5.
n Ny, N

(4.4.20)

where n,, ny, and n; are integers—the path, called a Lissajous figure, is closed, because
after a time 27n,/@, = 27n, /0, = 2713/, the particle returns to its initial position and
the motion is repeated. (In Equation 4.4.20 we assume that any common integral factor
is canceled out.) On the other hand, if the @’s are not commensurate, the path is not closed.
In this case the path may be said to completely fill the rectangular box mentioned above,
at least in the sense that if we wait long enough, the particle comes arbitrarily close to
any given point.

The net restoring force exerted on a given atom in a solid crystalline substance is
approximately linear in the displacement in many cases. The resulting frequencies of oscil-
lation usually lie in the infrared region of the spectrum: 10'* to 10** vibrations per second.

Energy Considerations

In the preceding chapter we showed that the potential energy function of the one-
dimensional harmonic oscillator is quadratic in the displacement, V(x) = %kxz. For the
general three-dimensional case, it is easy to verify that

V(x,y,2) = s hx® + 3 kot + 3 ks (4.4.21)

because F, = —0V/dx = —k;x, and similarly for F, and F,. If k; = ky = k3 = k, we have the
isotropic case, and

Vi, y,2) = g k(x® +y* +2°) = S hr? (4.4.22)
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The total energy in the isotropic case is then given by the simple expression
%mv2 + % kr’=E (4.4.23)

which is similar to that of the one-dimensional case discussed in the previous chapter.

EXAMPLE 4.4.1

A particle of mass m moves in two dimensions under the following potential energy
function:

V(r) = 3 k(x* +4y%)

Find the resulting motion, given the initial condition att =0:x =4,y =0, £ =0, § =v,.

Solution:

This is a nonisotropic oscillator potential. The force function is
F=-VV =—ike = jaky = mi

The component differential equations of motion are then
mi+kx=0 mij+4ky =0

The x-motion has angular frequency o = (k/m)"?, while the y-motion has angular fre-
gu quency Yy gu

quency just twice that, namely, @, = (4k/m)"® = 2. We shall write the general solution
in the form

x = A, cos®t + B, sin wt
y=A, cos2mt + B, sin 20

To use the initial condition we must first differentiate with respect to ¢ to find the gen-
eral expression for the velocity components:

% = —A 0 sinwt + B,® coswt
y = —2A,0 sin 2wt + 2B, cos 2wt

Thus, at ¢ = 0, we see that the above equations for the components of position and
velocity reduce to

a=A 0=A4, 0=Bo v, = 2B,0

These equations give directly the values of the amplitude coefficients, A; =a, A, =B, =0,
and B, = vy/2, so the final equations for the motion are

X =a coswt

UO .
= — sin2wt
y 3 in

The path is a Lissajous figure having the shape of a figure-eight as shown in Figure 4.4.3.
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Figure 4.4.3 A Lissajous figure.

4.5] Motion of Charged Particles in Electric
and Magnetic Fields

When an electrically charged particle is in the vicinity of other electric charges, it expe-
riences a force. This force F is said to be caused by the electric field E, which arises from
these other charges. We write

F=gE 45.1)

where q is the electric charge carried by the particle in question.’ The equation of motion
of the particle is then

mfi_j; =qE (4.5.2a)
or, in component form,
mi = qE,
mij = gE, (4.5.2b)
mz =qE,

The field components are, in general, functions of the position coordinates x, y, and 2. In
the case of time-varying fields (that is, if the charges producing E are moving), the com-
ponents also involve £.

Let us consider a simple case, namely, that of a uniform constant electric field. We
can choose one of the axes—say, the z-axis—to be in the direction of the field. Then
E,=E,=0,and E = E,. The differential equations of motion of a particle of charge ¢
moving in this field are then

qE

¥=0 =0 Z = —— = constant (4.5.3)
m

®In ST units, F is in newtons, ¢ in coulombs, and E in volts per meter.
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These are of exactly the same form as those for a projectile in a uniform gravitational field.
The path is, therefore, a parabola, if % and ¥ are not both zero initially. Otherwise, the
path is a straight line, as with a body falling verucally

Textbooks dealing with electromagnetic theory” show that

VXE=0 (4.5.4)

if E is due to static charges. This means that motion in such a field is conservative, and
that there exists a potential function ® such that E =-V®. The potential energy of a par-
ucl? of charge q in such a field is then q®, and the total energy is constant and is equal
to 2mv +q®.

In the presence of a static magnetic field B (called the magnetic induction), the force
acting on a moving particle is conveniently expressed by means of the cross product,
namely,

F=g(v X B) (455)
where v is the velocity and q is the charge.® The differential equation of motion of a par-
ticle moving in a purely magnetic field is then

2,
d 2
Equation 4.5.6 states that the acceleration of the particle is always at right angles to the
direction of motion. This means that the tangential component of the acceleration (v) is

zero, and so the particle moves with constant speed. This is true even if B is a varying func-
tion of the position r, as long as it does not vary with time.

=q(vXB) (4.5.6)

EXAMPLE 4.5.1

Let us examine the motion of a charged particle in a uniform constant magnetic field.
Suppose we choose the z-axis to be in the direction of the field; that is, we write

B=kB

The differential equation of motion now reads
" i j k
mF=q(vka) gBlx y %
0 01

m(iz + jij + kz) = qB(ij - ji)

"For example, Reitz, Milford, and Christy, op cit.

$Equation 4.5.5 is valid for SI units: F is in newtons, g in coulombs, v in meters per second, and B in webers
per square meter.
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Equating components, we have

mi = qBy
Z2=0

Here, for the first time we meet a set of differential equations of motion that are not of
the separated type. The solution is relatively simple, however, for we can integrate at
once with respect to ¢, to obtain

mx = qBy+c,
my =—qBx+c,
% = constant = %,
or
t=wy+C, y=-wx+C, 2= 3, (4.5.8)

where we have used the abbreviation @ = ¢B/m. The c’s are constants of integration, and
C, = ¢;/m, C3 = co/m. Upon inserting the expression for § from the second part of
Equation 4.5.8 into the first part of Equation 4.5.7, we obtain the following separated
equation for x:

i+oix=0% (4.5.9)
where a = Cy/w. The solution is
x=a+A cos(wt + 6,) (4.5.10)

where A and 6, are constants of integration. Now, if we differentiate with respect to ¢,
we have

% =—Ao sin(wt + 6;) (4.5.11)

The above expression for # may be substituted for the left-hand side of the first of
Equations 4.5.8 and the resulting equation solved for y. The result is

y=b—Asin(wt + 6,) (4.5.12)

where b = —C,/®. To find the form of the path of motion, we eliminate ¢ between
Equation 4.5.10 and Equation 4.5.12 to get

x-a)’+(@y-b’=A (4.5.13)

Thus, the projection of the path of motion on the xy plane is a circle of radius A centered
at the point (a, b). Because, from the third of Equations 4.5.8, the speed in the z direction
is constant, we conclude that the path is a helix. The axis of the winding path is in the
direction of the magnetic field, as shown in Figure 4.5.1. From Equation 4.5.12 we have

y=—Aw cos(wt +6,) (4.5.14)
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Figure 4.5.1 The helical path of a particle
moving in a magnetic field. z

Upon eliminating ¢ between Equation 4.5.11 and Equation 4.5.14, we find

2
P4 = A% = Az(ﬁ) (4.5.15)
m

Letting v, = (x> +¢*)"?, we see that the radius A of the helix is given by

“H_,.m
A= o ="B (4.5.16)

If there is no component of the velocity in the z direction, the path is a circle of radius A.
It is evident that A is directly proportional to the speed v, and that the angular frequency
@ of motion in the circular path is independent of the speed. The angular frequency wis
known as the cyclotron frequency. The cyclotron, invented by Ernest Lawrence, depends
for its operation on the fact that @ is independent of the speed of the charged particle.

4.6 Constrained Motion of a Particle

When a moving particle is restricted geometrically in the sense that it must stay on a certain
definite surface or curve, the motion is said to be constrained. A piece of ice sliding around
a bowl and a bead sliding on a wire are examples of constrained motion. The constraint may
be complete, as with the bead, or it may be one-sided, as with the ice in the bowl. Constraints
may be fixed, or they may be moving,. In this chapter we study only fixed constraints.

The Energy Equation for Smooth Constraints

The total force acting on a particle moving under constraint can be expressed as the
vector sum of the net external force F and the force of constraint R. The latter force is
the reaction of the constraining agent upon the particle. The equation of motion may,
therefore, be written

dv

—= R 4.6.1
m % F+ ( )
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If we take the dot product with the velocity v, we have

m-‘;—:-v=F-v+R-v (4.6.2)

Now in the case of a smooth constraint—for example, a frictionless surface—the reaction
R is normal to the surface or curve while the velocity v is tangent to the surface. Hence, R
is perpendicular to v, and the dot product R . v vanishes. Equation 4.6.2 then reduces to

g—t-(%mv -v) =F-v (46.3)

Consequently, if F is conservative, we can integrate as in Section 4.2, and we find that,
even though the particle is constrained to move along the surface or curve, its total energy
remains constant, namely,

%mv2 +V(x,y,2) = constant = E (4.6.4)

We might, of course, have expected this to be the case for frictionless constraints.

EXAMPLE 4.6.1

A particle is placed on top of a smooth sphere of radius . If the particle is slightly dis-
turbed, at what point will it leave the sphere?

Solution:

The forces acting on the particle are the downward force of gravity and the reaction R
of the spherical surface. The equation of motion is

v _

dt

m mg+R

Let us choose coordinate axes as shown in Figure 4.6.1. The potential energy is then mgz,
and the energy equation reads

1.2

zmv +mgz=E

From the initial conditions (v = 0 for z = @) we have E =mga, so, as the particle slides
down, its speed is given by the equation

o¥= 28(a —2)

Now, if we take radial components of the equation of motion, we can write the force
equation as
mo?

z
—_—— 9+R__——_. —+R
mg cos mg
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Figure 4.6.1 A particle sliding on a
smooth sphere.

Hence,
z mo z
R= —_——— = ——-—9 -
mg , mg p, g(a—z)
=g (3z—2a)

Thus, R vanishes when z = —a at which point the particle leaves the sphere. This may
be argued from the fact that the sign of R changes from positive to negative there.

EXAMPLE 4.6.2

Constrained Motion on a Cycloid

Consider a particle sliding under gravity in a smooth cycloidal trough, Figure 4.6.2,
represented by the parametric equations

x = A(2¢ + sin 2¢)
z=A(l— cos2¢)

where ¢ is the parameter. Now the energy equation for the motion, assuming no
y-motion, is

E=%02 +V(2) =%(5c2 +%)+mgz

Figure 4.6.2 A particle sliding in a
smooth cycloidal trough.
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Because % = 2A¢(1 + cos2¢) and % = 2A¢ sin2¢, we find the following expression for
the energy in terms of ¢:

E = 4mA*$*(1 + cos 2¢) + mgA(l ~ cos2¢)
or, by use of the identities 1 + cos 2¢ =2 cos® pand 1 — cos 20=2 sin® ¢,
E =8mA%$* cos®¢+2mgA sin®¢

Let us introduce the variable s defined by s = 4A sin ¢. The energy equation can then
be written

E =ﬂ,§2 +l(%)82
2 2 4A
This is just the energy equation for harmonic motion in the single variable s. Thus,
the particle undergoes periodic motion whose frequency is independent of the ampli-
tude of oscillation, unlike the simple pendulum for which the frequency depends on the
amplitude. The periodic motion in the present case is said to be isochronous. (The
linear harmonic oscillator under Hooke’s law is, of course, isochronous.)

The Dutch physicist and mathematician Christiaan Huygens discovered the above
fact in connection with attempts to improve the accuracy of pendulum clocks. He also
discovered the theory of evolutes and found that the evolute of a cycloid is also a cycloid.
Hence, by providing cycloidal “cheeks” for a pendulum, the motion of the bob must
follow a cycloidal path, and the period is, thus, independent of the amplitude. Though

ingenious, the invention never found extensive practical use.

Problems
4.1  Find the force for each of the following potential energy functions:
(a) V=cxyz+C

(b) V=02"+ By’ +7yz*+C
(¢) V= ce @By 1)

(d) V=cr" in spherical coordinates

4.2 By finding the curl, determine which of the following forces are conservative:
(@) F=ix+jy +kz
(b) F =iy —jx+kz’
() F =iy +jx + kz*
(d) F =—kr"e, in spherical coordinates

4.3  Find the value of the constant ¢ such that each of the following forces is conservative:
(a) F=ixy +jox’ + kz°
(b) F=i(@z/y) +cjxziy®) + kx/y)
4.4 A particle of mass m moving in three dimensions under the potential energy function
V(x, 4, 2) = ox + Py* + 7<° has speed vy when it passes through the origin.
(a) What will its speed be if and when it passes through the point (1,1,1)?
(b) If the point (1, 1, 1) is a turning point in the motion (v =0), what is y?
(c) What are the component differential equations of motion of the particle?
(Note: It is not necessary to solve the differential equations of motion in this problem.)
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4.5

4.6

4.7

4.8

4.9

4.10

CHAPTER 4 General Motion of a Particle in Three Dimensions

Consider the two force functions

(@) F=ix+jy

(b) F =iy — jx

Verify that (a) is conservative and that (b) is nonconservative by showing that the integral
JF . dris independent of the path of integration for (a), but not for (b), by taking two paths
in which the starting point is the origin (0, 0), and the endpoint is (1, 1). For one path take
the line x =y. For the other path take the x-axis out to the point (1, 0) and then the linex =1
up to the point (1, 1).

Show that the variation of gravity with height can be accounted for approximately by the
following potential energy function:

z
V=mg|1-2
el
in which r is the radius of the Earth. Find the force given by the above potential function.
From this find the component differential equations of motion of a projectile under such
a force. If the vertical component of the initial velocity is vg,, how high does the projectile
go? (Compare with Example 2.3.2.)

Particles of mud are thrown from the rim of a rolling wheel. If the forward speed of the
wheelis vy, and the radius of the wheel is b, show that the greatest height above the ground
that the mud can go is

b+ _lﬁ + £
2g 205
At what point on the rolling wheel does this mud leave?
(Note: It is necessary to assume that vj 2 bg.)

A gun is located at the bottom of a hill of constant slope ¢. Show that the range of the gun
measured up the slope of the hill is

207 coso: sin(a — @)
g cos’¢
where @ is the angle of elevation of the gun, and that the maximum value of the slope range is

0
g(1+sing)

A cannon that is capable of firing a shell at speed V; is mounted on a vertical tower of height

h that overlooks a level plain below.

(a) Show that the elevation angle a at which the cannon must be set to achieve maximum
range is given by the expression

csc’or = 2(1 + i’;)
A%
0
(b) What is the maximum range R of the cannon?
A movable cannon is positioned somewhere on the level plain below the cannon mounted
on the tower of Problem 4.9. How close must it be positioned from the tower to fire a

shell that can hit the cannon in that tower? Assume the two cannons have identical muzzle
velocities V;,
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While playing in Yankee, Stadium, Mickey Mantle hits a baseball that attains a maximum
height of 69 ft and strikes the ground 328 ft away from home plate unless it is caught by an
outfielder. Assume that the outfielder can catch the ball sometime before it strikes the
ground—only if it is less than 9.8 ft above the ground. Assume that Mantle hit the ball when
it was 3.28 ft above the ground, and assume no air resistance. Within what horizontal dis-
tance can the fielder catch the ball?

A baseball pitcher can throw a ball more easily horizontally than vertically. Assume that the
pitcher’s throwing speed varies with elevation angle approximately as vg cos 36, m/s, where
6, is the initial elevation angle and v, is the initial velocity when the ball is thrown horizontally.
Find the angle 6, at which the ball must be thrown to achieve maximum (a) height and
(b) range.

Find the values of the maximum (c) height and (d) range. Assume no air resistance and let
vy =25 m/s.

A gun can fire an artillery shell with a speed V; in any direction. Show that a shell can strike
any target within the surface given by

g'rl=Vy - 2gVsz

where z is the height of the target and r is its horizontal distance from the gun. Assume no
air resistance.

Write down the component form of the differential equations of motion of a projectile if
the air resistance is proportional to the square of the speed. Are the equations separated?
Show that the x component of the velocity is given by

i= xoe—ys
where s is the distance the projectile has traveled along the path of motion, and y=cy/m.

Fill in the steps leading to Equations 4.3.24a and b, giving the horizontal range of a pro-
jectile that is subject to linear air drag.

The initial conditions for a two-dimensional isotropic oscillator are as follows: ¢ = 0,
x=A y=4A, =0, y=3wA where o is the angular frequency. Find x and y as func-
tions of ¢. Show that the motion takes place entirely within a rectangle of dimensions 24
and 10A. Find the inclination y of the elliptical path relative to the x-axis. Make a sketch
of the path.

A small lead ball of mass m is suspended by means of six light springs as shown in
Figure 4.4.1. The stiffness constants are in the ratio 1:4:9, so that the potential energy func-
tion can be expressed as

V=12‘-(x2+4y2+9z2)

At time £ = 0 the ball receives a push in the (1, 1, 1) direction that imparts to it a speed v,
at the origin. If k = 7°m, numerically find x, y, and z as functions of the time ¢. Does the
ball ever retrace its path? If so, for what value of ¢ does it first return to the origin with the
same velocity that it had at¢ = 0?

Complete the derivation of Equation 4.4.15.
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CHAPTER 4 General Motion of a Particle in Three Dimensions

An atom s situated in a simple cubic crystal lattice. If the potential energy of interaction
between any two atoms is of the form cr”%, where ¢ and « are constants and r is the dis-
tance between the two atoms, show that the total energy of interaction of a given atom with
its six nearest neighbors is approximately that of the three-dimensional harmonic oscillator
potential

V=A+B@a" +y’ +2°)

where A and B are constants.

[Note: Assume that the six neighboring atoms are fixed and are located at the points

(xd,0,0),(0,d,0),(0,0,%d), and that the displacement (x, y, z) of the given atom from the

equilibrium position (0,0,0) is small compared to d. Then V=X cr; * where
rn=0d-x)"+y*+z1"

with similar expressions for 7y, 13, . . ., 7. See the approximation formulas in Appendix D.]

An electron moves in a force field due to a uniform electric field E and a uniform magnetic
field B that is at right angles to E. Let E = jE and B = kB. Take the initial position of the
electron at the origin with initial velocity vy =1iv, in the x direction. Find the resulting motion
of the particle. Show that the path of motion is a cycloid:

x =a sinwt + bt
y =a(l— coswt)
z=0

Cycloidal motion of electrons is used in an electronic tube called a magnetron to produce
the microwaves in a microwave oven.

A particle is placed on a smooth sphere of radius b at a distance b/2 above the central
plane. As the particle slides down the side of the sphere, at what point will it leave?

A bead slides on a smooth rigid wire bent into the form of a circular loop of radius b. If the
plane of the loop is vertical, and if the bead starts from rest at a point that is level with the
center of the loop, find the speed of the bead at the bottom and the reaction of the wire on
the bead at that point.

Show that the period of the particle sliding in the cycloidal trough of Example 4.6.2 is
an(A/g)'.

Computer Problems

C 4.1 A bomber plane, about to drop a bomb, suffers a malfunction of its targeting computer.

The pilot notes that there is a strong horizontal wind, so she decides to release the bomb
anyway, directly over the visually sighted target, as the plane flies over it directly into the
wind. She calculates the required ground speed of the aircraft for her flying altitude of
50,000 feet and realizes that there is no problem flying her craft at that speed. She is per-
fectly confident that the wind speed will offset the plane’s speed and blow the bomb “back-
wards” onto the intended target. She adjusts the ground speed of the aircraft accordingly
and informs the bombardier to release the bomb at the precise instant that the target
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appears directly below the plane in the crosshairs of his visual targeting device. Assume
that the wind is blowing horizontally throughout the entire space below the plane with a
speed of 60 mph, and that the air density does not vary with altitude. The bomb has a mass
of 100 kg. Assume that it is spherical in shape with a radius of 0.2 m.

(a) Calculate the required ground speed of the plane if the bomb is to strike the target.
(b) Plot the trajectory of the bomb. Explain why the “trailing side” of the trajectory s linear.
(¢) How precisely must the pilot control the speed of the plane if the bomb is to strike

within 100 m of the target?

C 4.2 Assume that a projectile subject to a linear air resistance drag is fired with an initial speed

vp equal to its terminal speed v, at an elevation angle 6.

(a) Find parametric solutions x(¢) and z(¢) for the trajectory of the projectile in terms of
the above parameters. Convert the solution to parametric equations of dimensionless
variables X(s), Z(s), and s, where X = (g/v})x, Z = (g/v?)z, and s = (g/v,)t.

(b) Solve numerically the dimensionless parametric equations obtained above to find the
angle 6, at which the projectile must be fired to achieve maximum range.

(c) Plot the trajectory of the missile corresponding to its maximum range, along with the
trajectory that would occur under these same firing conditions but in the absence of
air resistance. Use the above dimensionless parameters as plotting variables.

(d) Using the mass and dimensions of a baseball given in Example 4.3.2, calculate (i) the
terminal velocity of the baseball for linear air drag and (ii) its maximum range when
launched at this initial velocity and optimum elevation angle.



“}-was sitting in a chair at the| patent office in.Bern;when all of asudden a
thought occurred to meé: If-a-person falls freely, he will not feel his own weight.
| was startled. This simple thought made a deép impression on me. It impelled
me toward a theory of gravitation.”

— Albert Einstein, “The Happiest Thought of My Life”; see A. Pais, Inward Bound,
New York, Oxford Univ. Press, 1986

5.1] Accelerated Coordinate Systems
and Inertial Forces

In describing the motion of a particle, it is frequently convenient, and sometimes neces-
sary, to employ a coordinate system that is not inertial. For example, a coordinate system
fixed to the Earth is the most convenient one to describe the motion of a projectile, even
though the Earth is accelerating and rotating.

We shall first consider the case of a coordinate system that undergoes pure transla-
tion. In Figure 5.1.1 Oxyz are the primary coordinate axes (assumed fixed), and O’xy'z’
are the moving axes. In the case of pure translation, the respective axes Ox and O%’, and
so on, remain parallel. The position vector of a particle P is denoted by r in the fixed system
and by r’ in the moving system. The displacement OO’ of the moving origin is denoted
by Ro. Thus, from the triangle OO’F, we have

r=Ry+r G.1.1)
Taking the first and second time derivatives gives

v=Vy+Vv (5.1.2)

a=Aj+a’ (5.1.3)

184
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Figure 5.1.1 Relationship between the x
position vectors for two coordinate systems
undergoing pure translation relative to each
other. z

in which V,, and A, are, respectively, the velocity and acceleration of the moving
system, and v’ and &’ are the velocity and acceleration of the particle in the moving
system.

In particular, if the moving system is not accelerating, so that Ay =0, then

a=a’

so the acceleration is the same in either system. Consequently, if the primary system is
inertial, Newton’s second law F =ma becomes F =ma’ in the moving system; that is, the
moving system is also an inertial system (provided it is not rotating). Thus, as far as
Newtonian mechanics is concerned, we cannot specify a unique coordinate system; if
Newton'’s laws hold in one system, they are also valid in any other system moving with uni-
form velocity relative to the first.

On the other hand if the moving system is accelerating, then Newton’s second law
becomes

F=mA,+ma’ (5.1.4a)
or
F-mA, =ma’ (5.1.4b)

for the equation of motion in the accelerating system. If we wish, we can write
Equation 5.1.4b in the form

F’' =ma’ (5.1.5)

in which F' =F + (~mA,). That is, an acceleration A of the reference system can be taken
into account by adding an inertial term ~mA, to the force F and equating the result to
the product of mass and acceleration in the moving system. Inertial terms in the equations
of motion are sometimes called inertial forces, or fictitious forces. Such “forces” are not
due to interactions with other bodies, rather, they stem from the acceleration of the ref-
erence system. Whether or not one wishes to call them forces is purely a matter of taste.
In any case, inertial terms are present if a noninertial coordinate system is used to describe
the motion of a particle.
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A block of wood rests on a rough horizontal table. If the table is accelerated in a hori-
zontal direction, under what conditions will the block slip?

Solution:

Let y, be the coefficient of static friction between the block and the table top. Then the
force of friction F has a maximum value of y;mg, where m is the mass of the block. The
condition for slipping is that the inertial force —mA, exceeds the frictional force, where
A, is the acceleration of the table. Hence, the condition for slipping is

[-mAg| > uymg

or

Ay > g

EXAMPLE 5.1.2

A pendulum is suspended from the ceiling of a railroad car, as shown in Figure 5.1.2a.
Assume that the car is accelerating uniformly toward the right (+x direction). A non-
inertial observer, the boy inside the car, sees the pendulum hanging at an angle 6, left
of vertical. He believes it hangs this way because of the existence of an inertial force F,
which acts on all objects in his accelerated frame of reference (Figure 5.1.2b). An iner-
tial observer, the girl outside the car, sees the same thing. She knows, however, that there
is no real force F, acting on the pendulum. She knows that it hangs this way because a
net force in the horizontal direction is required to accelerate it at the rate A that she
observes (Figure 5.1.2c). Calculate the acceleration A, of the car from the inertial
observer’s point of view. Show that, according to the noninertial observer, F, = -mA,
is the force that causes the pendulum to hang at the angle 6.

Solution:

The inertial observer writes down Newton’s second law for the hanging pendulum

as
ZF,. =ma
Tsin@ =mA, Tcos@—mg=0
- Ag =gtanf
She concludes that the suspended pendulum hangs at the angle 6 because the railroad
car is accelerating in the horizontal direction and a horizontal force is needed to make
it accelerate. This force is the x-component of the tension in the string. The accelera-

tion of the car is proportional to the tangent of the angle of deflection. The pendulum,
thus, serves as a linear accelerometer.
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Figure 5.1.2 (a) Pendulum suspended in an accelerating railroad car as seen by (b) the
noninertial observer and (c) the inertial observer.

On the other hand the noninertial observer, unaware of the outside world (assume
the railroad track is perfectly smooth—no vibration—and that the railroad car has no
windows or other sensory clues for another reference point), observes that the pendu-
lum just hangs there, tilted to the left of vertical. He concludes that

ZF,.'= ma’=0
Tsing—-F/ =0 Tcos—-mg=0
- F/ =mg tan6

All the forces acting on the pendulum are in balance, and the pendulum hangs left of
vertical due to the force F, (=—mA,). In fact if this observer were to do some more exper-
iments in the railroad car, such as drop balls or stones or whatever, he would see that
they would also be deflected to the left of vertical. He would soon discover that the
amount of the deflection would be independent of their mass. In other words he would
conclude that there was a force, quite like a gravitational one (to be discussed in
Chapter 6), pushing things to the left of the car with an acceleration A, as well as the
force pulling them down with an acceleration g.
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EXAMPLE 5.1.3

Two astronauts are standing in a spaceship accelerating upward with an acceleration A,
as shown in Figure 5.1.3. Let the magnitude of A, equal g. Astronaut #1 throws a ball
directly toward astronaut #2, who is 10 m away on the other side of the ship. What must
be the initial speed of the ball if it is to reach astronaut #2 before striking the floor?
Assume astronaut #1 releases the ball at a height 2 = 2 m above the floor of the ship.
Solve the problem from the perspective of both (a) a noninertial observer (inside the
ship) and (b) an inertial observer (outside the ship).

Solution:

(a) The noninertial observer believes that a force —mA acts upon all objects in the ship.
Thus, in the noninertial (', ") frame of reference, we conclude that the trajectory
of the ball is a parabola, that is,

x'(t) = &)t y'(t) = yo— 3 Agt”
Y
’ ’ ’ x
=~y D=y _%AO[TJ
%o
Setting y'(x") equal to zero when x” = 10 m and solving for %, yields

2
X'l’ = AO xr
* L2y

a2
= (g'ims J (10 m) = 15.6 ms™
m

(b) The inertial observer sees the picture a little differently. It appears to him that
the ball travels at constant velocity in a straight line after it is released and that the
floor of the spaceship accelerates upward to intercept the ball. A plot of the verti-
cal position of the ball and the floor of the spaceship is shown schematically in
Figure 5.1.4. Both the ball and the rocket have the same initial upward speed g, at
the moment the ball is released by astronaut #1.

y
Ap

Figure 5.1.3 Two astronauts throwing a L_ x
ball in a spaceship accelerating at

|Aol=1gI.
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Figure 5.1.4 Vertical position of (1) a
ball thrown in an accelerating rocket and
(2) the floor of the rocket as seen by an
inertial observer.

The vertical positions of the ball and the floor coincide at a time ¢ that depends on the
initial height of the ball

. . 1
Yo+ Yot = Yot + iAotz
1
Yo=3 Agt?
During this time ¢, the ball has traveled a horizontal distance x, where

x = Xt or t= 1
%o
Inserting this time into the relation for y, above yields the required initial horizon-
tal speed of the ball

2
X =(iJ x
° 2y,

Thus, each observer calculates the same value for the initial horizontal velocity, as well
they should.

The analysis seems less complex from the perspective of the noninertial observer. In
fact the noninertial observer would physically experience the inertial force —mA,. It
would seem every bit as real as the gravitational force we experience here on Earth. Our
astronaut might even invent the concept of gravity to “explain” the dynamics of moving
objects observed in the spaceship.

5.2| Rotating Coordinate Systems

In the previous section, we showed how velocities, accelerations, and forces transform
between an inertial frame of reference and a noninertial one that is accelerating at a con-
stant rate. In this section and the following one, we show how these quantities transform
between an inertial frame and a noninertial one that is rotating as well.
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We start our discussion with the case of a primed coordinate system rotating with
respect to an unprimed, fixed, inertial one. The axes of the coordinate systems have a
common origin (see Figure 5.2.1). At any given instant the rotation of the primed system
takes place about some specific axis of rotation, whose direction is designated by a unit
vector, n. The instantaneous angular speed of the rotation is designated by ®. The prod-
uct, @n, is the angular velocity of the rotating system

®=@®n (5.2.1)

The sense direction of the angular velocity vector is given by the right-hand rule (see
Figure 5.2.1), as in the definition of the cross product.

The position of any point P in space can be designated by the vector r in the fixed,
unprimed system and by the vector r” in the rotating, primed system (see Figure 5.2.2).

Axis of
rotation

Figure 5.2.1 The angular velocity vector x

of a rotating coordinate system. x

z

ZI
P
) Y
V)
Iy
0 y

Figure 5.2.2 Rotating coordinate system
(primed system). * x
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Because the coordinate axes of the two systems have the same origin, these vectors are
equal, that is,

r=ix+jy+kz=r"=ix"+jy + k%’ (5.2.2)

When we differentiate with respect to time to find the velocity, we must keep in mind
the fact that the unit vectors ', j’, and k” in the rotating system are not constant, whereas
the primary unit vectors i, j, and k are. Thus, we can write
dx .dy dz dx’ dy’ dz’ di’ dj dk’
itttk =i —t otk ot — 4y =+ = (5.2.3)
dt J dt dt dt J dt dt dt y dt dt
The three terms on the left-hand side of the preceding equation clearly give the velocity
vector v in the fixed system, and the first three terms on the right are the components of
the velocity in the rotating system, which we shall call v/, so the equation may be written
v= v'+x'ﬂ+ 'ﬁ+z'£
dt y dt dt
The last three terms on the right represent the velocity due to rotation of the primed coor-
dinate system. We must now determine how the time derivatives of the basis vectors are
related to the rotation.

To find the time derivatives di’/dt, dj'/dt, and dk’/dt, consider Figure 5.2.3. Here is
shown the change Ai” in the unit vector i’ due to a small rotation A8 about the axis of
rotation. (The vectors j* and k’ are omitted for clarity.) From the figure we see that the
magnitude of Ai” is given by the approximate relation

|AT'] = ([i’| sin $)AB = (sin $)AO

(5.2.4)

where ¢ s the angle between i’ and w. Let At be the time interval for this change. Then
we can write

di’
dt

Ai’
At

= lim
At—0

=sing % = (sing)® (5.2.5)

Figure 5.2.3 Change in the unit vector
produced by a small rotation A6.
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Now the direction of Ai’ is perpendicular to both e and i’; consequently, from the defi-
nition of the cross product, we can write Equation 5.2.5 in vector form

‘flit' —wXi (5.2.6)

Similarly, we find dj’/dt = @ X j’, and dk'/dt = w0 X K'.
We now apply the preceding result to the last three terms in Equation 5.2.4 as follows:

x’%‘* y'fl_Jt+ z'd_l; =2 (@Xi)+y' (X j)+2(0Xx k)
=oXx({i'x+jy +k'z) 6.27)
=w X 1"

This is the velocity of P due to rotation of the primed coordinate system. Accordingly,
Equation 5.2.4 can be shortened to read

vV 4w Xt (.2.8)

or, more explicitly

(i'i] =(dr'] +toXr' = (—d—] +wx [r 5
At ) prea dt ). dt ), (5.2.9)

that is, the operation of differentiating the position vector with respect to time in the
fixed system is equivalent to the operation of taking the time derivative in the rotating
system plus the operation @ X. A little reflection shows that the same applies to any

vector Q, that is,
dQ dQ]
—= === 5.2.10
(dt]ﬁ“d (dt M+wXQ (5.2.10a)

In particular, if that vector is the velocity, then we have

dv] (dv]
awl () fexv (5.2.10b)
( dt ﬁxed dt rot

Butv=v+® X r/, so

(ﬂ] = .‘_l.] V+axXr)tox (v +oxr)
dt Jpea  \dt

d dlwXr’) ’ ’
(5], {15 emvri

dav’ dw , dr’
dt \Jmt+(g\]rot xx +wx( dt ]mt

+OXV+oX(@Xr)
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Figure 5.2.4 Geometry for the general
case of translation and rotation of the
moving coordinate system (primed
system).

Now concerning the term involving the time derivative of @, we have (dw/dt)sq =
(dw/dt),; + @ X @. But the cross product of any vector with itself vanishes, so (dw/dt)g..; =
(dw/dt),,; = . Because v’ = (dr'/dt),,; and a’ = (dv'/dt),,;, we can express the final result
as follows:

a=a’+tOXr'+20Xv+owX(wXr’) (5.2.12)

giving the acceleration in the fixed system in terms of the position, velocity, and acceler-
ation in the rotating system.

In the general case in which the primed system is undergoing both translation and
rotation (Figure 5.2.4), we must add the velocity of translation Vj to the right-hand side
of Equation 5.2.8 and the acceleration A, of the moving system to the right-hand side of
Equation 5.2.12. This gives the general equations for transforming from a fixed system
to a moving and rotating system:

v=v+w Xr'+V, (5.2.13)
a=a’+toXr'+2oXxv+eoXx(@Xr)+A, (5.2.14)

The term 2w X v’ is known as the Coriolis acceleration, and the term @ X (w X r') is
called the centripetal acceleration. The Coriolis acceleration appears whenever a
particle moves in a rotating coordinate system (except when the velocity v’ is parallel to
the axis of rotation), and the centripetal acceleration is the result of the particle being
carried around a circular path in the rotating system. The centripetal acceleration is
always directed toward the axis of rotation and is perpendicular to the axis as shown in
Figure 5.2.5. The term @ X r’is called the transverse acceleration, because it is per-
pendicular to the position vector r’. It appears as a result of any angular acceleration of
the rotating system, that is, if the angular velocity vector is changing in either magnitude
or direction, or both.
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Axis of rotation

Figure 5.2.5 Illustrating the centripetal
acceleration. o

EXAMPLE 5.2.1

A wheel of radius b rolls along the ground with constant forward speed V. Find the accel-
eration, relative to the ground, of any point on the rim.

Solution:

Let us choose a coordinate system fixed to the rotating wheel, and let the moving origin
be at the center with the x"-axis passing through the point in question, as shown in
Figure 5.2.6. Then we have

r'=i'b a'=ft"=0 v=r=0

The angular velocity vector is given by

=k'o=k’ R4
w [

Figure 5.2.6 Rotating coordinates fixed to a rolling
wheel.
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for the choice of coordinates shown; therefore, all terms in the expression for acceler-
ation vanish except the centripetal term:
a=oX(@Xr)=Koxk'oxib)
Vg ’ ’ Y4
=22k'x((k’'xi)
b
£
= ___ki X i’
b J
Vs .
=—L2(-i
b (-i")

Thus, a is of magnitude V§/b and is always directed toward the center of the rolling
wheel.

EXAMPLE 5.2.2

A bicycle travels with constant speed around a track of radius p. What is the accelera-
tion of the highest point on one of its wheels? Let V,, denote the speed of the bicycle
and b the radius of the wheel.

Solution:

We choose a coordinate system with origin at the center of the wheel and with the
x’-axis horizontal pointing toward the center of curvature C of the track. Rather than
have the moving coordinate system rotate with the wheel, we choose a system in which

22,107

the z’-axis remains vertical as shown in Figure 5.2.7. Thus, the O’x'y’z’ system rotates

[ Neo}

Figure 5.2.7 Wheel rolling on a
curved track. The z’-axis remains vertical
as the wheel turns.
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with angular velocity @, which can be expressed as

w:k'&

p
and the acceleration of the moving origin A, is given by

2
ay=r Vi

Because each point on the wheel is moving in a circle of radius b with respect to the
moving origin, the acceleration in the O’x’y’z” system of any point on the wheel is
directed toward O’ and has magnitude V/b. Thus, in the moving system we have

2
A

b

for the point at the top of the wheel. Also, the velocity of this point in the moving system
is given by

V’ = —j’ Vo
so the Coriolis acceleration is

2
20XV = 2(&1('] X (-j'Vy) = 2&?
P P

Because the angular velocity @ is constant, the transverse acceleration is zero. The cen-
tripetal acceleration is also zero because

2
wx(wxr’):%k'x(k’xbk’):O

Thus, the net acceleration, relative to the ground, of the highest point on the wheel is

Vi, v

Yo
b

a=3

5.3| Dynamics of a Particle in a Rotating
Coordinate System

The fundamental equation of motion of a particle in an inertial frame of reference is
F=ma (.3.1)

where F is the vector sum of all real, physical forces acting on the particle. In view of
Equation 5.2.14, we can write the equation of motion in a noninertial frame of reference as

F-mA, -2me X v —-moXr’'—meo X (e Xr')=ma’ (5.3.2)

All the terms from Equation 5.2.14, except a’, have been multiplied by m and transposed
to show them as inertial forces added to the real, physical forces F. The a’ term has been
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multiplied by m also, but kept on the right-hand side. Thus, Equation 5.3.2 represents the
dynamical equation of motion of a particle in a noninertial frame of reference subjected
to both real, physical forces as well as those inertial forces that appear as a result of the
acceleration of the noninertial frame of reference. The inertial forces have names corre-
sponding to their respective accelerations, discussed in Section 5.2. The Coriolis force is

Y =M@ XV’ (5.3.3)

The transverse force is
F,  =-m@Xr’ (5.3.4)

The centrifugal force is
wentrif = ~M@ X (@ X 1) (5.3.5)

The remaining inertial force ~mA, appears whenever the (x’, ', 2’) coordinate system is
undergoing a translational acceleration, as discussed in Section 5.1.

A noninertial observer in an accelerated frame of reference who denotes the accel-
eration of a particle by the vector a’ is forced to include any or all of these inertial forces
along with the real forces to calculate the correct motion of the particle. In other words,
such an observer writes the fundamental equation of motion as

F' =ma’
in which the sum of the vector forces F’ acting on the particle is given by
F'= thysical + Féor + Ft’mns + Fc’entnf - mAO

We have emphasized the real, physical nature of the force term F in Equation 5.3.2 by
appending the subscript physical to it here. F (or Fpp.,) forces are the only forces that
a noninertial observer claims are actually acting upon the particle. The inclusion of the
remaining four inertial terms depends critically on the exact status of the noninertial
frame of reference being used to describe the motion of the particle. They arise because
of the inertial property of the matter whose motion is under investigation, rather than from
the presence or action of any surrounding matter.

The Coriolis force is particularly interesting. It is present only if a particle is moving
in a rotating coordinate system. Its direction is always perpendicular to the velocity vector
of the particle in the moving system. The Coriolis force thus seems to deflect a moving
particle at right angles to its direction of motion. (The Coriolis force has been rather fan-
cifully called “the merry-go-round force.” Try walking radially inward or outward on a
moving merry-go-round to experience its effect.) This force is important in computing
the trajectory of a projectile. Coriolis effects are responsible for the circulation of air
around high- or low-pressure systems on Earth’s surface. In the case of a high-pressure
area,' as air spills down from the high, it flows outward and away, deflecting toward the
right as it moves into the surrounding low, setting up a clockwise circulation pattern. In
the Southern Hemisphere the reverse is true.

' A high-pressure system is essentially a bump in Earth’s atmosphere where more air is stacked up above some
region on Earth’s surface than it is for surrounding regions.
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Figure 5.3.1 Inertial forces acting on a mass
m moving radially outward on a platform
rotating with angular velocity e and angular
acceleration @ < 0. The xy-axes are fixed. The
direction of @ is out of the paper.

The transverse force is present only if there is an angular acceleration (or decelera-
tion) of the rotating coordinate system. This force is always perpendicular to the radius
vector r’ in the rotating coordinate system.

The centrifugal force is the familiar one that arises from rotation about an axis. It
is directed outward away from the axis of rotation and is perpendicular to that axis. These
three inertial forces are illustrated in Figure 5.3.1 for the case of a mass m moving radi-
ally outward on a rotating platform, whose rate of rotation is decreasing (& < 0). The
z-axis is the axis of rotation, directed out of the paper. That is also the direction of the
angular velocity vector @. Because r’, the radius vector denoting the position of m in
the rotahng system, is perpendicular to @, the magmtude of the centrifugal force is
mv’ @”. Tn general if the angle between @ and r’ is 6, then the magnitude of the cen-
tripetal force is mr’e” sin @ where * sin @ is the shortest distance from the mass to the
axis of rotation.

EXAMPLE 5.3.1

A bug crawls outward with a constant speed v” along the spoke of a wheel that is rotat-
ing with constant angular velocity @ about a vertical axis. Find all the apparent forces
acting on the bug (see Figure 5.3.2).

Solution:
First, let us choose a coordinate system fixed on the wheel, and let the 2’-axis point along
the spoke in question. Then we have

-’ r.’

=ix"=1v
¥=0

for the velomty and acceleration of the bug as described in the rotating system. If we
choose the z"-axis to be vertical, then

ow=kao
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Centrifugal
force

Figure 5.3.2 Forces on an insect crawling outward
along a radial line on a rotating wheel.

The various forces are then given by the following:

2me X’ =-2mev'(k’Xi)=-2mav’js  Coriolis force

-moXr' =0 (o = constant) transverse force
—mw X (0 Xr)=-mo’[k x &’ Xix)] centrifugal force
=-mo*k’ X jx’)
=ma?x'i’

Thus, Equation 5.3.2 reads

rer 2 rer 0

F - 2ma0j +mo'xi =

Here F is the real force exerted on the bug by the spoke. The forces are shown in
Figure 5.3.2.

EXAMPLE 5.3.2

In Example 5.3.1, find how far the bug can crawl before it starts to slip, given the coef-
ficient of static friction y, between the bug and the spoke.

Solution:

Because the force of friction F has a maximum value of ysmg, slipping starts when
|F|=pmg

or

22

[@mwv’ ) + mw™’)]? = ymg

On solving for 2/, we find

[u 4o (o)]
60

for the distance the bug can crawl before slipping.
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EXAMPLE 5.3.3

A smooth rod of length [ rotates in a plane with a constant angular velocity e about an
axis fixed at the end of the rod and perpendicular to the plane of rotation. A bead of mass
m is initially positioned at the stationary end of the rod and given a slight push such that
its initial speed directed down the rod is € = @l (see Figure 5.3.3). Calculate how long
it takes for the bead to reach the other end of the rod.

Solution:

The best way to solve this problem is to examine it from the perspective of an (', y) frame
of reference rotating with the rod. If we let the x"-axis lie along the rod, then the prob-
lem is one-dimensional along that direction. The only real force acting on the bead is F,
the reaction force that the rod exerts on the bead. It points perpendicular to the rod,
along the y’-direction as shown in Figure 5.3.3. F has no 1"-component because there
is no friction. Thus, applying Equation 5.3.2 to the bead in this rotating frame, we obtain

Fj’ —2mok’ x #'i’ - mok’ x (0k’ x x'i") = m&'i’

Fj-2mwi’j + mo®y'i’ = m¥'¥’
i i

The first inertial force in the preceding equation is the Coriolis force. It appears in the
expression because of the bead’s velocity %1’ along the x"-axis in the rotating frame. Note
that it balances out the reaction force F that the rod exerts on the bead. The second iner-
tial force is the centrifugal force, m@®’. From the bead’s perspective, this force shoves
it down the rod. These ideas are embodied in the two scalar equivalents of the above
vector equation

F =2mwz’ mo’y =m¥’

Solving the second equation above yields x’(¢), the position of the bead along the rod as
a function of time

x’(t) = Ae”™ + Be™™
#'(t) = wAe” — wBe™™

Figure 5.3.3 Bead sliding along a smooth ot
rod rotating at constant angular velocity e
about an axis fixed at one end.
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The boundary conditions, x’(f =0) =0 and %’ (t =0) = ¢, allow us to determine the con-
stants A and B

¥(0)=0=A+B ' (0)=€e =w(A-B)
A:—B:i
2w

which lead to the explicit solution
xl(t) - %(ewt _e—a)t)
= £ sinh ot
)
The bead flies off the end of the rod at time T, where

2(T) = — sioh &T =1
o
T= lsinh"1 (ﬂ)
o €
Because the initial speed of the bead is € = wl, the preceding equation becomes

T= 1 sinh (1) = 088
w w

54| Effects of Earth’s Rotation

Let us apply the theory developed in the foregoing sections to a coordinate system that
is moving with the Earth. Because the angular speed of Earth’s rotation is 27 radians per
day, or about 7.27 x 10”° radians per second, we might expect the effects of such rotation
to be relatively small. Nevertheless, it is the spin of the Earth that produces the equato-
rial bulge; the equatorial radius is some 13 miles greater than the polar radius.

Static Effects: The Plumb Line

Let us consider the case of a plumb bob that is normally used to define the direction of
the local “vertical” on the surface of the Earth. We discover that the plumb bob hangs
perpendicular to the local surface (discounting bumps and surface irregularities). Because
of the Earth’s rotation, however, it does not point toward the center of the Earth unless
it is suspended somewhere along the equator or just above one of the poles. Let us
describe the motion of the plumb bob in a local frame of reference whose origin is at the
position of the bob. Our frame of reference is attached to the surface of the Earth. It is
undergoing translation as well as rotation. The translation of the frame takes place along
a circle whose radius is p =, cos A, where r, is the radius of the Earth and A is the geo-
centric latitude of the plumb bob (see Figure 5.4.1).
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Figure 5.4.1 Gravitational force mg,,
inertial force —mA,, and tension T acting
on a plumb bob hanging just above the
surface of the Earth at latitude A.

Its rate of rotation is @, the same as that of the Earth about its axis. Let us now exam-
ine the terms that make up Equation 5.3.2. The acceleration of the bob a’ is zero; the bob
is at rest in the local frame of reference. The centrifugal force on the bob relative to our
local frame is zero because r’ is zero; the origin of the local coordinate system is centered
on the bob. The transverse force is zero because @ = 0; the rotation of the Earth is con-
stant. The Coriolis force is zero because v/, the velocity of the plumb bob, is zero; the
plumb bob is at rest in the local frame. The only surviving terms in Equation 5.3.2 are
the real forces F and the inertial term —mA o, which arises because the local frame of ref-
erence is accelerating. Thus,

F-mA,=0 (5.4.1)

The rotation of the Earth causes the acceleration of the local frame. In fact, the sit-
uation under investigation here is entirely analogous to that of Example 5.1.2—the
linear accelerometer. There, the pendulum bob did not hang vertically because it expe-
rienced an inertial force directed opposite to the acceleration of the railroad car. The
case here is almost completely identical. The bob does not hang on a line pointing toward
the center of the Earth because the inertial force —~mA throws it outward, away from
Earth’s axis of rotation. This force, like the one of Example 5.1.2, is also directed oppo-
site to the acceleration of the local frame of reference. It arises from the centnpetal accel-
eration of the local frame toward Earth’s axis. The magnitude of this force is ma°r, cos A.
It is a maximum when A =0 at the Earth’s equator and a minimum at either pole when
A= +90° It is instructive to compare the value of the acceleration portion of this term,
Ag=w’r, cos A, to g, the acceleration due to gravity. At the equator, it is 3.4 x 10~z or
less than 1% of g.

F is the vector sum of all real, physical forces acting on the plumb bob. All forces,
including the inertial force ~mA y, are shown in the vector diagram of Figure 5.4.2a. The
tension T in the string balances out the real gravitational force mg, and the inertial force
—mA,. In other words

(T+mgo)-mAy =0 (5.4.2)

Now, when we hang a plumb bob, we normally think that the tension T balances out the
local force of gravity, which we call mg. We can see from Equation 5.4.2 and Figure 5.4.2b
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T
€
—mAO mg() mg
mgo

—mAO
Figure 5.4.2 (a) Forces acting on a plumb
bob at latitude A. (b) Forces defining the
weight of the plumb bob, mg. @ ®

that mg is actually the vector sum of the real gravitational force mg, and the inertial
force ~mA,. Thus,

mgo—mg—mAy=0 S g=go—Ay (5.4.3)

As can be seen from Figure 5.4.2b, the local acceleration g due to gravity contains a term
A, due to the rotation of the Earth. The force mgy is the true force of gravity and is
directed toward the center of the Earth. The inertial reaction —mA,, directed away from
Earth’s axis, causes the direction of the plumb line to deviate by a small angle € away from
the direction toward Earth’s center. The plumb line direction defines the local direction
of the vector g. The shape of the Earth is also defined by the direction of g. Hence, the
plumb line is always perpendicular to Earth’s surface, which is not shaped like a true
sphere but is flattened at the poles and bulged outward at the equator as depicted in
Figure 5.4.1.

We can easily calculate the value of the angle €. It is a function of the geocentric lat-
itude of the plumb bob. Applying the law of sines to Figure 5.4.2b, we have

;ine - sinA (5.4.48)
mo°r,cosA  mg
or, because € is small
2 2
sine~e=2"Tecos A sind = 0)2 " sin2A (5.4.4b)
g g

Thus, € vanishes at the equator (A = 0) and the poles (A =+90°) as we have already sur-
mised. The maximum deviation of the direction of the plumb line from the center of the
Earth occurs at A =45° where

2
a’r,

P 1.7%107® radian =~ 0.1° (5.4.4c)
g

€ =
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In this analysis, we have assumed that the real gravitational force mg, is constant and
directed toward the center of the Earth. This is not valid, because the Earth is not a true
sphere. Its cross section is approximately elliptical as we indicated in Figure 5.4.1; there-
fore, g, varies with latitude. Moreover, local mineral deposits, mountains, and so on,
affect the value of gy. Clearly, calculating the shape of the Earth (essentially, the angle €
as a function of A) is difficult. A more accurate solution can only be obtained numerically.
The corrections to the preceding analysis are small.

Dynamic Effects: Motion of a Projectile

The equation of motion for a projectile near the Earth’s surface (Equation 5.3.2) can be
written

m¥' =F+mg,—mA;-2me X' -mowX (o Xr’) (5.4.5)

where F represents any applied forces other than gravity. From the static case consid-
ered above, however, the combination mg, — mA  is called mg; hence, we can write the
equation of motion as

mi’ =F+mg-2me X' -mwX(@wXr’) (5.4.6)

Let us consider the motion of a projectile. If we ignore air resistance, then F = 0.
Furthermore, the term —me X (@ X r’) is very small compared with the other terms,
so we can ignore it. The equation of motion then reduces to

m¥’ =mg—-2meo X ¥’ 5.4.7)

in which the last term is the Coriolis force.

To solve the preceding equation we choose the directions of the coordinate axes
O’x’y’z’ such that the z’-axis is vertical (in the direction of the plumb line), the x"-axis is
to the east, and the y’-axis points north (Figure 5.4.3). With this choice of axes, we have

g=-Kg (5.4.8)
The components of @ in the primed system are
o, =0 ®, =®cos A o, = osinA (5.4.9)
The cross product is, therefore, given by

il jl kl
wXi'=lo, o, o (5.4.10)
x-:l gl z-l

=i'(w% cos A -y sinA)+ j' (@i sinAd) + k'(~wi’ cos 1)
Using the results for @ X ¥’ in Equation 5.4.10 and canceling the m’s and equating com-
ponents, we find
%’ =-2mw(%" cosA— ¢’ sind) (5.4.11a)
§’ =—2w(x" sinA) (54.11b)
Z'=—g+2mwi’cosA (5.4.11c)
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z’ (Vertical)

Figure 5.4.3 Coordinate axes for
analyzing projectile motion.

for the component differential equations of motion. These equations are not of the sep-
arated type, but we can integrate once with respect to ¢ to obtain

%’ =-2m(z" cosA—y’ sinA) + % (5.4.12a)
i’ =201’ sin A+, (5.4.12b)
z'=—gt+2mx" cosA+ 2 (5.4.12¢)

The constants of integration %, %, and Z; are the initial components of the velocity. The
values of 4" and 2’ from Equations 5.4.12b and ¢ may be substituted into Equation 5.4.11a.
The result is

%’ = 2mgt cos A —2m(2; cosA— 1 sind) (5.4.13)
where terms involving @" have been ignored. We now integrate again to get
' = wgt® cos A —2wt(%] cos A— g} sinA) + % (54.14)
and finally, by a third integration, we find x” as a function of t:
x’'(t) = %a)gts cos A — wt?(3] cos A — g sind) + gt +x) (5.4.15a)
The preceding expression for z” may be inserted into Equations 5.4.12b and c. The result-
ing equations, when integrated, yield
y'(t) = it — wist? sinAd +y; (5.4.15b)
Z(t) = -5 gt + 4t + wigt® cosA+z (54.15¢)
where, again, terms of order @ have been ignored.

In Equations 5.4.15a—c, the terms involving @ express the effect of Earth’s rotation
on the motion of a projectile in a coordinate system fixed to the Earth.
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| EXAMPLE 5.4.1 B
Falling Body

Suppose a body is dropped from rest at a height h above the ground. Then at time
t =0 we have %, =y, = 2, =0, and we set x; = y; =0,z = h for the initial position.
Equations 5.4.15a—c then reduce to

x'(t) = %cogt3 cosA
y' () =0
Z(t)= —% gt2 +h

Thus, as it falls, the body drifts to the east. When it hits the ground (2’ = 0), we see
that £* = 2h/g, and the eastward drift is given by the corresponding value of x'(t),

namely,
3 \V2
w(&] cosA
g

For a height of, say, 100 m at a latitude of 45°, the drift is
5(7.27x107 s7)(8x100° m*/9.8 m.s*)"* cos45° =1.55x10 m =155 cm

X, =

cof

Because Earth turns to the east, common sense would seem to say that the body should
drift westward. Can the reader think of an explanation?

EXAMPLE 5.4.2

Deflection of a Rifle Bullet

Consider a projectile that is fired with high initial speed v, in a nearly horizontal direc-
tion, and suppose this direction is east. Then % = v, and g = %, = 0. If we take the
origin to be the point from which the projectile is fired, then x; = y; = z; =0 at time
¢ = 0. Equation 5.4.15b then gives

y')= —wvot2 sinA

which says that the projectile veers to the south or to the right in the Northern
Hemisphere (4> 0) and to the left in the Southern Hemisphere (4<0). If H is the hor-
izontal range of the projectile, then we know that H = vyt,, where ¢, is the time of flight.
The transverse deflection is then found by setting ¢ = ¢, = H/v, in the above expression
for y'(t). The result is

wH?

Gy

A=

[sin 4]

for the magnitude of the deflection. This is the same for any direction in which the pro-
jectile is initially aimed, provided the trajectory is flat. This follows from the fact that
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the magnitude of the horizontal component of the Coriolis force on a body traveling
parallel to the ground is independent of the direction of motion. (See Problem 5.12.)
Because the deflection is proportional to the square of the horizontal range, it becomes
of considerable importance in long-range gunnery.

*5.5| Motion of a Projectile in a Rotating Cylinder

Here is one final example concerning the dynamics of projectiles in rotating frames of
reference. The example is rather involved and makes use of applied numerical techniques.
We hope its inclusion gives you a better appreciation for the connection between the
geometry of straight-line, force-free trajectories seen in an inertial frame of reference
and the resulting curved geometry seen in a noninertial rotating frame of reference.
The inertial forces that appear in a noninertial frame lead to a curved trajectory that may
be calculated from the perspective of an inertial frame solely on the basis of geometrical
considerations. This must be the case if the validity of Newton's laws of motion is to be
preserved in noninertial frames of reference. Such a realization, although completely
obvious with hindsight, should not be trivialized. It was ultimately just this sort of real-
ization that led Einstein to formulate his general theory of relativity.

EXAMPLE 5.5.1

In several popular science fiction novels® spacecraft capable of supporting entire pop-
ulations have been envisioned as large, rotating toroids or cylinders. Consider a cylin-
der of radius R = 1000 km and, for our purposes here, infinite length. Let it rotate about
its axis with an angular velocity of @ = 0.18%s. It completes one revolution every 2000 s.
This rotation rate leads to an apparent centrifugal acceleration for objects on the inte-
rior surface of @R equal to 1 g. Imagine several warring factions living on the interior
of the cylinder. Let them fire projectiles at each other.

(a) Show that when projectiles are fired at low speeds (v << @R) and low “altitudes”
at nearby points (say, Ar’ < R/10), the equations of motion governing the result-
ing trajectories are identical to those of a similarly limited projectile on the sur-
face of the Earth.

(b) Find the general equations of motion for a projectile of unlimited speed and range
using cylindrical coordinates rotating with the cylinder.

(¢) Find the trajectory h versus ¢ of a projectile fired vertically upward with a velocity
v’ = R in this noninertial frame of reference. h = R — 1’ is the altitude of the pro-
jectile and ¢’ is its angular position in azimuth relative to the launch point. Calculate
the angle @ where it lands relative to the launch point. Also, calculate the maximum
height H reached by the projectile.

*For example, Rendezvous with Rama and Rama IT by Arthur C. Clarke (Bantam Books) or Titan by john Varley
(Berkeley Books).
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Figure 5.5.1 Coordinates denoted by unit
vectors ', j’, k’ on the interior surface of a
rotating cylinder. Unit vectors e,, ey, €,
denote cylindrical coordinates. Each set is
embedded in and rotates with the cylinder.
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(d) Finally, calculate h versus ¢/ solely from the geometrical basis that an inertial observer

would employ to predict what the noninertial observer would see. Show that this
result agrees with that of part (c), calculated from the perspective of the noniner-
tial observer. In particular, show that ® and H agree.

Solution:

(a) Because we first consider short, low-lying trajectories, we choose Cartesian coor-

dinates (x",y’,z") denoted by the unit vectors i, j', k’ attached to and rotating with
the cylinder shown in Figure 5.5.1.

The coordinate system is centered on the launch point. Because no real force
is acting on the projectile after it is launched, the mass m common to all remaining
terms in Equation 5.3.2 can be stripped and the equation then written in terms of
accelerations only

“A)—-20XV -0 X (wXr)=a (5.5.1)

The transverse acceleration is zero because the cylinder rotates at a constant rate.
The first term on the left is the acceleration of the coordinate system origin. It is
given by

A,= 0’RK (5.5.2)
The second term is the Coriolis acceleration and is given by

ac, = 20XV =2-j )X (it +jy + k')

5.5.3
=201’k — 202’1’ ( )
The third term is the centrifugal acceleration given by
By = ~J O X[ @) X ']
— j/w X [(j/w) X (ilx/+j/y/ +k/z/)]
=jox(k'wx’ +i'wz) (5.5.4)

= _i/w2x/__k/w2z/
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After gathering all appropriate terms, the x’-, 4’-, and z’-components of the result-
ant acceleration become

¥ =20% + 0’
ij'=0 (5.5.5)
¥ =201’ + 0’2’ -0’R
If projectiles are limited in both speed and range such that
|%|~|2'| < R |x’|~]2’| < R (5.5.6)

and recalling that the rotation rate of the cylinder has been adjusted to o'R= g, the
above acceleration components reduce to

¥ =0 ii’=0 5 =~ —g (55.7)

which are equivalent to the equations of motion for a projectile of limited speed and
range on the surface of the Earth.

(b) In this case no limit is placed on projectile velocity or range. We describe the motion
using cylindrical coordinates (+/, ¢/, 2’) attached to and rotating with the cylinder as
indicated in Figure 5.5.1. 7 denotes the radial position of the projectile measured from
the central axis of the cylinder; ¢’ denotes its azimuthal position and is measured from
the radius vector directed outward to the launch point; 2’ represents its position along
the cylinder (2" = 0 corresponds to the z’-position of the launch point). The overall
position, velocity, and acceleration of the projectile in cylindrical coordinates are
given by Equations 1.12.1-1.12.3. We can use these relations to evaluate all the accel-
eration terms in Equation 5.5.1. The term A, is zero, because the rotating coordi-
nate system is centered on the axis of rotation. The Coriolis acceleration is

20 X v’ = 2we,, X (e, +1'de, +i'e,)
=2wi'(e, X e,.)+2wr (e, X ey) (5.5.8)
= 2wi'e, — 20r'Pe,,
The centrifugal acceleration is
o X (0X1r)=wn’e, X[e, X(r'e. +ze,)]
= w’e, X r'ey (53.53.9)
_— (02 T/ er
We can now rewrite Equation 5.5.1 in terms of components by gathering together all
the previous corresponding elements and equating them to those in Equation 1.12.3
P —r'¢’? = 20r'¢’ + 0*r’
29’ +1'¢’ = 207’ (5.5.10)
=0

In what follows we ignore the z’-equation of motion because it contains no nonzero
acceleration terms and simply gives rise to a “drift” along the axis of the cylinder
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of any trajectory seen in the ¢/ plane. Finally, we rewrite the radial and azimuthal
equations in such a way that we can more readily see the dependency of the accel-
eration upon velocities and positions

= 2(01”¢’ + ((02 + ¢’2)r' (5.5.11a)
¥=-2 0+ (5.5.11b)
r

(¢) Before solving these equations of motion for a projectile fired vertically upward
(from the viewpoint of a cylinder dweller), we investigate the situation from the
point of view of an inertial observer located outside the rotating cylinder. The rota-
tional speed of the cylinder is @R. If the projectile is fired vertically upward with
a speed @R from the point of view of the noninertial observer, the inertial observer
sees the projectile launched with a speed v = V2 @R at 45° with respect to the ver-
tical. Furthermore, according to this observer, no real forces act on the projectile.
Travel appears to be in a straight line. Its flight path is a chord of a quadrant. This
situation is depicted in Figure 5.5.2.

As can be seen in Figure 5.5.2, by the time the projectile reaches a point in its
trajectory denoted by the vector v/, the cylinder has rotated such that the launch point
a has moved to the position labeled b. Therefore, the inertial observer concludes
that the noninertial observer thinks that the projectile has moved through the angle
¢’ and attained an altitude of R — r’. When the projectile lands, the noninertial
observer finds that the projectile has moved through a total angle of ® = #/2 - T,
where T'is the total time of flight. But T=L/v = w/EB/(«/E wR) =1/, or ®T =1 radian.
Hence, the apparent deflection angle should be ® = /2 — 1 radians, or about 32.7°.
The maximum height reached by the projectile occurs midway through its trajectory
when ot + ¢’ = 7t/4 radians. At this point ' =R/+/2 or H=R - R/¥/2 =290 km.
At least, this is what the inertial observer believes the noninertial observer would
see. Let us see what the noninertial observer does see according to Newton’s laws
of motion.

Figure 5.5.2 Trajectory of a projectile
launched inside a rotating cylinder at 45°
with respect to the “vertical” from the
point of view of an inertial observer.




(d)

Figure 5.5.3 Trajectory of a
projectile fired vertically upward
(toward the central axis) from the
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We have used Mathematica to solve the differential equations of motion
(Equation 5.5.11a and b) numerically as in Example 4.3.2 and the result is shown
in Figure 5.5.3.

It can be seen that the projectile is indeed launched vertically upward according
to the rotating observer. But the existence of the centrifugal and Coriolis inertial
forces causes the projectile to accelerate back toward the surface and toward the east,
in the direction of the angular rotation of the cylinder. Note that the rotating observer
concludes that the vertically launched projectile has been pushed sideways by the
Coriolis force such that it lands 32.7° to the east of the launch point. The centrifugal
force has limited its altitude to a maximum value of 290 km. Each value is in com-
plete agreement with the conclusion of the noninertial observer. Clearly, an intel-
ligent military, aware of the dynamical equations of motion governing projectile
trajectories on this cylindrical world, could launch all their missiles vertically upward
and hit any point around the cylinder by merely adjusting launch velocities. (Positions
located up or down the cylindrical axis could be hit by tilting the launcher in that
direction and firing the projectile at the required initial and thereafter constant
axial velocity z,.)

The inertial observer calculates the trajectory seen by the rotating observer in the
following way: first, look at Figure 5.5.4. It is a blow-up of the geometry illustrated
in Figure 5.5.2.
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Figure 5.5.4 Geometry used to calculate the
trajectory seen by a rotating observer according to an
inertial observer.
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¢ is the azimuthal angle of the projectile as measured in the fixed, inertial frame.
The azimuthal angle in the noninertial frame is ¢ = ¢ — wt (see Figure 5.5.2). As can
be seen from the geometry of Figure 5.5.4, we can calculate the functional depend-
ency of ¢ upon time

L(t)sind5° _ L)
R—L(t) cos45° /2R —L(¢)

tano(t) =

J2 wRt ot (6.5.12)

" \BR-20R l-ot

The projectile appears to be deflected toward the east by the angle ¢ as a function
of time given by

o'(t) = §(t) — ot = tan_l(%] — ot (55.13)

The dependency of +* on time is given by
r'2(t)=[L(¢) sin45°]% +[R — L(t) cos45°]>
=L(#)? +R?-J2L®R
= 2(wRt)* +R* -2 (J20R)R (55.14)
=R?[1-20t(1- wt)]
. r'(t) = R[1 - 20t(1 - wt)]"2

These final two parametric equations () and ¢/(t) describe a trajectory that the iner-
tial observer predicts the noninertial observer should see. If we let time evolve
and then plot h = R — +’ versus ¢/, we obtain exactly the same trajectory shown in
Figure 5.5.3. That trajectory was calculated by the noninertial observer who used
Newton’s dynamical equations of motion in the rotating frame of reference. Thus,
we see the equivalence between the curved geometry of straight lines seen from the
perspective of an accelerated frame of reference and the existence of inertial forces
that produce that geometry in the accelerated frame.

ﬁl The Foucault Pendulum

In this section we study the effect of Earth’s rotation on the motion of a pendulum that
is free to swing in any direction, the so-called spherical pendulum. As shown in Figure 5.6.1,
the applied force acting on the pendulum bob is the vector sum of the weight mg and the
tension S in the cord. The differential equation of motion is then

mi’ =mg+S-2me X i’ (5.6.1)

Here we ignored the term —me X (@ X r'). It is vanishingly small in this context. Previously,
we worked out the components of the cross product @ X r’ (see Equation 5.4.10).
Now the 2’- and 4’-components of the tension can be found simply by noting that the
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Figure 5.6.1 The Foucault pendulum. x

direction cosines of the vector 8 are —x"/l, —y'/l, and —(I — 2’)/l, respectively. Consequently
S, =—x'S/l, S, =—y’S/l, and the corresponding components of the differential equation
of motion (5.6.1) are

._x/

l

’

i’ = _ly S —2mmx’ sinA (5.6.2b)

mix’ =

S—2maw(z’ cosA -7’ sinl) (5.6.2a)

my

We are interested in the case in which the amplitude of oscillation of the pendulum is small
so that the magnitude of the tension § is very nearly constant and equal to mg. Also, we
shall ignore 2’ compared with §’in Equation 5.6.2a. The xy” motion is then governed by
the following differential equations:

i = —%x' +20% (5.6.3a)
j' = -%y' —20'%’ (5.6.3b)

in which we have introduced the quantity &f = @ sin A = @,, which is the local vertical
component of Earth’s angular velocity.

Again we are confronted with a set of differential equations of motion that are not in
separated form. A heuristic method of solving the equations is to transform to a new coor-
dinate system Oxyz that rotates relative to the primed system in such a way as to cancel
the vertical component of Earth’s rotation, namely, with angular rate —@" about the ver-
tical axis as shown in Figure 5.4.3. Thus, the unprimed system has no rotation about the
vertical axis. The equations of transformation are

x’=x cosw’ + y sinw’ (5.6.4a)
y’ =—x sinwt + y cosw’t (5.6.4b)

On substituting the expressions for the primed quantities and their derivatives from the
preceding equations into Equations 5.6.3a and b, the following result is obtained, after
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collecting terms and dropping terms involving @',
(5&+%x)cosw’t+(g+%y)sinw’t =0 (5.6.5)

and an identical equation, except that the sine and cosine are reversed. Clearly, the preceding
equation is satisfied if the coefficients of the sine and cosine terms both vanish, namely,

X+ %x =0 (5.6.6a)
g+ % y=0 (5.6.6b)

These are the differential equations of the two-dimensional harmonic oscillator discussed
previously in Section 4.4. Thus, the path, projected on the xy plane, is an ellipse with fixed
orientation in the unprimed system. In the primed system the path is an ellipse that
undergoes a steady precession with angular speed @’ = @sin A.

In addition to this type of precession, there is another natural precession of the
spherical pendulum, which is ordinarily much larger than the rotational precession under
discussion. However, if the pendulum is carefully started by drawing it aside with a thread
and letting it start from rest by burning the thread, the natural precession is rendered neg-
ligibly small.®

The rotational precession is clockwise in the Northern Hemisphere and counter-
clockwise in the Southern. The period is 27/ = 27/(@sin A) = 24 /sin A h. Thus, at a lat-
itude of 45°, the period is (24/0.707) h = 33.94 h. The result was first demonstrated by
the French physicist Jean Foucault in Paris in the year 1851. The Foucault pendulum has
come to be a traditional display in major planetariums throughout the world.

Problems

5.1 A 120-Ib person stands on a bathroom spring scale while riding in an elevator. If the eleva-
tor has (a) upward and (b) downward acceleration of g/4, what is the weight indicated on the
scale in each case?

5.2  Anultracentrifuge has a rotational speed of 500 rps. (a) Find the centrifugal force on a 1-ug
particle in the sample chamber if the particle is 5 cm from the rotational axis. (b) Express
the result as the ratio of the centrifugal force to the weight of the particle.

5.3 Aplumb lineis held steady while being carried along in a moving train. If the mass of the plumb
bob is m, find the tension in the cord and the deflection from the local vertical if the train is
accelerating forward with constant acceleration g/10. (Ignore any effects of Earth’s rotation.)

5.4 If, in Problem 5.3, the plumb line is not held steady but oscillates as a simple pendulum, find
the period of oscillation for small amplitude.

5.5 A hauling truck is traveling on a level road. The driver suddenly applies the brakes, causing
the truck to decelerate by an amount g/2. This causes a box in the rear of the truck to slide
forward. If the coefficient of sliding friction between the box and the truckbed is é find the
acceleration of the box relative to (a) the truck and (b) the road.

*The natural precession will be discussed briefly in Chapter 10.
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5.6 The position of a particle in a fixed inertial frame of reference is given by the vector

5.7

5.8

5.9

5.10

5.11

5.12

5.13

r=i(xy + R cos Q¢) + jR sin Q¢

where x4, R, and Q are constants.

(a) Show that the particle moves in a circle with constant speed.

(b) Find two coupled, first-order differential equations of motion that relate the compo-
nents of position, x” and ¢/, and the components of velocity, z” and ¥, of the particle
relative to a frame of reference rotating with an angular velocity @ =ka.

(¢) Letting the fixed and rotating frames of reference coincide at times ¢ = 0 and let-
ting «'=x" +4y’, find ¥’(¢), assuming that Q # —@. (Note: i = J-1)

A new asteroid is discovered in a circular orbit or radius 4”° AU about the Sun.* Its period
of revolution is precisely 2 years. Assume that at £ = 0 it is at its distance of closest approach
to the Earth.

(a) Find its coordinates [x(¢), y(£)] in a frame of reference fixed to Earth but whose axes
remain fixed in orientation relative to the Sun. Assume that the x-axis points toward the
asteroid at £ = 0.

(b) Calculate the velocity of the asteroid, relative to Earth, at ¢ = 0.

(¢) Find the x- and y-components of the acceleration of the asteroid in this frame of ref-
erence. Integrate them twice to show that the resulting positions as a function of time
agree with part (a).

(d) Plot the trajectory of the asteroid as seen from the rotating frame of reference attached
to Earth for its 2-year orbital period. (Hint: Use Mathematica’s ParametricPlot graph-
ing tool.)

A cockroach crawls with constant speed in a circular path of radius b on a phonograph
turntable rotating with constant angular speed . The circular path is concentric with the
center of the turntable. If the mass of the insect is m and the coefficient of static friction
with the surface of the turntable is y,, how fast, relative to the turntable, can the cockroach
crawl before it starts to slip if it goes (a) in the direction of rotation and (b) opposite to the
direction of rotation?

In the problem of the bicycle wheel rounding a curve, Example 5.2.2, what is the acceler-
ation relative to the ground of the point at the very front of the wheel?

If the bead on the rotating rod of Example 5.3.3 is initially released from rest (relative to
the rod) at its midpoint calculate (a) the displacement of the bead along the rod as a func-
tion of time; (b) the time; and (c¢) the velocity (relaive to the rod) when the bead leaves
the end of the rod.

On the salt flats at Bonneville, Utah (latitude = 41°N) the British auto racer John Cobb in
1947 became the first man to travel at a speed of 400 mph on land. If he was headed due
north at this speed, find the ratio of the magnitude of the Coriolis force on the racing car
to the weight of the car. What is the direction of the Coriolis force?

A particle moves in a horizontal plane on the surface of the Earth. Show that the magni-
tude of the horizontal component of the Coriolis force is independent of the direction of
the motion of the particle.

If a pebble were dropped down an elevator shaft of the Empire State Building (h = 1250 ft,
latitude = 41°N), find the deflection of the pebble due to Coriolis force. Assume no air
resistance.

“The radius of the Earth’s nearly circular orbit is 1 AU, or 1 astronomical unit. Both the Earth and the aster-
oid revolve counterclockwise in a common plane about the Sun as seen from the north pole star, Polaris.
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In Yankee Stadium, New York, a batter hits a baseball a distance of 200 ft in a fairly flat tra-
jectory. Is the amount of deflection due to the Coriolis force alone of much importance?
(Let the angle of elevation be 15°.) Assume no air resistance.

Show that the third derivative with respect to time of the position vector (jerk) of a parti-
cle moving in a rotating coordinate system in terms of appropriate derivatives in the rotat-
ing system is given by

F=F+30 X +3w X +d Xr +3w X (w X i)
+OX (WX T)+20X (@ X 1) —w’ (0w X1’)

A bullet is fired straight up with initial speed vg. Assuming g is constant and ignoring air
resistance, show that the bullet will hit the ground west of the initial point of upward
motion by an amount 4@ v}* cos A/3g”, where A is the latitude and @ is Earth’s angular
velocity.

If the bullet in Problem 5.16 is fired due east at an elevation angle ¢ from a point on Earth
whose latitude is +4, show that it will strike the Earth with a lateral deflection given by
4o}’ sin A sin® a cos a/g’.

A satellite travels around the Earth in a circular orbit of radius R. The angular speed of a satel-
lite varies inversely with its distance from Earth according to w® =k/R’, where k is a constant.
Observers in the satellite see an object moving nearby, also presumably in orbit about Earth.
To describe its motion, they use a coordinate system fixed to the satellite with x-axis pointing
away from Earth and y-axis pointing in the direction in which the satellite is moving. Show
that the equations of motion for the nearby object with respect to the observers’ frame of ref-
erence are given approximately by

i-20§-3wx=0
ij+2wi =0
(see Example 2.3.2 for the force of gravity that Earth exerts on an object at a distance r from
it and ignore the gravitational effect of the satellite on the object).
The force on a charged particle in an electric field E and a magnetic field B is given by

F=qg(E+vXB)

in an inertial system, where g is the charge and v is the velocity of the particle in the iner-
tial system. Show that the differential equation of motion referred to a rotating coordinate
system with angular velocity @ = —(g/2m)B is, for small B

mi’ =qE
that is, the term involving B is eliminated. This result is known as Larmor’s theorem.

Complete the steps leading to Equation 5.6.5 for the differential equation of motion of the
Foucault pendulum.

The latitude of Mexico City is approximately 19°N. What is the period of precession of a
Foucault pendulum there?

Work Example 5.2.2 using a coordinate system that is fixed to the bicycle wheel and rotates
with it, as in Example 5.2.1.
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Computer Problems

C5.1

C5.2

C53

(a) Solve parts (c) and (d) of Example 5.5.1. Plot the trajectory h versus ¢’ as seen from
each observers (inertial and noninertial) point of view, as explained in the text. Your graphs
should be identical to those in Figure 5.5.1. (b) Repeat part (a) when the missile is fired
with an initial velocity of v’ = (2wR/n)e, — @Rey [see Figure 5.5.1]. In this case, what is
the maximum altitude H attained by the missile and the angle ® where it lands relative to
the launch point?

A small mass is free to move on a frictionless horizontal surface. Let the horizontal surface
be a circle of radius R = 1 m, and let it rotate counterclockwise about a vertical axis with a
constant angular velocity @ = 1 rad/s. Let the coordinates of the mass be described by a
rectangular (x,y) coordinate system centered on the axis of the rotating system and rotat-
ing with it. () Find the equations of motion of the mass in terms of the rotating (x,y) coor-
dinate system. (b) If the initial position of the mass is (—R, 0), what initial y-component of
the velocity (relative to the rotating frame) is necessary if the mass is to be projected across
a diameter of the circular surface, from the perspective of a fixed, inertial observer? (c) Find
an expression in terms of integersn = 1,2, 3 . . . for the initial x-component of the veloci-
ties that results in the mass traversing a diameter of the circular surface in a fixed inertial frame
of reference and landing at the same point (—R,0) from which it was projected in the rotat-
ing frame (let n = 1 represent the fastest initial velocity). (d) Plot these trajectories from
the perspective of the rotating frame of reference for the five largest initial x-components
of the velocities (n =1 . . . 5). (€) Describe the resultant trajectory as seen from the rotat-
ing frame of reference as the x-component of the velocity approaches zero (n — o).

Find the equations of motion for the asteroid in Problem 5.7, as seen from Earth frame
of reference described in that problem, and solve them numerically using Mathematica.
As starting conditions, assume that the asteroid is in direct opposition to the Sun relative
to Earth at ¢ =0, and use initial velocities appropriate to circular orbits about the Sun to
calculate the initial velocity of the asteroid relative to Earth. Plot the trajectory of the satel-
lite for one orbital period.



power of gravity, but have not yet assugned the causey of thxs power ol have
not been able to discover thecause of those properties of gravity from
phenomena, and | frame no hypotheses;—

~Sir Isaac Newton, The Principia, 1687; Florian Cajori’s translation, Berkeley, Univ.
of Calif. Press, 1966

*Gravity must be a scholastic occult quality or the effect of a miracle.”

—Gottfried Wilhelm Leibniz; See Let Newton Be!, by J. Fauvel, R. Flood, M. Shorthand,
and R. Wilson, Oxford Univ. Press, 1988

6;1J Introduction

Throughout the year ancient peoples observed the five visible planets slowly move
through the fixed constellations of the zodiac in a fairly regular fashion. But occasion-
ally, at times that occurred with astonishing predictability, they mysteriously halted their
slow forward progression, suddenly reversing direction for as long as a few weeks before
again resuming their steady march through the sky. This apparent quirk of planetary
behavior is called retrograde motion. Unmasking its origin would consume the intellec-
tual energy of ancient astronomers for centuries to come. Indeed, horribly complicated
concoctions from minds shackled by philosophical dogma and fuzzy notions of physics,
such as the cycles and epicycles of Ptolemy (125 c.E.) and others of like-minded men-
tality, would serve as models of physical reality for more than 2000 years. Ultimately,
Nicolaus Copernicus (1473-1543) demonstrated that retrograde motion was nothing
other than a simple consequence of the relative motion between Earth and the other plan-
ets each moving in a heliocentric orbit. Nonetheless, even Copernicus could not purge

218
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himself of the Ptolemaic epicycles, constrained by the dogma of uniform circular motion
and the requirement of obtaining agreement between the observed and predicted irreg-
ularities of planetary motion.

It was not until Johannes Kepler (1571-1630) turned loose his potent intellect on the
problem of solving the orbit of Mars, an endeavor that was to occupy him intensely for
20 years, that for the first time in history, scientists glimpsed the precise mathematical
nature of the heavenly motions. Kepler painstakingly constructed a concise set of three
mathematical laws that accurately described the orbits of the planets around the Sun.
These three laws of planetary motion were soon seen by Newton as nothing other than
simple consequences of the interplay of a law of universal gravitation with three funda-
mental laws of mechanics that Newton had developed mostly from Galileo’s investigations
of the motions of terrestrial objects. Thus, Newton was to incorporate the physical work-
ings of all the heavenly bodies within a framework of natural law that resided on Earth.
The world would never be seen in quite the same way again.

Newton’s Law of Universal Gravitation

Newton formally announced the law of universal gravitation in the Principia, published
in 1687. He actually worked out much of the theory at his family home in Woolsthorpe,
England, as early as 1665-1666, during a six-month hiatus from Cambridge University,
which was closed while a plague ravaged most of London.

The law can be stated as follows:
Every particle in the universe attracts every other particle with a force whose magnitude
is proportional to the product of the masses of the two particles and inversely proportional

to the square of the distance between them. The direction of the force lies along the straight
line connecting the two particles.

We can express the law vectorially by the equation

mimj rij
F,=G—;L| L (6.1.1)

A

where F; is the force on particle i of mass m, exerted by particle j of mass m,. The vector
r; is the directed line segment running from particle i to particlej, as shown in Figure 6.1.1.
The law of action and reaction requires that F;; = —Fj;. The constant of proportionality G

Figure 6.1.1 Action and reaction in Newton’s law of
gravity.
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is known as the universal constant of gravitation. Its value is determined in the laboratory
by carefully measuring the force between two bodies of known mass. The internationally
accepted value at present is, in ST units,

G = (6.67259 £ 0.00085) x 10! Nm® kg2

All our present knowledge of the masses of astronomical bodies, including Earth, is based
on the value of this fundamental constant."

This law is an example of a general class of forces termed central; that is, forces
whose lines of action either emanate from or terminate on a single point or center.
Furthermore, if the magnitude of the force, as is the case with gravitation, is independent
of any direction, the force is isotropic. The behavior of such a force may be visualized
in the following way: Imagine being confined to a hypothetical, spherical surface cen-
tered about a massive particle that serves as a source of gravity. When walking around
that surface, one would discover that the force of attraction would always be directed
toward the center, and the magnitude of this force would be independent of position
on the spherical surface. Nothing about this force could be used to determine position
on the sphere.

The main purpose of this chapter is to study the motion of a particle subject to a cen-
tral, isotropic force with particular emphasis on the force of gravity. In carrying out this
study, we follow Newton’s original line of inquiry, which led to the formulation of his uni-
versal law of gravitation. In so doing, we hope to engender an appreciation for the tremen-
dous depth of Newton’s intellectual achievement.

Gravitation: An Inverse-Square Law?

While home at Woolsthorpe in 1665, Newton took up the studies that were to occupy him
for the rest of his life: mathematics, mechanics, optics, and gravitation. Perhaps the most
classic image we have of Newton depicts him sitting under an apple tree and being struck
by a falling apple. This visual image is meant to convey the notion of Newton pondering
the nature of gravity, most probably wondering whether or not the force that caused the
apple to fall could be the same one that held the Moon in its orbit about the Earth.
Galileo, who very nearly postulated the law of inertia in its Newtonian form, inex-
plicably failed to apply it correctly to the motion of heavenly objects. He missed the most
fundamental point of circular motion, namely, that objects moving in circles are accel-
erated inward and, therefore, require a resultant force in that direction. By Newton’s time,
a number of natural philosophers had come to the conclusion that some sort of force was
required, not to accelerate a planet or satellite inward toward its parent body, but to “main-
tain it in its orbit.” In 1665, the Italian astronomer Giovanni Borelli had presented a theory
of the motion of the Galilean Moons of Jupiter in which he stated that the centrifugal

'G is the least accurately known of all the basic physical constants. This stems from the fact that the gravita-
tional force between two bodies of laboratory size is extremely small. For a review of the current situation regard-
ing the determination of G, see an article by J. Maddox, Nature, 30, 723 (1984). Also, H. de Boer, “Experiments
Relating to the Newtonian Gravitational Constant,” in B. N. Taylor and W. D. Phillips, eds., Precision
Measurements and Fund, tal Constants (Natl. Bur. Stand. U.S., Spec. Publ., 617, 1984).
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force of a Moon’s orbital motion was exactly in equilibrium with the attractive force of
]uplter

Newton was the first to realize that Earth’s Moon was not “balanced in its orbit” but
was undergoing a centripetal acceleration toward Earth that had to be caused by a cen-
tripetal force. Newton surmised that this force was the same one that attracted all Earth-
bound objects toward its surface. This had to be the case, because the kinematical
behavior of the Moon was no different from that of any object falling toward Earth. The
falling Moon never hits Earth because the Moon has such a large tangential velocity that,
as it falls a given distance, it moves far enough sideways that Earth’s surface has curved
away by that same distance. No one at the time even remotely suspected that the cen-
tripetal acceleration of the Moon and the gravitational acceleration of an apple falling on
the surface of Earth had a common origin.

Newton demonstrated that if a falling apple could also be given a large enough hor-
izontal velocity, its motion would be identical to that of the orbiting Moon (the apple’s orbit
would justbe closer to Earth), thus making the argument for a common origin of an attrac-
tive gravitational force even more convincing, Newton further reasoned that the centripetal
acceleration of an apple put in orbit about Earth just above its surface would be identi-
cal to its gravitational free-fall acceleration. (Imagine an apple shot horizontally out of a
powerful cannon. Let there be no air resistance. If the initial horizontal speed of the pro-
jected apple were adjusted just right, the apple would never hit Earth because Earth’s
surface would fall away at the same rate that the apple would fall toward it, just as is the
case for the orbiting Moon. In other words, the apple would be in orbit and its centripetal
acceleration would exactly equal the g of an apple falling from rest.) Thus, with this single
brilliant mental leap, Newton was about to uncover the first and one of the most beauti-
ful of all unifying principles in physics, the law of universal gravitation.

The critical question for Newton was figuring out just how this attractive force
depended on distance away from Earth’s center. Newton knew that the strength of Earth’s
attractive force was proportional to the acceleration of falling objects at whatever dlS-
tance from Earth they happened to be. The Moon’s acceleration toward Earth is a =v%/r,
where v is the speed of the Moon and r is the radius of its circular orbit. (This is equal to
the local value of g ) Newton deduced, with the aid of Kepler’s third law (the square of
the orbital period 7* is proportional to the cube of the distance from the center of the orbit
r*), that this acceleration should vary as 1/r®. For example, if the Moon were 4 times far-
ther away from Earth than it actually is, then by Kepler’s third law its period of revolution
would be 8 times longer, and its orbital speed 2 times slower; consequently, its cen-
tripetal acceleration would be 16 times less than it is— or weaker as the inverse square
of the distance.

®Recall from Chapter 5 that centrifugal force is an inertial force exerted on an object in a rotating frame of ref-
erence. In the context here, it arises from the centripetal acceleration of a Galilean moon traveling in essen-
tially a circular orbit around Jupiter. To most pre-Newtonian thinkers, the centrifugal force acting on planets
or satellites was a real one. Many of their arguments centered on the nature of the force required to “balance
out” the centrifugal force. They completely missed the point that from the perspective of an inertial observer,
the satellite was undergoing centripetal acceleration inward. They were thus arguing from the perspective of
anoninertial observer, although none of them had such a precise understanding regarding the distinction.
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Newton thus hypothesized that the local value of g for all falling objects and, hence,
the attractive force of gravity, should vary accordingly. To confirm this hypothesis Newton
had to calculate the centripetal acceleration of the Moon, compare it to the acceleration
g of a falling apple, and see if the ratio were equal to that of the inverse square of their
respective distances from the center of the Earth. The Moon’s distance is 60 Earth radii.
The force of Earth’s gravity must, therefore, weaken by a factor of 3600. The rate of fall
of an apple must be 3600 times larger than that of the Moon or, put another way, the dis-
tance an apple falls in 1 s should equal the distance the Moon falls toward Earth in 1 min,
the distance of fall being proportional to time squared. Unfortunately, Newton made a
mistake in carrying out this calculation. He assumed that an angle of 1° subtended an arc
length of 60 miles on the surface of Earth. He got this from a sailor’s manual, the only
book at hand. (This distance is, in fact, 60 nautical miles, or 69 English miles.) Setting this
equal to 60 English miles of 5280 ft each, however, he computed the Moon’s distance of
fall in 1 s to be 0.0036 ft, or 13 ft in 1 min. Through Galileos experiments with falling
bodies, repeated later with more accuracy, an apple (or any other body) had been meas-
ured to fall about 15 ft in 1 s on Earth. The values are very close, differing by about
1 part in 8, but such a difference was great enough that Newton abandoned his brilliant
idea! Later, he was to use the correct values, get it exactly right, and, thus, demonstrate
an inverse-square law for the law of gravity.

Proportional to Mass?

Newton also concluded that the force of gravity acting on any object must be proportional
to its mass (as opposed to, say, mass squared or something else). This conclusion is deriv-
able from his second law of motion and Galileo’s finding that the rate of fall of all objects
is independent of their weight and composition. For example, let the force of gravity
of Earth acting on some object of inertial mass m be proportlonal to that mass. Then,
according to Newton's second law of motion, F,,, =k - mir*=m-a=m-g Thus, g =ki’.
The masses cancel out in this dynamical equation, and the acceleration g depends only
on some constant k (which, in some way, must depend on the mass of the Earth but,
obviously, is the same for all bodies attracted to the Earth) and the distance r to the
center of the Earth. So all bodies fall with the same acceleration regardless of their mass or
composition. The gravitational force must be directly proportional to the inertial mass,
or this precise cancellation would not occur. Then all falling bodies would exhibit mass-
dependent accelerations, contrary to all experiments designed to test such a hypothesis. In
fact the equivalence of inertial and gravitational mass of all objects is one of the corner-
stones of Einstein’s general theory of relativity. For Newton this equivalence remained a
mystery to his death.

Product of Masses, Universality?

Newton also realized that if the force of gravity were to obey his third law of motion and
if the force of gravity were proportional to the mass of the object being attracted, then
it must also be proportional to the mass of the attracting object. Such a requirement leads
us inevitably to the conclusion that the law of gravity must, therefore, be “universal”;
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thatis, every object in the universe must attract (albeit very weakly, in most cases) every
other object in the universe. Let us see how this comes about. Imagine two masses m;
and m, separated by a distance r. The forces of attraction on 1 by 2 and on 2 by 1 are
Fig=kym, /r? and Fy; =kymy/r®, where k; and k, are “constants” that, as we are forced to
conclude, must depend on the mass of the attracting object. According to Newton's third
law, these forces have to be equal in magnitude (and opposite in direction); therefore,
kym, = kymy or ky/k; = my/m;. To ensure the equality of this ratio, the strength of the
attraction of gravity must be proportional to the mass of the attractive body, that is, k; =
Gm,. Thus, the force of gravity between two particles is a central, isotropic law of force
possessing a wonderful symmetry: particle 1 attracts particle 2 and particle 2 attracts par-
ticle 1 with a magnitude and direction, obeying Newton’s third law, proportional to the
product of each of their masses and varying inversely as the square of their distance of
separation. This conclusion was the work of true genius!

6.2 Gravitational Force between
a Uniform Sphere and a Particle

Newton did not publish the Principia until 1687. There was one particular problem that
bothered him and made him reluctant to publish. We quickly glossed over that problem
in our preceding discussion. Newton derived the inverse-square law by assuming that the
relevant distance of separation between two objects, such as Earth and Moon, is the dis-
tance between their respective geometrical centers. This does not seem to be unreason-
able for spherical objects like the Sun and the planets, or Earth and Moon, whose distances
of separation are large compared with their radii. But what about Earth and the apple?
If you or I were the apple, looking around at all the stuff in Earth attracting us, we would
see hines of gravitational force tugging on us from directions all over the place. There is
stuff to the east and stuff to the west whose directions of pull differ by 180°. Who is to
say that when we properly add up all the force vectors, due to all this attractive stuff, we
get a resultant vector that points to the center of Earth and whose strength depends on
the mass of Earth and inversely on the distance to its center squared, as though all Earth’s
mass were completely concentrated at its center?

Yet, this is the way it works out. It is a tricky problem in calculus that requires a
vector sum of infinitessimal contributions over an infinite number of mass elements that
lead to a finite result. At that time no one knew calculus because Newton had just
invented it, probably to solve this very problem! He was understandably reluctant to
publish such a proof, couched in a framework of nonexistent mathematics. Because
everyone knows calculus in our present age of enlightenment, we will go ahead and use
it to solve the problem, proving that, for any uniform spherical body or any spherically
symmetric distribution of matter, the gravitational force exerted by it on any external
particle can be calculated by simply assuming that the entire mass of the distribution
acts as though concentrated at its geometric center. Only an inverse-square force law
works this way.

Consider first a thin uniform shell of mass M and radius R. Let r be the distance from
the center O to a test particle P of mass m (Fig. 6.2.1). We assume that r > R. We shall
divide the shell into circular rings of width R A@ where, as shown in the figure, the angle
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Figure 6.2.1 Coordinates for
calculating the gravitational field
of a spherical shell.

POQ is denoted by 6, Q being a point on the ring. The circumference of our represen-
tative ring element is, therefore, 27R sin 6, and its mass AM is given by

AM =~ p2nR? sin 6 A9 6.2.1)

where p is the mass per unit area of the shell.

Now the gravitational force exerted on P by a small subelement Q of the ring (which
we regard as a particle) is in the direction PQ. Let us resolve this force AF into two com-
ponents, one component along PO, of magnitude AF, cos ¢, the other perpendicular to
PO, of magnitude AF sin ¢. Here ¢ is the angle OPQ, as shown in Figure 6.2.1. From
symmetry we can easily see that the vector sum of all of the perpendicular components
exerted on P by the whole ring vanishes. The force AF exerted by the entire ring is, there-
fore, in the direction PO, and its magnitude AF is obtained by summing the components
AF cos ¢. The result is

AF=G

cosd =G

2
m A2M m2npR 521n 6 cos ¢ AO (6.2.2)
s s

where s is the distance PQ (the distance from the particle P to the ring) as shown. The

magnitude of the force exerted on P by the whole shell is then obtained by taking the limit
of A@ and integrating

F=Gm2npR® | " 5in 6 cos $d6 6.2.3)
S

The integral is most easily evaluated by expressing the integrand in terms of s. From the
triangle OPQ we have, from the law of cosines,

r®+R*—2rR cos 6 = 5* (6.2.4)
Differentiating, because both R and r are constant, we have,
rRsin @ d@ =sds (6.2.5)
Also, in the same triangle OPQ, we can write

2,.2 po
cosp=SFT R (6.2.6)
ors
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On performing the substitutions given by the preceding two equations, and changing the
limits of integration from [0, 7] to [r — R, r + R] we obtain

2 2 2
+Rs“+r°—R
F= G’l’)’tzﬂpsz_R T

2 _po
_ Gml\;l +R 1+ r 2R ds
4Rr* r-R

ds

$ (6.2.7)
_GmM
2
where M = 47pR® is the mass of the shell. We can then write vectorially
F=-cMle 62.8)
r

where e, is the unit radial vector from the origin O. The preceding result means that
a uniform spherical shell of matter attracts an external particle as if the whole mass
of the shell were concentrated at its center. This is true for every concentric spheri-
cal portion of a solid uniform sphere. A uniform spherical body, therefore, attracts an
external particle as if the entire mass of the sphere were located at the center. The same
is true also for a nonuniform sphere provided the density depends only on the radial
distance r.

The gravitational force on a particle located inside a uniform spherical shell is zero.
The proof is left as an exercise (see Problem 6.2).

6.3| Kepler's Laws of Planetary Motion

Kepler's laws of planetary motion were a landmark in the history of physics. They played
a crucial role in Newton’s development of the law of gravitation. Kepler deduced these
laws from a detailed analysis of planetary motions, primarily the motion of Mars, the clos-
est outer planet and one whose orbit is, unlike that of Venus, highly elliptical. Mars had
been most accurately observed, and its positions on the celestial sphere dutifully recorded
by Kepler’s irascible but brilliant patron, Tycho de Brahe (1546-1601). Kepler even
used some sightings that had been made by the early Greek astronomer Hipparchus
(190-125 B.C.E.). Kepler’s three laws are:

I. Law of Ellipses (1609)
The orbit of each planet is an ellipse, with the Sun located at one of its foci.

II. Law of Equal Areas (1609)
Aline drawn between the Sun and the planet sweeps out equal areas in equal times
as the planet orbits the Sun.

III. Harmonic Law (1618)
The square of the sidereal period of a planet (the time it takes a planet to complete
one revolution about the Sun relative to the stars) is directly proportional to the
cube of the semimajor axis of the planet's orbit.
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The derivation of these laws from Newton’ theories of gravitation and mechanics was
one of the most stupendous achievements in the annals of science. A number of Newton's
colleagues who were prominent members of the British Royal Society were convinced
that the Sun exerted a force of gravitation on the planets, that the strength of that force
must diminish by the square of the distance between the Sun and the planet, and that this
fact could be used to explain Kepler's laws. (Kepler’s second law is, however, a statement
that the angular momentum of a planet in orbit is conserved, a consequence only of the
central nature of the gravitational force, not its inverse-square feature.) The trouble was,
as noted by Edmond Halley (1656-1742) over lunch with Robert Hooke (1635-1703) and
Christopher Wren (1632-1723) in January of 1684, that no one could make the connec-
tion mathematically. Part of the problem was that no one, except the silent Newton, could
show that the gravitational forces of spherical bodies could be treated as though they
emanated from and terminated on their geometric centers. Hooke brashly stated that he
could prove the fact that the planets traveled in elliptical orbits but had not told anyone
how to do it so that they might, in attempting a solution themselves, appreciate the mag-
nitude of the problem. Wren offered a prize of 40 shillings—in those days the price of
an expensive book—to the one who could produce such a proof within two months.
Neither Hooke, nor anyone else, won the prize!

In August of 1684, while visiting Cambridge, Halley stopped in to see Newton and
asked him what would be the shape of the planets’ orbits if they were subject to an
inverse-square attractive force by the Sun? Newton replied, without hesitation, “An
ellipse!” Halley wanted to know how Newton knew this, and Newton said that he had cal-
culated it years ago. Halley was stunned. They looked through thousands of Newton’s
papers but could not find the calculation. Newton told Halley that he would redo it and
send it to him.

Newton had actually done the calculation five years earlier, in 1679, stimulated in part
by Robert Hooke, the aforementioned claimant to the inverse-square law, who had writ-
ten Newton with questions about the trajectory of objects falling toward a gravitationally
attractive body. Unfortunately, there was a mistake in the calculation of Newton’s written
reply to Hooke. Hooke, with glee, pointed out the mistake, and the angry Newton, con-
centrating on the problem with renewed vigor, apparently straightened things out. These
subsequent calculations, however, also contained a mistake, which is perhaps why Newton
failed to find them when queried by Halley. At any rate, Newton furiously attacked the
problem again and within three months sent Halley a paper in which he correctly derived
all of Kepler’s laws from an inverse-square law of gravitation and the laws of mechanics.
Thus was the Principia born. In the sections that follow we, too, derive Kepler’s laws from
Newton’s fundamental principles.

6.4| Kepler's Second Law: Equal Areas

Conservation of Angular Momentum

Keplers second law is nothing other than the statement that the angular momentum of
a planet about the Sun is a conserved quantity. To show this, we first define angular
momentum and then show that its conservation is a general consequence of the central
nature of the gravitational force.
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The angular momentum of a particle located a vector distance r from a given origin
and moving with momentum p is defined to be the quantity L = r X p. The time deriv-
ative of this quantity is

dL _d(rXp) dp
T vYXprrX—- (6.4.1)
but
vXp=vXmv=mvXv=0 (6.4.2)
Thus,
dp dL
rXF=rXE=E (6.4.3)

where we have used Newton’s second law, F = dp/dt.

The cross product N =r X F is the moment of force, or torque, on the particle about
the origin of the coordinate system. If r and F are collinear, this cross product vanishes
and so does L. The angular momentum L, in such cases, is a constant of the motion. This
is quite obviously the case for a particle (or a planet) subject to a central force F, that is,
one that either emanates or terminates from a single point and whose line of action lies
along the radius vector r.

Furthermore, because the vectors r and v define an “instantaneous” plane within
which the particle moves, and because the angular momentum vector L is normal to
this plane and is constant in both magnitude and direction, the orientation of this
plane is fixed in space. Thus, the problem of motion of a particle in a central field is
really a two-dimensional problem and can be treated that way without any loss of
generality.

Angular Momentum and Areal Velocity
of a Particle Moving in a Central Field

As previously mentioned, Kepler’s second law, the constancy of the areal velocity, A, of
a planet about the Sun, depends only upon the central nature of the gravitational
force and not upon how the strength of the force varies with radial distance from the Sun.
Here we show: that this law is equivalent to the more general result that the angular
momentum of any particle moving in a central field of force is conserved, as shown in
the preceding section.

To do so, we first calculate the magnitude of the angular momentum of a particle
moving in a central field. We use polar coordinates to describe the motion. The velocity
of the particle is

v=eri+e,ro (6.4.4)

where e, is the unit radial vector and ey is the unit transverse vector. (see Figure 6.4.1(a)).
The magnitude of the angular momentum is

L =|rx mv|=|re, xm(ie, +re,)| (6.4.5)
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Figure 6.4.1 (a) Angular
momentum L =|r X mv|of a

particle moving in a central 0 i i 0 £ 7
field. (b) AreadA = ; |r X dr| / /
swept out by the radius vector r // //
of the particle as it moves in a / /
central field. (@) )
Because |e, X e,|=0and |e, X eg] =1, we find
L =mr? = constant (6.4.6)

for any particle moving in a central field of force including a planet moving in the gravi-
tational field of the Sun.

Now, we calculate the “areal velocity,” A, of the particle. Figure 6.4.1(b) shows the
triangular area, dA, swept out by the radius vector r as a planet moves a vector distance
dr in a time dt along its trajectory relative to the origin of the central field. The area of
this small triangle is

dA = % [r % dr|= %|1’er X (e, dr+e,rd0)| = %r(rde) 6.4.7)

(Note: any increment of motion along the radial direction, e,, does not add to,
or subtract from, the area dA—nor does it contribute anything to the angular
momentum of the particle about the center of force.)

Thus, the areal velocity, or the rate at which “area is swept out” by the radius vector
pointing to the moving particle is
dA_a-l
dt

An equivalent way to see this relation is to note that, because dr = vdt, Equation 6.4.7
can be written as

ro=L - constant (6.4.8)
2m

L
dA=1|rXdr|=|rx vdt| = - dt (6.4.9)

which also reduces to Equation 6.4.8.

Thus, the areal velocity, A, of a particle moving in a central field is directly propor-
tional to its angular momentum and, therefore, is also a constant of the motion, exactly
as Kepler discovered for planets moving in the central gravitational field of the Sun.
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EXAMPLE 6.4.1

Let a particle be subject to an attractive central force of the form f(r)where r is the dis-
tance between the particle and the center of the force. Find f(r) if all circular orbits are
to have identical areal velocities, A.

Solution:

Because the orbits are circular, the acceleration, #, has no transverse component and
is entirely in the radial direction. In polar coordinates, it is given by Equation 1.11.10

a, =t- rf? = —rf?
because # =0. Thus,
—mrf? = f(r

Because the areal ve1001ty is the same for all circular orbits, then the angular momentum
of the partlcle L=mr"0, must be also. Multiplying and dividing the above expression by
the factor, r°, yields the relation

mr*g’ L

) =_mr3=f(r)

r

or in terms of the areal velocity, A=L/2m

4mA2

fin=-

Therefore, the attractive force for which all circular orbits have identical areal veloci-
ties (and angular momenta) is the inverse r-cube.

6.5| Kepler’s First Law: The Law of Ellipses

To prove Kepler’s first law, we develop a general differential equation for the orbit of a
particle in any central, isotropic field of force. Then we solve the orbital equation for the
specific case of an inverse-square law of force.

First we express Newton's differential equations of motion using two-dimensional polar
coordinates instead of three, remembering from our previous discussion that no loss of
generality is incurred because the motion is confined to a plane. The equation of motion
in polar coordinates is

mi = f(r)e, (6.5.1)

wheref(r) is the central, isotropic force that acts on the particle of mass m. It is a function
only of the scalar distance r to the force center (hence, it is isotropic), and its direction is
along the radius vector (hence, it i is central). As shown in Equations 1.11.9 and 1.11.10, the
radial component of # is # — 6 and the transverse component is 270 +r@. Thus, the
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component differential equations of motion are

m(#—r@%) = f(r) (6.5.22)
m(270 + rf) =0 (6.5.2b)

From the latter equation it follows that (see Equation 1.11.11)

%(ﬁé) =0 (6.5.3)
or
20 = constant = [ (6.5.4)
From Equation 6.4.6 we see that
|l|=r£n=|r><VI (6.5.5)

Thus,  is the angular momentum per unit mass. Its constancy is simply a restatement of
a fact that we already know, namely, that the angular momentum of a particle is constant
when it is moving under the action of a central force.

Given a certain radial force function f(r), we could, in theory, solve the pair of dif-
ferential equations (Equations 6.5.2a and b) to obtain r and @ as functions of . Often one
is interested only in the path in space (the orbit) without regard to the time ¢. To find the
equation of the orbit, we use the variable u defined by

r= l (6.5.6)
u
Then
1 1 :du du
SN Sty L ot 6.5.
’ u® “ u® de de 657
The last step follows from the fact that
6=’ 65.8)
according to Equations 6.5.4 and 6.5.6.
Differentiating a second time, we obtain
d du de d du . d%u d*u
=] e— = = ————— = — —:—l2 2 .
TEgde” "adede da® Y de (6:5.9)

Substituting the values found for r, 8, and # into Equation 6.5.2a, we obtain

2
mli—12u2 gg’; - %(1%4 )] = f™) (6.5.10a)
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which reduces to
d?u
de?
Equation 6.5.10b is the differential equation of the orbit of a particle moving under a cen-
tral force. The solution gives u (hence, ) as a functlon of 6. Conversely, if one is given

the polar equation of the orblt namely, r=r(6)=u"", then the force function can be found
by differentiating to get d°u/d6” and inserting this into the differential equation.

1
tus-——ps fw™) (6.5.10b)

EXAMPLE 6.5.1

A particle in a central field moves in the spiral orbit

r=c6?
Determine the force function.
Solution:
We have
u= _1
c6?
and
du -2 -3 d2u 6 —4 2
K _"2 U _Dgt=p
dé ¢ de?* ¢ o

Then from Equation 6.5.10b
60u2 +u= ——"J%—;E f(u_l)

Hence,
fu™)=-ml*6cu* +u®)
and
6 1
fr)= —mlz(r—f + r—a)

Thus, the force is a combination of an inverse cube and inverse—fourth power law.

EXAMPLE 6.5.2

In Example 6.5.1 determine how the angle 6 varies with time.

Solution:

Here we use the fact that I = r* @ is constant. Thus,

1

9=lu2=1027
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or
4 [
0°do = —2dt
c
and so, by integrating, we find
5
LA lc™2¢
5

where the constant of integration is taken to be zero, so that 8 =0 att = 0. Then we can
write

6= atlIS

where o= constant = (5lc%)"".

Inverse-Square Law

We can now solve Equation 6.5.10b for the orbit of a particle subject to the force of grav-
ity. In this case

L3
2

r

fr)=- 6.5.11)
where the constant k = GMm. In this chapter we always assume that M >>m and remains
fixed in space. The small mass m is the one whose orbit we calculate. (A modification in
our treatment is required when M = m, or at least not much greater than m. We present
such a treatment in Chapter 7.) The equation of the orbit (Equation 6.5.10b) then
becomes

—tu=— (6.5.12)

Equation 6.5.12 has the same form as the one that describes the simple harmonic oscil-
lator, but with an additive constant. The general solution is

k

u=Acos(0-—00)+W (6.5.13)
or
e 1
kiml® + A cos(6—6,) (6.5.14)

The constants of integration, A and 6, are determined from initial conditions or from the
values of the position and velocity of the particle at some particular instant of time. The
value of 6, however, can always be adjusted by a simple rotation of the coordinate system
used to measure the polar angle of the particle. Consistent with convention, we set
6, =0, which corresponds to a direction toward the point of the particle’s closest approach
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|
| r=a
leca—»|
Figure 6.5.1 The ellipse
£f  Thetwo foci of the ellipse
a Semimajor axis
b Semiminor axis: b = (1L - €9)"%a
€ Eccentricity: each focus displaced from center by ez
o Latus rectum: Distance of focus from point on the ellipse
perpendicular to major axis: &= (1 — €’ a
o Distance from the focus to the pericenter: ry=(1 - €)a
r Distance from the focus to the apocenter: r; = (1 + €)a

to the origin. We can then rewrite Equation 6.5.14 as
e mi®/k
1+(Aml2/k)cos 0
This equation describes an ellipse (see Figure 6.5.1) with the origin at one of its foci, in
the case where the motion of the particle is bound.

An ellipse is defined to be the locus of points whose total distance from two foci,
fandf’, is a constant, that is,

(6.5.15)

r+r’ = constant = 2a (6.5.16)

where a is the semimajor axis of the ellipse, and the two foci are offset from its center,
each by an amount €a. € is called the eccentricity of the ellipse. We can show that
Equation 6.5.15 is equivalent to this fundamental definition of the ellipse by first finding
a relation between r and 1’ using the Pythagorean theorem (see Figure 6.5.1).

r’2 = r¥sin? 0+ (2ea + r cos 6)2

6.5.17)
=r? + 4ea(ea+rcos 6)
and then substituting the fundamental definition, " = 2a — r, into it to obtain
_a(l- €%)
=1t ecos6 (6.5.18a)

As can be seen from Figure 6.5.1, at 8= 71/2, r = a(1 — €”) = o the latus rectum of the
ellipse. Hence, Equation 6.5.18a can be put into the form

o

re— (6.5.18b)
l+ecos@
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Thus, it is equivalent to Equation 6.5.15 with

2
o= mlT 6.5.19)
and
2
€= A”’:l (6.5.20)

Even though Equations 6.5.18a and b were derived for an ellipse, they are more general
than that: they actually describe any conic section and all possible orbits other than ellip-
tical around the gravitational source.

A conic section is formed by the intersection of a plane and a cone (see Figure 6.5.2a—d).
The angle of tilt between the plane and the axis of the cone determines the resulting section.
This angle is related to the eccentricity € in Equations 6.5.18a and b. When 0 < e < 1,
Equations 6.5.18a and b describe an ellipse. It is formed when the angle between the plane
and the axis of the cone is less than 7/2 but greater than 8, where Bis the generating angle
of the cone (see Figure 6.5.2b). The expression for a circle, r = g, is retrieved when € =0,
and it is formed when the plane is perpendicular to the cone’s axis (see Figure 6.5.2a). As
€ - 1,a - o, but the product & = a(1 - €”) remains finite and when € = 1 Equation 6.5.18a
and b then describe a parabola. The angle between the plane and the axis of the cone is
then equal to f3 (see Figure 6.5.2c). Finally, when € > 1, Equations 6.5.18a and b describe
a hyperbola, and the angle of tilt lies between 0 and B (see Figure 6.5.2d). The different
conic sections as seen by an observer positioned perpendicular to the plane in each of
Figures 6.5.2a—d are shown in Figure 6.5.2e. They correspond to different possible orbits
of the particle.

In reference to the elliptical orbits of the planets around the Sun (see Figure 6.5.1),
1o, the pericenter of the orbit, is called the perihelion, or distance of closest approach to
the Sun; r, the apocenter of the orbit, is called the aphelion, or the distance at which the
planet is farthest from the Sun. The corresponding distances for the orbit of the Moon
around the Earth—and for the orbits of the Earth’s artificial satellites—are called the
perigee and apogee, respectively. From Equation 6.5.18b, it can be seen that these are the
values of r at 6 = 0 and 0 = =, respectively:

o
Ty = Tre (6.5.21a)
n=—2 (6.5.21b)
1-€

The orbital eccentricities of the planets are quite small. (See Table 6.5.1.) For example,
in the case of Earth’s orbit €= 0.017, r, = 91,000,000 mi, and r; = 95,000,000 mi. On the
other hand, the comets generally have large orbital eccentricities (highly elongated orbits).
Halley’s Comet, for instance, has an orbital eccentricity of 0.967 with a perihelion distance
of only 55,000,000 mi, while at aphelion it is beyond the orbit of Neptune. Many comets
(the nonrecurring type) have parabolic or hyperbolic orbits.

The energy of the object is the primary factor that determines whether or not its orbit
is an open (parabola, hyperbola) or closed (circle, ellipse) conic section. “High”-energy
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€ > 1, hyberbola
1.5

€ < 1, ellipse

circle

IR

/0.5 1 1.5 *

€ = 1, parabola

.V/é

(d (e)

Figure 6.5.2 (a) Circle: e=0. (b) Ellipse: € < 1. (c) Parabola: e=1. (d) Hyperbola: €> 1.
(e) The family of conic sections.

objects follow open, unbound orbits, and “low”-energy objects follow closed, bound ones.
We treat this subject in greater detail in Section 6.10. Using the language of a noniner-
tial observer, perfectly circular orbits correspond to a situation when the gravitational and
centrifugal forces of a planet are exactly balanced. It should surprise you to see that the
orbits of the planets are nearly circular.
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It is very difficult to envision just how such a situation might arise from initial con-
ditions. If a planet is hurtling around the Sun a little too fast, the centrifugal force slightly
outweighs the gravitational force, and the planet moves away from the Sun a little bit. In
doing so, it slows down until the force of gravity begins to overwhelm the centrifugal force.
The planet then falls back in a little bit closer to the Sun, picking up speed along the way.
The centrifugal force builds up to a point where it again outweighs the force of gravity
and the process repeats itself. Thus, elliptical orbits can be seen as the result of a contin-
uing tug of war between the slightly unbalanced gravitational and centrifugal forces that
inevitably occurs whenever the tangential velocity of the planet is not adjusted just so.
These forces must grow and shrink in such a way that the stability of the orbit is ensured.
The criterion for stability is discussed in Section 6.13.

One way in which these two forces could be perfectly balanced all the way around
the orbit would be if the planet started off just right; that is, very special initial conditions
would have to have been set up in the beginning, so to speak. It is difficult to imagine how
any natural process could have established such nearly perfect prerequisites. Hence, if
planets are bound to the Sun at all, one would think that they would be most likely to travel
in elliptical orbits just like Kepler said, unless something happened during the course of
solar system evolution that brought the planets into circular orbits. We leave it to the stu-
dent to think about just what sort of thing might do this.

EXAMPLE 6.5.3

Calculate the speed of a satellite in circular orbit about Earth.

Solution:

In the case of circular motion, the orbital radius is given by r, = a = &= ml’/k because
the eccentricity is zero (Equations 6.5.18a and 6.5.19). In Earth’s gravitational field,
the force constant is k = GM,m in which M, is the mass of Earth and m is the mass of the
satellite. The angular momentum of the satellite per unit mass ! =v,r,, where v, is the
speed of the satellite. Thus,

, = m(v,r,)*
¢ GM,m
M
nvl= M,
r

c

As shown in Example 2.3.2, the product GM, can be found by noting that the force of
gravity at Earth’s surface ismg = GM,/R2or GM, = ng, where R, is the radius of Earth.
Thus, the speed of a satellite in circular orbit is

2
R2
v {g J
rC

For satellites in low-lying orbits close to Earth’s surface, r, = R,, so the speed is
0, = (gR,)""* = (9.8 ms™ x 6.4 x 10° m)"? = 7920 m/s, or about 8 km/s.
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EXAMPLE 6.5.4

The most energy-efficient way to send a spacecraft to the Moon is to boost its speed
while it is in circular orbit about the Earth such that its new orbit is an ellipse. The boost
point is the perigee of the ellipse, and the point of arrival at the Moon is the apogee
(see Figure 6.5.3). Calculate the percentage increase in speed required to achieve such
an orbit. Assume that the spacecraft is initially in a low-lying circular orbit about Earth.
The distance between Earth and the Moon is approximately 60R,, where R, is the
radius of Earth.

Solution:

The radius and speed of the craft in its initial circular orbit was calculated in Example 6.5.3.
That radius is the perigee distance of the new orbit, ry = R,. Let vy be the velocity
required at perigee to send the craft to an apogee at r; = 60R,. Because the eccentric-
ity of the initial circular orbit is zero, we have (Equations 6.5.19, 6.5.21a)

o _mi}

- [

r, = =a
" e+l ° k&

But the angular momentum per unit mass for the circular orbit, /, (Equation 6.5.4), is
a constant and can be set equal to

l,=r*0=ri6,=rp,
On substituting this into the preceding expression, we obtain
k

h=—">3
mo,

After the speed boost from v, to vy at perigee, from Equation 6.5.21a we obtain an
elliptical orbit of eccentricity € given by
e @ yom’ | mogry
) kr, k

1

Apogee Perigee

Figure 6.5.3 Spacecraft
changing from a circular to an
elliptical orbit.
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where we made use of the fact that the new angular momentum per unit mass is [ = v,y
Inserting the previous expression for ry into the preceding one gives us the ratio of the
speeds required to achieve the new eccentric orbit

2
(0—0] =€+l
DC

We can find the eccentricity in terms of the distances of perigee and apogee from the
geometry of an ellipse

n=(+ea=(1+elLtn) ;r")

2
.'.(1+€)=(D—°] —i

v, n +1"0

Putting in numbers for the required orbit, we obtain

v _ | 2n _ [120R, —140
v n+n 61R,

c

Thus, a 40% boost up to a speed of about 11.2 km/s is required.

6.6 | Kepler's Third Law: The Harmonic Law

Why is Kepler’s third law, relating orbital period to distance from the Sun, called the
harmonic law? Kepler’s work, more than that of any of the other great scientists who
were trying to unlock the mysteries of planetary motion, is a wonderful illustration of
the profound effect that intense hunger for knowledge and personal belief have on the
growth of science. Kepler held the conviction that the world, which had treated him so
harshly at times, nonetheless, was fundamentally a beautiful place. Kepler believed
in the Pythagorean doctrine of celestial harmony. The world was a tumultuous place,
and the planets were discordant only because humankind had not yet learned how to
hear the true harmony of the worlds. In his work Harmonice Mundi (The Harmony of
the World), Kepler, like the Pythagoreans almost 2000 years earlier, tried to connect the
planetary mations with all fields of abstraction and harmony: geometrical figures, num-
bers, and musical harmonies. In this attempt he failed. But in the midst of all this work,
indicative of his yearnings and strivings, we find his final precious jewel, always cited
as Kepler's third law, the harmonic law. It was this law that gave us the sheets to the music
of the spheres.

We show how the third law can be derived from Newton'’s laws of motion and the
inverse-square law of gravity. Starting with Equation 6.4.7b, Kepler’s second law

L

A=o2 (6.6.1)
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we can relate the area of the orbit to its period and angular momentum per unit mass,
I = L/m, by integrating the areal velocity over the entire orbital period

J: Adt=A= é'r
(6.6.2)
2A

T='l—

The industrious student can easily prove that the area of an ellipse is #ab. Thus, we have

(see Figure 6.5.1)
;o 2mab _ ora®V1 - €’

6.6.3
7 7 (6.6.3)
or
4n*at
7’ = — (- €’)

(6.6.49)

= ———-——47[204 o_ 4r%d® L

12 a 2

On inserting the relation o= ml/k (Equation 6.5.19) and the force constant k = GMgm,
appropriate for planetary motion about the Sun (whose mass is M), into Equation 6.6.4,
we arrive at Kepler’s third law:

o _ An’ 2
GMO (6.6.5)

T

—the square of a planet’s orbital period is proportional to the cube of its “distance” from
the Sun. The relevant “distance” is the semimajor axis & of the elliptical orbit. In the case
of a circular orbit, this distance reduces to the radius.

The constant 47°/GM, is the same for all objects in orbit about the Sun, regardless
of their mass.® If distances are measured in astronomical units (1 AU = 1.50 - 10% km) and
periods are expressed in Earth years, then 47°/GMy=1. Kepler's third law then takes the
very simple form 7” = a’. Listed in Table 6.6.1 are the periods and their squares, the semi-
major axes and their cubes, along with the eccentricities of all the planets.

(Note: Most of the planets have nearly circular orbits, with the exception
of Pluto, Mercury, and Mars.)

® Actually the Sun and a planet orbit their common center of mass (if only a two-body problem is being con-
sidered). A more accurate treatment of the orbital motion is carried out in Section 7.3 where it is shown that
a more correct value for this “constant” is given by 47”/G(M¢ +m), where m is the mass of the orbiting planet.
The correction is very small.
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TABLE 6.6.1

Period Semimajor Cube Eccentricity
Square Axis

Planet T(yr) T (yr®) a(AU) a*(AU®) €

Mercury 0.241 0.0581 0.387 0.0580 0.206
Venus 0.615 0.378 0.723 0.378 0.007
Earth 1.000 1.000 1.000 1.000 0.017
Mars 1.881 3.538 1.524 3.540 0.093
Jupiter 11.86 140.7 5.203 140.8 0.048
Saturn 29.46 867.9 9.539 868.0 0.056
Uranus 84.01 7058. 19.18 7056. 0.047
Neptune 164.8 27160. 30.06 27160. 0.009
Pluto 247.7 61360. 39.440 61350. 0.249

EXAMPLE 6.6.1

Find the period of a comet whose semimajor axis is 4 AU.

Solution:

With 7 measured in years and ¢ in astronomical units, we have

r=4" years = 8 years
About 20 comets in the solar system have periods like this, whose aphelia lie close to
Jupiter’s orbit. They are known as Jupiter’s family of comets. They do not include Halley’s
Comet.

EXAMPLE 6.6.2

The altitude of a near circular, low earth orbit (LEO) satellite is about 200 miles.
(a) Calculate the period of this satellite.

Solution:

For circular orbits, we have

GMym _ o*  4n’R%1?

g =m—=m
R R R

Solving for 7

12 = iﬂs
GM,
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which—no surprise—is Kepler’s third law for objects in orbit about the Earth.
Let R =Ry +h where h is the altitude of the satellite above the Earth’s surface. Then

2 3
2 = iﬁg(l +i]
GM, Ry

But GM/R: = g, so we have

R n ¥ R 3h
T=21 —E(1+—] ~ o7 —E(1+—J
g Rg g 2R;

Putting in numbers Rz = 6371 km, A = 322 km, we get T~ 90.8 min ~ 1.51 hr.

There is another way to do this if you realize that Kepler’s third law, being a deriv-
ative of Newton'’s laws of motion and his law of gravitation, applies to any set of bodies
in orbit about another. The Moon orbits the Earth once every 27.3 days” at a radius
0f 60.3 Rg. Thus, scaling Kepler’s third law to these values (1 month = 27.3 days and
1 lunar unit (LU) = 60.3 Rg), we have

72 (months) = R® (LU)

Thus, for our LEO satellite R = 963 Ry =1.051R; = 1.O51R,
6371 60.3 R./LU

E

=0.01743 LU

7 (months) = R**[LU] = (0.01743)** months = 0.002301 months = 1.51 hr

(b) A geosynchronous satellite orbits the Earth in its equatorial plane with a period of
24 hr. Thus, it seems to hover above a fixed point on the ground (which is why you
can point your TV satellite receiver dish towards a fixed direction in the sky). What
is the radius of its orbit?

Solution:
Using Kepler’s third law again, we get

R —Tm—(l)m—OIIOLU=665R ~ 42,400 km
geo “\373 - - E ™ 4

Universality of Gravitation

A tremendous triumph of Newtonian physics ushered in the 19th century— Urbain Jean
Leverrier’s (1811-1877) discovery of Neptune. It signified a turning point in the history
of science, when the newly emerging methodology, long embroiled in a struggle with bib-
lical ideas, began to dominate world concepts. The episode started when Alexis Bouvard,
a farmer’s boy from the Alps, came to Paris to study science and there perceived
irregularities in the motion of Uranus that could not be accounted for by the attraction

“This is the sidereal month, or the time it takes the Moon to complete one orbit of 360 degrees relative to the
stars. The month that we are all familiar with is the synodic month of 29.5 days, which is the time it takes for
the Moon to go through all of its phases.
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of the other known planets. In the years to follow, as the irregularities in the motion of
Uranus mounted up, the opinion became fairly widespread among astronomers that
there had to be an unknown planet disturbing the motion of Uranus.

In 1842-1843 John Couch Adams (1819-1892), a gifted student at Cambridge,
began work on this problem, and by September of 1845 he presented Sir George Airy
(1801-1892), the Astronomer Royal, and James Challis, the director of the Cambridge
Observatory, the likely coordinates of the offending, but then unknown, planet. It seemed
impossible to them that a mere student, armed only with paper and pencil, could take
observations of Uranus, invoke the known laws of physics, and predict the existence and
precise location of an undiscovered planet. Besides, Airy had grave doubts concerning
the validity of the inverse square law of gravity. In fact, he believed that the law of grav-
ity fell off faster than inverse square at great distances. Thus, somewhat understandably,
Airy was reluctant to place much credence in Adams’ work, and so the two great men chose
to ignore him, sealing forever their fate as the astronomers who failed to discover Neptune.

It was about this time that Leverrier began work on the problem. By 1846, he had cal-
culated the orbit of the unknown planet and made a precise prediction of its position on
the celestial sphere. Airy and Challis saw that Leverrier’s result miraculously agreed with
the prediction of Adams. Challis immediately initiated a search for the unknown planet in
the suspicious sector of the sky, but owing to Cambridge’s lack of detailed star maps in that
area, the search was laboriously painstaking and the data reduction problem prodigious.
Had Challis proceeded with vigor and tenacity, he most assuredly would have found
Neptune, for it was there on his photographic plates. Unfortunately, he dragged his feet.
By this time, however, an impatient Leverrier had written Johann Galle (1812-1910),
astronomer at the Berlin Observatory, asking him to use their large refractor to examine
the stars in the suspect area to see if one showed a disc, a sure signature of a planet. A short
time before the arrival of Leverrier’ letter containing this request, the Berlin Observatory
had received a detailed star map of this sector of the sky from the Berlin Academy. On
receipt of Leverrier’s letter, September 23, 1846, the map was compared with an image of
the sky taken that night, and the planet was identified as a foreign star of eighth magni-
tude, not seen on the star map. It was named Neptune. Newtonian physics had triumphed
in a way never seen before—laws of physics had been used to make a verifiable predic-
tion to the world at large, an unexpected demonstration of the power of science.

Since that time, celestial objects observed at increasingly remote distances continue
to exhibit behavior consistent with the laws of Newtonian physics (ignoring those special
cases involving large gravitational fields or very extreme distances, each requiring treat-
ment with general relativity). The behavior of binary star systems within our galaxy serves
as a classic example. Such stars are bound together gravitationally, and their orbital dynam-
ics are well described by Newtonian mechanics. We discuss them in the next chapter. So
strongly do we believe in the universality of gravitation and the laws of physics, that appar-
ent violations by celestial objects, as in the case of Uranus and the subsequent discovery
of Neptune, are usually greeted by searches for unseen disturbances. Rarely do we instead
demand the overthrow of the laws of physics. (Although, astonishingly enough, two famous
examples discussed subsequently in this chapter had precisely this effect and helped rev-
olutionize physics.)

The more likely scenario, ferreting out the unseen disturbance, is currently in
progress in many areas of contemporary astronomical research, as illustrated by the
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search for dark matter in the universe. One of the reasons we think that an enormous
amount of unseen matter fills the universe (perhaps 10 times as much as is visible) can
be gleaned from the dynamics of spiral galaxies—thin disc-shaped, rotating aggregates
of as many as 100 billion stars. At first sight the rotation curve for spiral galaxies (a plot
of the rotational velocity of the stars as a function of their radial distance from the
galactic center) seems to violate Kepler’s laws. An example of such a curve is shown in
Figure 6.6.1. Most of the luminous matter of a spiral galaxy is contained in its central
nucleus whose extent is on the order of several thousand light years in radius. The rest
of the luminous matter is in the spiral arms that extend in radius out to a distance of
about 50,000 light years. The whole thing slowly rotates about its center of gravity,
exactly as one would expect for a self-gravitating conglomerate of stars, gas, dust, and
so on. The surprising thing about the rotation curve in Figure 6.6.1 is that it is appar-
ently non-Keplerian.

We can illustrate what we mean by this with a simple example. Assume that the
entire galactic mass is concentrated within a nucleus of radius R and that stars fill the
nucleus at uniform density. This is an oversimplification, but a calculation based on such
a model should serve as a guide for what we might expect a rotation curve to look like.
The rotational velocity of stars at some radius r < R within the nucleus is determined only
by the amount of mass M within the radius r. Stars external to r have no effect. Because
the density of stars within the total nuclear radius R is constant, we calculate M as

M =7pr® (6.6.6)
where
_ M
p (g)n R (6.6.7)

and from Newton’s second law

== (6.6.8)
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for the gravitational force exerted on a star of mass m at a distance r from the center of
the nucleus by the mass M interior to that distance r. Solving for v, we get

v= ,/GMga,/Rs r (6.6.9)

or, the rotational velocity of stars at r < R is proportional to r. For stars in the spiral arms
at distances r > R, we obtain
GM ,m _ mp?

; (6.6.10)
r r

GM
o= 1, rg“’ (6.6.11)

or, the rotational velocity of stars at r > R is proportional to 1 . This is what we mean
by Keplerian rotation. It is the way the velocities of planets depend on their distance from
the Sun. We show such a curve in Figure 6.6.1, where we have assumed that the entire
mass of the galaxy is uniformly distributed in a sphere whose radius is 1 kpc [1 parsec (pc) =
3.26 light years (ly)].

Let us examine the measured rotation curve. Initially, it climbs rapidly from zero
at the galactic center to about 250 km/s at 1 kpc, more or less as expected, but the aston-
ishing thing is that the curve does not fall off in the expected Keplerian manner. It stays
more or less flat all the way out to the edges of the spiral arms (the zero on the verti-
cal axis has been suppressed so the curve is flatter than it appears to be). The conclu-
sion is inescapable. As we move away from the galactic center, we must “pick up”
more and more matter within any given radius, which causes even the most remote
objects in the galaxy to orbit at velocities that exceed those expected for a highly cen-
tralized matter distribution. Because most of the luminosity of a galaxy comes from
its nucleus, we conclude that dark, unseen matter must permeate spiral galaxies all the
way out to their very edges and beyond. (In fact it should be a simple matter to deduce
the radial distribution of dark matter required to generate this flat rotation curve.) Of
course, Newton’s laws could be wrong, but we think not. It looks like a case of Neptune
revisited.

thus,

6.7| Potential Energy in a Gravitational Field:
Gravitational Potential

In Example 2.3.2 we showed that the inverse-square law of force leads to an inverse first
power law for the potential energy function. In this section we derive this same relation-
ship in a more physical way.

Let us consider the work W required to move a test particle of mass m along some
prescribed path in the gravitational field of another particle of mass M.

We place the particle of mass M at the origin of our coordinate system, as shown in
Figure 6.7.1a. Because the force F on the test particle is given by F = ~(GMm/r%)e,, then
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Figure 6.7.1 Diagram for finding the work M
required to move a test particle in a gravitational
field. (b)

to overcome this force an external force —F must be applied. The work dW done in
moving the test particle through a displacement dr is, thus, given by

aw =—F-dr= MM o ar (6.7.1)
r

Now we can resolve dr into two components: e, dr parallel to e, (the radial component)
and the other at right angles to e, (Figure 6.7.1b). Clearly,

e -dr=dr (6.7.2)
and so W is given by
2 df‘ 1 1

where r; and r, are the radial distances of the particle at the beginning and end of the
path. Thus, the work is independent of the particular path taken; it depends only on the
endpoints. This verifies a fact we already knew, namely that a central force described by
an inverse-square law is conservative.
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We can, thus, define the potential energy of a test particle of mass m at a given point
in the gravitational field of another particle of mass M as the work done in moving the
test particle from some arbitrary reference position r; to the position r,. We take the ref-
erence position to be r; = o. This assignment is usually a convenient one, because the grav-
itational force between two particles vanishes when they are separated by co. Thus, putting
11 =e0 and 1, = in Equation 6.7.3, we have

: GMm
r

V(r)=GMm| d_; = (6.7.4)
~r

Like the gravitational force, the gravitational potential energy of two particles separated

by oo also vanishes. Note that for finite separations, the gravitational potential energy is

negative.

Both the gravitational force and potential energy between two particles involve the
concept of action at a distance. Newton himself was never able to explain or describe the
mechanism by which such a force worked. We do not attempt to either, but we would
like to introduce the concept of field in such a way that forces and potential energies can
be thought of as being generated not by actions at a distance but by local actions of matter
with an existing field. To do this, we introduce the quantity ®, called the gravitational
potential

® = lim (Z) ©6.75)
m—-0\ m

In essence @ is the gravitational potential energy per unit mass that a very small test particle
would have in the presence of other surrounding masses. We take the limit as m — 0 to ensure
that the presence of the test particle does not affect the distribution of the other matter
and change the thing we are trying to define. Clearly, the potential should depend only
on the magnitude of the other masses and their positions in space, not those of the par-
ticle we are using to test for the presence of gravitation. We can think of the potential as
a scalar function of spatial coordinates, ®(x, y, z), or a field, set up by all the other sur-
rounding masses. We test for its presence by placing the test mass m at any point (x, y, z). The
potential energy of that test particle is then given by

V(x,y,z) = m®(x,y,2) (6.7.6)

We can think of this potential energy as being generated by the local interaction of the
mass m and the field ® that is present at the point (x, y, 2).
The gravitational potential at a distance r from a particle of mass M is

o-_M ©6.7.7)
r
If we have a number of particles My, M, ..., M,, .. . located at positions ry, 15, . . ., Xy, . . .,

then the gravitational potential at the point r(x, y, z) is the sum of the gravitational poten-
tials of all the particles, that is,

O(x,y,2) = 3 D, = —GE—?—" (6.7.8)
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in which s, is the distance of the field point r(x, y, z) from the position r;(x;, y;, 2;) of the
ith particle

$;=|r—r] (6.7.9)

We define a vector field g, called the gravitational field intensity, in a way that is com-
pletely analogous to the preceding definition of the gravitational potential scalar field

g = lim (E) (6.7.10)
m—-0\ m

Thus, the gravitational field intensity is the gravitational force per unit mass acting on a

test particle of mass m positioned at the point (x, y, z). Clearly, if the test particle expe-

riences a gravitational force given by

F=mg (6.7.11)

then we know that other nearby masses are responsible for the presence of the local field
intensity g.5

The relationship between field intensity and the potential is the same as that between
the force F and the potential energy V, namely

g=-Vd (6.7.12a)
F=-VV (6.7.12b)

The gravitational field intensity can be calculated by first finding the potential function
from Equation 6.7.8 and then calculating the gradient. This method is usually simpler than
the method of calculating the field directly from the inverse-square law. The reason is that
the potential energy is a scalar sum, whereas the field intensity is given by a vector sum.
The situation is analogous to the theory of electrostatic fields. In fact one can apply any
of the corresponding results from electrostatics to find gravitational fields and potentials
with the proviso, of course, that there are no negative masses analogous to negative charge.

EXAMPLE 6.7.1

Potential of a Uniform Spherical Shell

As an example, let us find the potential function for a uniform spherical shell.

Solution:

By using the same notation as that of Figure 6.2.1, we have

P =

_Gj'isl\i= _GJ' 2mpR* :in@ dé

%g is the local acceleration of a mass m due to gravity. On the surface of Earth, its value is 9.8 m/s” and is
primarily due to the mass of the Earth.
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From the relation between s and 6 that we used in Equation 6.2.5, we find that the pre-
ceding equation may be simplified to read
2
o=-g2RR g M (6.7.13)
rR R r
where M is the mass of the shell. This is the same potential function as that of a single
particle of mass M located at O. Hence, the gravitational field outside the shell is the
same as if the entire mass were concentrated at the center. It is left as a problem to show
that, with an appropriate change of the integral and its limits, the potential inside the
shell is constant and, hence, that the field there is zero.

Potential and Field of a Thin Ring

We now wish to find the potential function and the gravitational field intensity in the
plane of a thin circular ring.
Solution:

Let the ring be of radius R and mass M. Then, for an exterior point lying in the plane
of the ring, Figure 6.7.2, we have

q>=-GJ'dTM=—GJf””Rd9

S

where pis the linear mass density of the ring. To evaluate the integral, we first express
s as a function of 0 using the law of cosines

s=R>+r—2Rrcos@

Figure 6.7.2 Coordinates for
calculating the gravitational field of

aring.
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The integral becomes

do
(r2 +R% - 2Rr cos )2
_ _2RpG J’?r do
T b+ @R -2RIr) cos0)]P

® = -2RuG j:

First, let us use the so-called far field approximation r > R and expand the integrand in
a power series of x(= R/r), making certain to keep all terms of order »”.

b= —2x/.tGJ':[(l—%x2 +xcose) +%(ac2 - 92xcosB)% +- - ] de

=—2x/.lGJ:(l—%x2 +accose+%ac2 cosze—%ac3 cosB+—g—ac4 +-- -)de

Now, dropping all terms of order x* or higher and noting that the term containing cos 6
has zero integral over a half cycle, we obtain

x2
<I>=—2x,uG(n‘+n'Z+---

—

2
_ —27RuG [1+ R
4r

r

The field intensity at a distance r from the center of the ring is in the radial direction
(because @ is not a function of 8) and is given by

_9®  GM(. s(RY
g——ger——r—z 1+Z— te--je,

r

The field is not given by an inverse-square law. If r > R, the term in parentheses
approaches unity, and the field intensity approaches the inverse-square field of a single
particle of mass M. This is true for a finite-sized body of any shape; that is, for distances
large compared with the linear dimensions of the body, the field intensity approaches
that of a single particle of mass M.

The potential for a point near the center of the ring can be found by invoking the near
field, or r < R, approximation. The solution proceeds more or less as before, but in this
case we expand the preceding integrand in powers of 7/R to obtain

2
(I)=_G_M ]_+L_+...
R 4R

g can again be found by differentiation

_(G_Mr)e +...
E={or%" )
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Thus, a ring of matter exerts an approximately linear repulsive force, directed away from
the center, on a particle located somewhere near the center of the ring. It is easy to see that
this must be so. Imagine that you are a small mass at the center of such a ring of radius R
with a field of view both in front of you and behind you that subtends some definite angle.
If you move slowly a distance r away from the center, the matter you see attracting you in
the forward direction diminishes by a factor of r, whereas the matter you see attracting you
from behind grows by r. But because the force of gravity from any material element falls
as 1/, the force exerted on you by the forward mass and the backward mass varies as 1/r,
and, thus, the force difference between the two of them is [1/(R —r) — 1/(R + r)] or pro-
portional to r for r < R. The gravitational force of the ring repels objects from its center.

6.8 | Potential Energy in a General Central Field

We showed previously that a central field of the inverse-square type is conservative. Let
us now consider the question of whether or not any (isotropic) central field of force is con-
servative. A general isotropic central field can be expressed in the following way:

F=f(re, (6.8.1)

in which e, is the unit radial vector. To apply the test for conservativeness, we calculate
the curl of F. It is convenient here to employ spherical coordinates for which the curl is
given in Appendix F. We find

€gr e,r sinf

ef
1 ja 8 3

VxF= 2 L
r? sinflor 90 09 68.2)
E, rF, rF,sin@
For our central force F, =f(r), Fg =0, and F; = 0. The curl then reduces to
vxF=_%_ % %% _, (6.8.3)

rsin@d¢ r J0

The two partial derivatives both vanish because f(r) does not depend on the angular
coordinates ¢ and 6. Thus, the curl vanishes, and so the general central field defined by
Equation 6.8.1 is conservative. We recall that the same test was applied to the inverse-
square field in Example 4.2.5.

We can now define a potential energy function

V() =-[ F-dr=-[ ferdr (6.84)

where the lower limit ., is the reference value of r at which the potential energy is
defined to be zero. For inverse-power type forces, 1, is often taken to be at infinity. This
allows us to calculate the potential energy function, given the force function. Conversely,
if we know the potential energy function, we have

dv(r)

f(?") = ———d—r (685)

giving the force function for a central field.
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6.9| Energy Equation of an Orbit
in a Central Field

The square of the speed is given in polar coordinates from Equation 1.11.7
v.v=0" =" +r?0* (6.9.1)
Because a central force is conservative, the total energy T + V is constant and is given by

%m(i-2 +1r20%)+V(r) = E = constant (6.9.2)

We can also write Equation 6.9.2 in terms of the variable « = 1/r. From Equations 6.5.7 and
6.5.8 we obtain

2
gm{(%) + u2:| +V(w™)=E (6.9.3)

The preceding equation is called the energy equation of the orbit.

EXAMPLE 6.9.1
In Example 6.5.1 we had for the spiral orbit r = c6*

d_u_ __20—3 =_201/2u3/2

de ¢

so the energy equation of the orbit is
2ml®(4cu’ +u*)+V =E
Thus,

V(r)= E—%mlz(j—g+riz)

This readily gives the force function of Example 6.5.1, because f (r) = ~dV/dr.

6.10| Orbital Energies in an Inverse-Square Field

The potential energy function for an inverse-square force field is
k
V(ir)=——= —ku (6.10.1)
r

so the energy equation of the orbit (Equation 6.9.3) becomes

Lol (Y e g
sml {(d@) +u] ku=E (6.10.2)
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Solving for du/d#, we first get
( du )2 s 2E %ku
+u

70 = W+W (6.10.3a)
and then
% = %+%—u2 (6.10.3b)
Separating variables yields
du

do=—2
2E 2ku (6.10.3c)
ml® e

We introduce three constants, a, b, and ¢

2k 2E

a=-1 b= W c= W (6.10.4)
to write Equation 6.10.3c in a standard form to carry out its integration
0-0 —J‘L—'—LCOS_I(—M] 6105
" VP +butc Vo Vb® - dac (6.105)
where 6, is a constant of integration. Rewriting Equation 6.10.5 first gives us
b+2au
————— = cos[=a(6 - )] (6.10.6a)
Vb* - 4dac
and then solving for u
Vb® - dac b
=" = =a@©@- e 6.10.6b
u s cos[ a(0-6, )]+ o ( )

Now we replace u with 1/r and insert the values for the constants 4, b, and ¢ from Equation 6.10.4
into Equation 6.10.6b.

4k*®  8E k

W+W COS(9“90)+W (61073)

and factoring out the quantity k/ml” yields
1_k Hzlzml2
r ml® K

which, upon simplifying, yields the polar equation of the orbit analogous to

Equation 6.5.18a,

1
.

_1
T2

cos(6—6,)+ ljl (6.10.7b)

_ ml®fk
1+ y/1+ 2EmI®/k® cos(0 - 6,)

r (6.10.7¢)
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If, as before, we set 6, = 0, which defines the direction toward the orbital pericenter to
be the reference direction for measuring polar angles, and we compare Equation 6.10.7c
with 6.5.18b, we see that again it represents a conic section whose eccentricity is

2E ml®

k k
From Equations 6.5.18a, b and 6.5.19, &= ml’/k = (1 - €")a and on inserting these rela-
tions into Equation 6.10.8, we see that

e=_|1+ (6.10.8)

2
_2E_1-€ 1 (6.10.9)
k o a
or
k
E=-—t (6.10.10)
2a

Thus, the total energy of the particle determines the semimajor axis of its orbit. We now
see from Equation 6.10.8, as stated in Section 6.5, that the total energy E of the particle
completely determines the particular conic section that describes the orbit:

E<O €<l  closed orbits (ellipse or circle)
E=0 €=1  parabolic orbit
E>0 €>1  hyperbolic orbit

Because E = T+ V and is constant, the closed orbits are those for which T < |V|, and the
open orbits are those for which T > | V.

In the Sun’s gravitational field the force constant k = GMgm, where M, is the mass
of the Sun and m is the mass of the body. The total energy is then

mo” _GMym

= E = constant (6.10.11)
2 r

so the orbit is an ellipse, a parabola, or a hyperbola depending on whether o’ is less than,
equal to, or greater than the quantity 2GMq/r, respectively.

EXAMPLE 6.10.1

A comet is observed to have a speed v when it is a distance r from the Sun, and its direc-
tion of motion makes an angle ¢ with the radius vector from the Sun, Figure 6.10.1. Find
the eccentricity of the comet’s orbit.

Solution:

To use the formula for the eccentricity (Equation 6.10.8), we need the square of the angu-
lar momentum constant /. It is given by

I2=|r x v|* = (rv sin¢)’
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Figure 6.10.1 Orbit of a comet.

The eccentricity, therefore, has the value

. o2
= 1+(02 _ 2GMO) 70 sin @
r GM,,
Note that the mass m of the comet cancels out. Now the product GM, can be expressed
in terms of Earth’s speed v, and orbital radius a, (assuming a circular orbit), namely

GMg =a,v’
The preceding expression for the eccentricity then becomes

/2
€= |:1 + (V2 - —;—)(RV sin¢)2]

where we have introduced the dimensionless ratios

which simplify the computation of €.
As a numerical example, let v be one-half the Earth’s speed, let r be four times
Earth—Sun distance, and ¢ = 30°. Then V = 0.5 and R = 4, so the eccentricity is

e=[1+(0.25 - 0.5)(4 x 0.5 x 0.5)%1 = (0.75)"* = 0.866

For an ellipse the quantity (1 — €)% is equal to the ratio of the major (long) axis to the

minor (short) axis. For the orbit of the comet in this example this ratio is (1 - 0.75) 2 =9,
or 2:1, as shown in Figure 6.10.1.

EXAMPLE 6.10.2

When a spacecraft is placed into geosynchronous orbit (Example 6.6.2), it is first
launched, along with a propulsion stage, into a near circular, low earth orbit (LEO) using
an appropriate booster rocket. Then the propulsion stage is fired and the spacecraft is
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Avy

Figure 6.10.2 Boosting a satellite
from low earth orbit (LEO) to a
geosynchronous (geo) orbit.

transferred to an elliptic orbit designed to take it to geosynchronous altitude at orbital
apogee (see Figure 6.10.2). At apogee, the propulsion stage is fired again to take it out
of its elliptical orbit and put it into a circular, geocentric (geo) orbit. Thus, two velocity
boosts are required of the propulsion stage: (a) Av,, to move the satellite from its cir-
cular LEO into the elliptical transfer orbit and (b) Av,, to circularize the orbit of the satel-
lite at the geosynchronous altitude. Calculate the required velocity boosts, Av; and Av,.

(a) Solution:

We essentially solved this problem in Example 6.5.4. We do it here in a slightly dif-
ferent way. First, we note that the radii of the two circular orbits and the semimajor
axis of the transfer elliptical orbit (see Figure 6.10.2) are related

RLEO + Rgeo =2a

From the figure we see that R; g0 = a(1 - €) and R, = a(1 + €) are the perigee and
apogee distances of the transfer orbit.

Now, we use the energy equation (6.10.11) to calculate the velocity at perigee,
0y, of the spacecraft, after boost to the transfer elliptical orbit. The energy of the ellip-
tical orbit is

g GMgm 1 o GMgm

2a 2P a(l-e)

Solving for v, gives
s GM E (1 +€ )
vi=—%£—
P g \l-€
Substituting for @, 1 + € and 1 — € into the above gives

R
o2 2GM; ( gea)

Rigo+ By, \ Rrpo
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Now, we can calculate the velocity of the satellite in circular LEO from the condition

2
mogo _ GMgm

2
Rizo Rigo

or
s _ GMg
Orko = R“
LEO

After a little algebra, we find that the required velocity boost is

2R
Av, =0, — 050 = GMg e -1
P Rigo | VRieo + Ry

Remembering that g = GMy/R; we have

oR
Av, =Ry g[ geo —1]

Ripo | VBreo + Ry,
Putting in numbers: Rg = 6371 km, R;zo = 6693 km, R
Av, = 8,600 km/hr

= 42,400 km we get

geo

(b) Solution:
The energy of the spacecraft at apogee is
E __GMm 12 GMm
2a 2% a(l+e)

Solving for the velocity at apogee, v,

o CM; (1—5)
¢ a \l+e

Substituting for a, 1 + € and 1 - € into the above gives

02 = 2GM E RLEO
¢ RLEO +Rgeo R

geo

As before, the condition for a circular orbit at this radius is

2
mvgeo = GM Em

2
Rgeo Rgeo
Thus,
o —GMg
geo R

geo

Avy = v, —0, = GMp | _ | _2Rupo =R, |-&-|1- _2Rypo
Ripo +R,, R Ripo t Ry,

geo
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Putting in numbers, we get
Av, = 5269 km/hr

Note, the total boost, Av; + Av, = 8,600 km/hr + 5269 km/hr = 13,869 km/hr,
required of the spacecraft propulsion system to place it into geo orbit is almost 50%
of the boost required by the launcher to place it into LEO!

6.11| Limits of the Radial Motion:
Effective Potential
We have seen that the angular momentum of a particle moving in any isotropic central

field is a constant of the motion, as expressed by Equations 6.5.4 and 6.5.5 defining l. This
fact allows us to write the general energy equation (Equation 6.9.2) in the following form:

2
ﬂ[,ﬂ +l_2J+V(r) =E (6.11.1a)
2 r
or
%,;2 +U(r)=E (6.11.1b)
in which
2
U(r) = 2ﬂ2_ LV (6.11.10)
-

The function U(r) defined here is called the effective potential. The term ml*/2r” is
called the centrifugal potential. Looking at Equation 6.11.1b we see that, as far as the
radial motion is concerned, the particle behaves in exactly the same way as a particle of
mass m moving in one-dimensional motion under a potential energy function U(r). As
in Section 3.3 in which we discussed harmonic motion, the limits of the radial motion
(turning points) are given by setting # = 0 in Equation 6.11.1b. These limits are, there-
fore, the roots of the equation

Ur)-E=0 (6.11.2a)

or
2

f—‘lg +V(r)-E=0 (6.11.2b)
2r

Furthermore, the allowed values of r are those for which U(r) < E, because # is neces-

sarily positive or zero.

Thus, it is possible to determine the range of the radial motion without knowing any-
thing about the orbit. A plot of U(r) is shown in Figure 6.11.1. Also shown are the radial
limits o and ry for a particular value of the total energy E. The graph is drawn for the
inverse-square law, namely,

2
vy ="k (6.11.3)
2r* r
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Figure 6.11.1 The effective potential for the inverse-square law of force and limits of the
radial motion.

In this case Equation 6.11.2a, on rearranging terms, becomes

~2Er” - %kr +ml*=0 (6.11.4)
which is a quadratic equation in r. The two roots are
(2 212
o= ul +22§ml ) (6.11.5)

giving the maximum (upper sign) and minimum (lower sign) values of the radial distance
r under the inverse-square law of force.

When E < 0, the orbits are bound, the two roots are both positive, and the resulting
orbit is an ellipse in which r, and r; are the pericenter and apocenter, respectively. When
the energy is equal to its minimum possible value

K2
En==3 7 (6.116)
Equation 6.11.5 then has a single root given by
o=t (6.1L.7)
2E, .,

and the orbit is a circle. Note, that this result can also be obtained from Equation 6.10.10
(e =—k/2E) because ry=a in the case of a circular orbit. When E > 0, Equation 6.11.5 has
only a single, positive real root corresponding to a parabola (E = 0) or a hyperbola (E > 0).

Because the effective potential of the particle is axially symmetric, its shape in two
dimensions can be formed by rotating the curve in Figure 6.11.1 about the vertical
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(2) 5

-5 -2.5 0 2.5 5
X
b
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U(x, y)
E > 0, hyberbola 02 ¥
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3 . =
Figure 6.11.2 (a) The oK .
effective potential for the 2 En<E < 0, ellipse
inverse-square law of force £ 1Y o 0 Dy
in two dimensions. (b) The &
relationship between total 0 E=E_,,circle
energy E, the effective
potential, and the resulting i Ry 4 ) 5 5 y
orbits. x

(Energy) axis. The resulting two-dimensional shape is shown in Figure 6.11.2a. The orbit
of the particle can be visualized as taking place in that figure, constrained to a horizontal
plane of constant energy E. If the energy of the particle is E < 0, the intersection of the
plane and the effective potential surface forms an inner circle of radius r, that marks a
central, impenetrable centrifugal barrier and an outer circle of radius r,, that marks the
farthest point of escape from the center of attraction. The motion of the particle is bound
to a region between these two limits. If the energy of the particle is equal to its minimum
possible value E = E,;,, these two circles converge to a single one that traces out the min-
imum of the effective potential surface. The particle is constrained to that circle. If the
energy of the particle is E > 0, the intersection forms only a single circle of radius r, around
the centrifugal barrier and the particle is only inhibited from passing into that region; oth-
erwise, it is free to escape to infinity along either a parabolic or hyperbolic trajectory.

Figure 6.11.2b suppresses the display of the effective potential mesh in Figure 6.11.2a
(except for the two radial curves in the +x direction) and shows the circular, elliptical,
and hyperbolic orbits that result when the energy (in appropriately scaled units) is equal
to -1, —%, and +1 units, respectively. Note that, in all cases, the particle is constrained to
move in a region of its plane of constant energy, in which the value of its energy exceeds
the value of the effective potential at that point.
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EXAMPLE 6.11.1

Find the semimajor axis of the orbit of the comet of Example 6.10.1.

Solution:

Equation 6.10.10 gives directly

. k GMym
—2E 9 mv®  GMgm
2 r

where m is the mass of the comet. Clearly, m again cancels out. Also, as stated previ-
ously, GMo = a,0. So the final result is the simple expression

a

¢ R -V?

where R and V are as defined in Example 6.10.1.
For the previous numerical values, R =4 and V = 0.5, we find a = ¢,/[0.5 — (0.5)"]=4a,.

Examples 6.10.1 and 6.10.2 bring out an important fact, namely, that the orbital
parameters are independent of the mass of a body. Given the same initial position, speed,
and direction of motion, a grain of sand, a coasting spaceship, or a comet would all have
identical orbits, provided that no other bodies came near enough to have an effect on the
motion of the body. (We also assume, of course, that the mass of the body in question is
small compared with the Sun’s mass.)

6.12| Nearly Circular Orbits in
Central Fields: Stability

A circular orbit is possible under any attractive central force, but not all central forces
result in stable circular orbits. We wish to investigate the following question: If a par-
ticle traveling in a circular orbit suffers a slight disturbance, does the ensuing orbit
remain close to the original circular path? To answer the query, we refer to the radial
differential equation of motion (Equation 6.5.2a). Because 8 = 1/r*, we can write the
radial equation as follows:

2
mi = —"r%— +f(r) (6.12.1)

[This is the same as the differential equation for one-dimensional motion under the effec-
tive potential U(r) = ml%/2r®) + V(r), so that m# = ~dU(r)/dr = (ml*/r®) — dV(r)/dr.]

Now for a circular orbit, r is constant, and # = 0. Thus, calling @ the radius of the cir-
cular orbit, we have

2

—"{;‘l—s = f(a) (6.12.2)
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for the force at r = a. It is convenient to express the radial motion in terms of the vari-

able x defined by
x=r—a (6.12.3)
The differential equation for radial motion then becomes
mk =ml*(x+a)> + f(x+a) (6.12.4)

Expanding the two terms involving x + @ as power series in x, we obtain
mi = ml2a‘3(1—3£ +) +[f@)+ f'(a)x+-] (6.12.5)
a

Equation 6.12.5, by virtue of the relation shown in Equation 6.12.2, reduces to
-3 ,
mi + [7 fla-f (a)}x =0 (6.12.6)

if we ignore terms involving > and higher powers of x. Now, if the coefficient of x (the
quantity in brackets) in Equation 6.12.6 is positive, then the equation is the same as that
of the simple harmonic oscillator. In this case the particle, if perturbed, oscillates har-
monically about the circle r = a, so the circular orbit is a stable one. On the other hand,
if the coefficient of x is negative, the motion is nonoscillatory, and the result is that x even-
tually increases exponentially with time; the orbit is unstable. (If the coefficient of x is zero,
then higher terms in the expansion must be included to determine the stability.) Hence,
we can state that a circular orbit of radius a is stable if the force function f(r) satisfies the
inequality

fla)+ % f(a)<0 6.12.7)
For example, if the radial force function is a power law, namely,
fr)y=—cr" (6.12.8)
then the condition for stability reads
n a n-1
~ca" - gcna <0 (6.12.9)
which reduces to
n>-3 (6.12.10)

Thus, the inverse-square law (n =—2) gives stable circular orbits, as does the law of direct
distance (n = 1). The latter case is that of the two-dimensional isotropic harmonic oscil-
lator. For the inverse—fourth power (n = —4) circular orbits are unstable. It can be shown
that circular orbits are also unstable for the inverse-cube law of force (n =-3). To show
this it is necessary to include terms of higher power than 1 in the radial equation. (See
Problem 6.26.)
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6.13| Apsides and Apsidal Angles
for Nearly Circular Orbits

An apsis, or apse, is a point in an orbit at which the radius vector assumes an extreme value
(maximum or minimum). The perihelion and aphelion points are the apsides of planetary orbits.
The angle swept out by the radius vector between two consecutive apsides is called the apsi-
dal angle. Thus, the apsidal angle is 7 for elliptic orbits under the inverse-square law of force.

In the case of motion in a nearly circular oribt, we have seen that r oscillates about
the circle r = g (if the orbit is stable). From Equation 6.12.6 it follows that the period 7,
of this oscillation is given by

1/2
T, =21 L (6.13.1)
~(3/a)f(a)- f'(a)

The apsidal angle in this case is just the amount by which the polar angle fincreases during
the time that r oscillates from a minimum value to the succeeding maximum value. This time
is clearly 7./2. Now @ =1/r’; therefore, 6 remains approximately constant, and we can write

172
o=t - [_ M] (613.2)
a ma

The last step in Equation 6.13.2 follows from Equation 6.12.2; hence, the apsidal angle
is given by

@ ST
=lr,é=7c{3+a } 6.1
V=3 @ (6.13.3)
Thus, for the power law of force f(r) = —r”", we obtain
y=n@+n)"" (6.13.4)

The apsidal angle is independent of the size of the orbit in this case. The orbit is reentrant,
or repetitive, in the case of the inverse-square law (n = —2) for which y = 7 and in the
case of the linear law (n = 1) for which y= /2. If, however, sayn =2, then y= 7/ /5, which
is an irrational multiple of 7, and so the motion does not repeat itself.

If the law of force departs slightly from the inverse-square law, then the apsides
either advances or regresses steadily, depending on whether the apsidal angle is slightly
greater or slightly less than 7. (See Figure 6.13.1.)

Apsidal angle

Tmin

Figure 6.13.1 Illustrating the apsidal angle.
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EXAMPLE 6.13.1

Let us assume that the gravitational force field acting on the planet Mercury takes the
form

f(r)=—i2+er
r

where e is very small. The first term is the gravitational field due to the Sun, and the second
term is a repulsive perturbation due to a surrounding ring of matter. We assume
this matter distribution as a simple model to represent the gravitational effects of all the
other planets, primarily Jupiter. The perturbation is linear for points near the Sun and
in the plane of the surrounding ring, as previously explained in Example 6.7.2. The
apsidal angle, from Equation 6.13.3, is

2ka™® + e e
—ka? +ea

1-4ked® s e 3\ € 3\
n[—l—k'leas ) —n(l—za ) (1—4Za )
n(l—%%as)(l+2%a3)

3 €
zn(1+§za3)

In the last step, we used the binomial expansion theorem to expand the terms in brack-
ets in powers of e/k and kept only the first-order term. The apsidal angle advances if €
is positive and regresses if it is negative.

‘P=7z:[3+a

u

By 1877, Urbain Leverrier, using perturbation methods, had succeeded in calculating
the gravitational effects of all the known planets on one another’s orbit. Depending on the
planet, the apsidal angles were found to advance or regress in good agreement with theory
with the sole exception of the planet Mercury. Observations of Mercury’s solar transits
since 1631 indicated an advance of the perihelion of its orbit by 565” of arc per century.
According to Leverrier, it should advance only 527” per century, a discrepancy of 38”.
Simon Newcomb (1835-1909), chief of the office for the American Nautical Almanac,
improved Leverrier’s calculations, and by the beginning of the 20th century, the accepted
values for the advance of Mercury’s perihelion per century were 575” and 534", respectively,
or a discrepancy of 41” + 2" of arc. Leverrier himself had decided that the discrepancy
was real and that it could be accounted for by an as yet unseen planet with a diameter
of about 1000 miles circling the Sun within Mercury’s orbit at a distance of about 0.2 AU.
(You can easily extend the preceding example to show that an interior planet would lead
to an advance in the perihelion of Mercury’s orbit by the factor 8/ka”.) Leverrier called
the unseen planet Vulcan. No such planet was found.

Another possible explanation was put forward by Asaph Hall (1829-1907), the dis-
coverer of the satellites of Mars in 1877. He proposed that the exponent in Newton’s law
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of gravitation might not be exactly 2, that instead, it might be 2.0000001612 and that this
would do the trick. Einstein was to comment that the discrepancy in Mercury’s orbit “could
be explained by means of classic mechanics only on the assumption of hypotheses which
have little probability and which were devised solely for this purpose.” The discrepancy,
of course, was nicely explained by Einstein himself in a paper presented to the Berlin
Academy in 1915. The paper was based on Einstein’s calculations of general relativity even
before he had fully completed the theory. Thus, here we have the highly remarkable
event of a discrepancy between observation and existing theory leading to the confirma-
tion of an entirely new superceding theory.

If the Sun were oblate (football-shaped) enough, its gravitational field would
depart slightly from an inverse-square law, and the perihelion of Mercury’s orbit would
advance. Measurements to date have failed to validate this hypothesis as a possible
explanation. Similar effects, however, have been observed in the case of artificial satellites
in orbit about Earth. Not only does the perihelion of a satellite’s orbit advance, but the
plane of the orbit precesses if the satellite is not in Earth’s equatorial plane. Detailed
analysis of these orbits shows that Earth is basically “pear-shaped and somewhat
lumpy.”

6.14| Motion in an Inverse-Square Repulsive
Field: Scattering of Alpha Particles

Ironically one of the crowning achievements of Newtonian mechanics contained its own
seeds of destruction. In 1911, Ernest Rutherford (1871-1937), attempting to solve the
problem of the scattering of alpha particles by thin metal foils, went for help back
to the very source of classical mechanics, the Principia of Sir Isaac Newton.
Paradoxically, in the process of finding a solution to the problem based on classical
mechanics, the idea of the nuclear atom was born, an idea that would forever remain
incomprehensible within the confines of the classic paradigm. A complete, self-
consistent theory of the nuclear atom would emerge only when many of the notions
of Newtonian mechanics were given up and replaced by the novel and astounding
concepts of quantum mechanics. It is not that Newtonian mechanics was “wrong’; its
concepts, which worked so well time and again when applied to the macroscopic world
of falling balls and orbiting planets, simply broke down when applied to the microscopic
world of atoms and nuclei. Indeed, the architects of the laws of quantum physics con-
structed them in such a way that the results of calculations based on the new laws agreed
with those of Newtonian mechanics when applied to problems in the macroscopic
world. The domain of Newtonian physics would be seen to be merely limited, rather
than “wrong,” and its practitioners from that time on would now have to be aware of
these limits.

In the early 1900s the atom was thought to be a sort of distributed blob of positive
charge within which were embedded the negatively charged electrons discovered in 1897
by J. J. Thomson (1856—1940). The model was first suggested by Lord Kelvin (1824-1907)
in 1902 but mathematically refined a year later by Thomson. Thomson developed the
model with emphasis on the mechanical and electrical stability of the system. In his honor
it became known as the Thomson atom.
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In 1907, Rutherford accepted a position at the University of Manchester where he
encountered Hans Geiger (1882-1945), a bright young German experimental physi-
cist, who was about to embark on an experimental program designed to test the valid-
ity of the Thomson atom. His idea was to direct a beam of the recently discovered
alpha particles emitted from radioactive atoms toward thin metal foils. A detailed analy-
sis of the way they scattered should provide information on the structure of the atom.
With the help of Ernest Marsden, a young undergraduate, Geiger would carry out these
investigations over several years. Things behaved more or less as expected, except there
were many more large-angle scatterings than could be accounted for by the Thomson
model. In fact, some of the alpha particles scattered completely backward at angles of
180°. When Rutherford heard of this, he was dumbfounded. It was as though an onrush-
ing freight train had been hurled backward on striking a chicken sitting in the middle
of the track.

In searching for a model that would lead to such a large force being exerted on a
fast-moving projectile, Rutherford envisioned a comet swinging around the Sun and
coming back out again, just like the alpha particles scattered at large angles. This sug-
gested the idea of a hyperbolic orbit for a positively charged alpha particle attracted by
anegatively charged nucleus. Of course, Rutherford realized that the only important thing
in the dynamics of the problem was the inverse-square nature of the law, which, as we
have seen, leads to conic sections as solutions for the orbit. Whether the force is attrac-
tive or repulsive is completely irrelevant. Rutherford then remembered a theorem about
conics from geometry that related the eccentricity of the hyperbola to the angle between
its asymptotes. Using this relation, along with conservation of angular momentum and
energy, he obtained a complete solution to the alpha particle-scattering problem, which
agreed well with the data of Geiger and Marsden. Thus, the current model of the nuclear
atom was born.

We solve this problem next but be aware that an identical solution could be obtained
for an attractive force. The solution says nothing about the sign of the nuclear charge. The
sign becomes obvious from other arguments.

Consider a particle of charge g and mass m (the incident high-speed particle) pass-
ing near a heavy particle of charge Q (the nucleus, assumed fixed). The incident particle
is repelled with a force given by Coulomb’s law:

fr) = % (6.14.1)
where the position of Q is taken to be the origin. (We shall use cgs electrostatic units for

Q and g. Then r is in centimeters, and the force is in dynes.) The differential equation of
the orbit (Equation 6.5.12) then takes the form

d*u
Lt ru=- nQd‘g (6.14.2)
and so the equation of the orbit is
ul=r 1
= (6.14.3)

" A cos(8— 6,)— Ogiml®
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We can also write the equation of the orbit in the form given by Equation 6.10.7c, namely,

Q—l -1
—1 +(1+2Eml Q_2 2)2 cos(6- 6,) (6.14.4)

because k = —Qq. The orbit is a hyperbola. This may be seen from the physical fact
that the energy E is always greater than zero in a repulsive field of force. (In our case

E mo® + Qqg/r.) Hence, the eccentricity €, the coefficient of cos (68— ), is greater than
unity, which means that the orbit must be hyperbolic.

The incident particle approaches along one asymptote and recedes along the other,
as shown in Figure 6.14.1. We have chosen the direction of the polar axis such that the
initial position of the particle is =0, r = co. It is clear from either of the two equations
of the orbit that r assumes its minimum value when cos(8— 6,) = 1, that is, when 6= 6,.
Because r = co when 8= 0, then r is also infinite when 6= 26,. Hence, the angle between
the two asymptotes of the hyperbolic path is 26,, and the angle 6, through which the inci-
dent particle is deflected is given by

6,= - 26, (6.14.5)
Furthermore, in Equation 6.14.4 the denominator vanishes at =0 and 6= 26,. Thus,
—1 + (1 + 2EmP’Q%g %) cos 6,= 0 (6.14.6)
from which we readily find
tan@, = (2Em)?1Q7q™" = cot% (6.14.7)

The last step follows from the angle relationship given above.
In applying Equation 6.14.7 to scattering problems, the constant [ is usually expressed
in terms of another quantity b called the impact parameter. The impact parameter is the

Hyperbolic path

T'min
charge ¢ 9(}\ 0,

Figure 6.14.1 Hyperbolic path (orbit) of a charged particle moving in the inverse-square
repulsive force field of another charged particle.
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perpendicular distance from the origin (scattering center) to the initial line of motion of
the particle, as shown in Figure 6.14.1. Thus

11]=]r X v|=bo, (6.14.8)

where v, is the initial speed of the particle. We know also that the energy E is constant
and is equal to the initial kinetic energy 3 mvg, because the initial potential energy is zero
(r = *0). Accordingly, we can write the scattering formula (Equation 6.14.7) in the form

cot b _ _bmog _ZE 6.14.9
2 Q9 & 6149
giving the relationship between the scattering angle and the impact parameter.

In a typical scattering experiment a beam of particles is projected at a target, such
as a thin foil. The nuclei of the target atoms are the scattering centers. The fraction of
incident particles that are deflected through a given angle 6, can be expressed in terms
of a differential scattering cross section 0(6,) defined by the equation

dTN =n0(6,)dQ (6.14.10)

Here dN is the number of incident particles scattered through an angle between 6, and
0,+d0,, N is the total number of incident particles, n is the number of scattering centers
per unit area of the target foil, and dQ is the element of solid angle corresponding to the
increment d6,. Thus, dQ = 27 sin 6, d6,.

Now an incident particle approaching a scattering center has an impact parameter
lying between b and b + db if the projection of its path lies in a ring of inner radius b and
outer radius b + db (see Figure 6.14.1). The area of this ring is 2b db. The total number
of such particles must correspond to the number scattered through a given angle, that is

dN =Nno(6,)2r sin 6, d6,= Nn2nb db (6.14.11)
Thus,
b | db
0)=
o(6,) sin6, | 6, (6.14.12)

To find the scattering cross section for charged particles, we differentiate with respect to
6, in Equation 6.14.9:

1 2E| db
(6.14.13)

25in2(%) Qq| dé,

(The absolute value sign is inserted because the derivative is negative.) By eliminating b
and |db/d6;| among Equations 6.14.9, .12, and .13 and using the identity

sin 6, =2 sin(6,/2) cos(6,/2),

we find the following result:

2.2
cr(¢9s)=Q 9 1

16E* sin*(6,/2) (6.14.19)
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This is the famous Rutherford scattering formula. It shows that the differential cross sec-
tion varies as the inverse fourth power of sin(6,/2). Its experimental verification in the
first part of this century marked one of the early milestones of nuclear physics.

EXAMPLE 6.14.1

An alpha particle emitted by radium (E = 5 million eV = 5 x 10° x 1.6 x 10™ erg) suf-
fers a deflection of 90° on passing near a gold nucleus. What is the value of the impact
parameter?

Solution:

For alpha particles g = 2e, and for gold Q = 79¢, where ¢ is the elementary charge. (The
charge carried by a single electron is —e.) In egs units ¢ = 4.8 x 107 esu. Thus, from
Equation 6.14.9

A 2XT9%(4.8)2 x10™ cm
2E 2x5%1.6%x107°
=21%10""2 c¢m

Calculate the distance of closest approach of the alpha particle in Example 6.14.1.

Solution:

The distance of closest approach is given by the equation of the orbit (Equation 6.14.4)
for 0= 6; thus,

ml2Qg™
Toin = 1+ + 2EmPQ 2 )

On using Equation 6.14.9 and a little algebra, the preceding equation can be written

- bcot(0,/2) - bcos(0,/2)
™ _1+[1+cot®(0,/2)]%  1-sin(6,/2)

Thus, for 6, = 90°, we find r,,,, =2.41 b=5.1 x 10™* cm

Notice that the expressions for ,,;, become indeterminate when [ =b =0. In this case
the particle is aimed directly at the nucleus. It approaches the nucleus along a straight
line, and, being continually repelled by the Coulomb force, its speed is reduced to zero
when it reaches a certain point r,,,, from which point it returns along the same straight
line. The angle of deflection is 180°. The value of ,,,, in this case is found by using the

fact that the energy E is constant. At the turmng point the potential energy is Qq/r,;,, and
the kinetic energy is zero. Hence, E = lmvo = Qq/1 pin» and

rmm = %
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For radium alpha particles and gold nuclei we find 7,,;, = 10 cm when the angle of
deflection is 180°. The fact that such deflections are actually observed shows that the
order of magnitude of the radius of the nucleus is at least as small as 107

Problems

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

Find the gravitational attraction between two solid lead spheres of 1 kg mass each if the
spheres are almost in contact. Express the answer as a fraction of the weight of either
sphere. (The density of lead is 11.35 g/cm”.)

Show that the gravitational force on a test particle inside a thin uniform spherical shell is zero
(a) By finding the force directly
(b) By showing that the gravitational potential is constant

Assuming Earth to be a uniform solid sphere, show that if a straight hole were drilled from
pole to pole, a particle dropped into the hole would execute simple harmonic motion.
Show also that the period of this oscillation depends only on the den31ty of Earth and is
independent of the size. What is the period in hours? (R, = 6.4 X 10°m.)

Show that the motion is simple harmonic with the same period as the previous problem for
a particle sliding in a straight, smooth tube passing obliquely through Earth. (Ignore any
effects of rotation.)

Assuming a circular orbit, show that Keplers third law follows directly from Newton's second
law and his law of gravity: GMm/r® = mo’/r.

(a) Show that the radius for a circular orbit of a synchronous (24-h) Earth satellite is about
6.6 Earth radii.

(b) The distance to the Moon is about 60.3 Earth radii. From this calculate the length of
the sidereal month (period of the Moon’s orbital revolution).

Show that the orbital period for an Earth satellite in a circular orbit just above Earth’s sur-
face is the same as the period of oscillation of the particle dropped into a hole drilled
through Earth (see Problem 6.3).

Calculate Earth’s velocity of approach toward the Sun, when it is at an extremum of the latus
rectum through the Sun. Take the eccentricity of Earth’s orbit to be - 5 and its semimajor
axis to be 93,000,000 miles (see Figure 6.5.1).

If the solar system were embedded in a uniform dust cloud of density p, show that the law
of force on a planet a distance r from the center of the Sun would be given by

F(r)= GMm

(%) zpmGr

A particle moving in a central field describes the spiral orbit r = r,*®. Show that the force
law is inverse cube and that 8 varies logarithmically with ¢.

A particle moves in an inverse-cube field of force. Show that, in addition to the expo-
nential spiral orbit of Problem 6.10, two other types of orbit are possible and give their
equations.

The orbit of a particle moving in a central field is a circle passing through the origin, namely
=1, cos 6. Show that the force law is inverse—fifth power.
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6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22
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A particle moves in a spiral orbit given by r = ¢6. If 6 increases linearly with ¢, is the force
a central field? If not, determine how 6 must vary with ¢ for a central force.

A particle of unit mass is projected with a velocity v, at right angles to the radius vector at
a distance a from the origin of a center of attractive force, given by

_ 4 4
f(T) = _k(—r—s— + ;—S—J

If o} = 9k/24°,

(a) Find the polar equation of the resulting orbit.

(b) How long does it take the particle to travel through an angle 37/2? Where is the parti-
cle at that time?

(c) What is the velocity of the particle at that time?

(a) In Example 6.5.4, find the fractional change in the apogee 6ry/r; as a function of a small
fractional change in the ratio of boost speed to circular orbit speed, 6 (vy/v)(vo/0,)

(b) If the speed ratio is 1% too great, by how much would the spacecraft miss the Moon?

[This problem illustrates the extreme accuracy needed to achieve a circumlunar orbit.]

Compute the period of Halley's Comet from the data given in Section 6.5. Find also the
comet’s speed at perihelion and aphelion.

A comet s first seen at a distance of d astronomical units from the Sun and it is traveling
with a speed of g times the Earth’s speed. Show that the orbit of the comet is hyperbolic,
parabolic, or elliptic, depending on whether the quantity ¢°d is greater than, equal to, or
less than 2, respectively.

A particle moves in an elliptic orbit in an inverse-square force field. Prove that the prod-
uct of the minimum and maximum speeds is equal to (27a/7)®, where a is the semimajor
axis and 7 is the periodic time.

At a certain point in its elliptical orbit about the Sun, a planet receives a small tangential
impulse so that its velocity changes from v to v + §v. Find the resultant small changes in a,
the semi-major axis.

(a) Prove that the time average of the potential energy of a planet in an elliptical orbit about
the Sun is —k/a.
(b) Calculate the time average of the kinetic energy of the planet.

A satellite is placed into a low-lying orbit by launching it with a two-stage rocket from Cape

Canaveral with speed v, inclined from the vertical by an elevation angle 6,. On reaching

apogee of the initial orbit, the second stage is ignited, generating a velocity boost Ao, that

places the payload into a circular orbit (see Figure P6.21).

(a) Calculate the additional speed boost Av, required of the second stage to make the final
orbit circular.

(b) Calculate the altitude h of the final orbit. Ignore air resistance and the rotational
motion of the Earth. The mass and radius of the Earth are My = 5.98 x 10** kg and
Rz =64 x 10° km, respectively. Let v, = 6 km/s and 6, = 30°.

Find the apsidal angle for nearly circular orbits in a central field for which the law of

force is

e—br

flry=—-k -




Figure P6.21 Two-stage launch to place
satellite in a circular orbit.

6.23

6.24

6.25

6.26

6.27

6.28
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If the solar system were embedded in a uniform dust cloud (see Problem 6.9), what would
the apsidal angle of a planet be for motion in a nearly circular orbit? This was once suggested
as a possible explanation for the advance of the perihelion of Mercury.

Show that the stabilitg condition for a circilar orbit of radius a is equivalent to the
condition that d2U/dr® > 0 for r = a, where U(r) is the effective potential defined in
Section 6.11.

Find the condition for which circular orbits are stable if the force function is of the
form

k €

fO=--x
(a) Show that a circular orbit of radius r is stable in Problem 6.22 if r is less than b™".

(b) Show that circular orbits are unstable in an inverse-cube force field.

A comet is going in a parabolic orbit lying in the plane of Earth’s orbit. Regarding Earth’s
orbit as circular of radius e, show that the points where the comet intersects Earth’s orbit
are given by

cosG=—l+2—p
a

where p is the perihelion distance of the comet defined at 8=0.

Use the result of Problem 6.27 to show that the time interval that the comet remains inside

Earth’s orbit is the fraction
ve ve
(i
3T\ a a

of a year and that the maximum value of this time interval is 2/37 year, or 77.5 days, cor-
responding to p = /2. Compute the time interval for Halley’s Comet (p =0.6a).
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6.29

6.30

6.31

6.32

6.33
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In advanced texts on potential theory, it is shown that the potential energy of a particle of
mass m in the gravitational field of an oblate spheroid, like Earth, is approximately

V(r)=—£(1+iz)
r T

where r refers to distances in the equatorial plane, k = GMm as before, and € =2/5R AR,
in which R is the equatorial radius and AR is the difference between the equatorial and polar
radii. From this, find the apsidal angle for a satellite moving in a nearly circular orbit in the
equatorial plane of the Earth, where R = 4000 miles and AR = 13 miles.

According to the special theory of relativity, a particle moving in a central field with poten-
tial energy V(r) describes the same orbit that a particle with a potential energy

_ 2
Vir)— [E V(z)]

2myc
would describe according to nonrelativistic mechanics. Here E is the total energy, my is the
rest mass of the particle, and ¢ is the speed of light. From this, find the apsidal angle for
motion in an inverse-square force field, V(r) =—k/r.

A comet is observed to have a speed v when it is a distance r from the Sun, and its direc-
tion of motion makes an angle ¢ with the radius vector from the Sun. Show that the major
axis of the elliptical orbit of the comet makes an angle @ with the initial radius vector of the
comet given by
0=cot™ [tan o— 2 s 2¢]
V2R

where V =v/v, and R = 1/a, are dimensionless ratios as defined in Example 6.10.1. Use the
numerical values of Example 6.10.1 to calculate a value for the angle 6.

Two spacecraft (A and B) are in circular orbit about the Earth, traveling in the same plane in
the same directional, sense, Spacecraft A isin LEO and satellite B is in geo drbit, as described
in Example 6.6.2. The astronauts on board spacecraft A wish to rendezvous with those on board
spacecraft B. They must do so by firing their propulsion rockets when spacecraft B is in the
right place in its orbit for each craft to reach the rendezvous point at apogee at the same time.
(a) Calculate how long it takes spacecraft A to reach apogee and (b) how far in angular advance
spacecraft B must be relative to A when A fires its propulsion rockets.

Show that the differential scattering cross section for a particle of mass m subject to cen-
tral force field f(r) = k/r’ is given by the expression

3 —
(8,)dQ =2 |bdb| =X |_T=0__|4q
E | 21-6,7%6

where 6, is the scattering angle and E is the energy of the particle.

Computer Problems
C 6.1 In Example 6.7.2 we calculated the gravitational potential at a point P external to a ring of

matter of mass M and radius R. P was in the same plane as the ring and a distance r > R
from its center. Assume now that the point P is at a distance r < R from the center of the
ring but still in the same plane.



C6.2

Figure 6.2 Satellite in elliptical orbit
grazing Earth’s atmosphere.
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(a) Show that the gravitational potential acting at the point r due to the ring of mass is
given by

2
¢=_ﬂ[1+-r_+...
R

Let r = radius of Earth’s orbit = 1.496 X 10!! m, R = radius of Jupiter’s orbit = 7.784 x
10" m, and M = mass of Jupiter = 1.90 x 107 kg. Assume that the average gravitational
potential produced by Jupiter on Earth is equivalent to that of a uniform ring of matter
around the Sun whose mass is equal to that of Jupiter and whose radius from the Sun
is equal to Jupiter’s radius.

(b) Using this assumption and the values given in part (), calculate a numerical value for
the average gravitational potential that Jupiter exerts on Earth.

(¢) Assume that we can approximate this ring of mass by a sum of N strategically deployed
discrete point masses M;, such that NM, = M. As a first approximation, let N = 2 and
M, = M/2. Deploy these two masses at radii = R and along a line directed between the
center of the ring and the position of Earth at radius r. Calculate a numerical value for
the potential at r due to these two masses. Repeat this calculation for the case N = 4,
with the four masses being deployed at quadrants of the circle of radius R and two of
them again lining up along the line connecting the center of the circle and Earth.
Continue approximating the ring of matter in this fashion (successive multiplications
of N by 2 and divisions of M; by 2) and calculating the resultant potential at r. Stop the
iteration when the calculated potential changes by no more than 1 part in 10* from the
previous value. Compare your result with that obtained in part (b). How many individual
masses were required to achieve this accuracy?

(d) Repeat part (c) for values of r equal to 0, 0.2, 0.4, 0.6, 0.8 times r given above. Plot the
absolute values of the difference |®(r) — ®(0)| versus r, and show that this difference
varies quadratically with r as predicted by the equation given in part (a).

Consider a satellite initially placed in a highly elliptical orbit about Earth such that at perigee
it just grazes Earth’s upper atmosphere as in the figure shown here. Assume that the drag
experienced by the satellite can be modeled by a small impulsive force that serves to reduce
its velocity by a small fraction & as it passes through the atmosphere at perigee on each of
its orbits. Thus, the position of perigee remains fixed but the distance to apogee decreases
on each successive orbit. In the limit, the final orbit is a circle, given this idealized model.
Assume that the eccentricity of the initial orbit is €, = 0.9656 and that the distance to
perigee is 7, =6.6 X 10° km or at about 200 km altitude. Thus, the initial orbit takes the satel-
lite as far away as the distance to the Moon.
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(a) Let =0.01, and find an approximate analytical solution for how many orbits n it will
take until the orbit “circularizes” (we define the orbit to be “circular” when its eccen-
tricity drops below €= 7. At this point, the ratio of the semiminor to semimajor axis
exceeds 0.99. Clearly, the model breaks down here because the drag becomes fairly con-
tinuous thoughout the orbit.). Express your answer in terms of €, €;, and 8.

(b) Calculate numerically how many orbits it will take for the orbit to “circularize.”

(c) How long will it take?

(d) Plot the ratio of the semiminor to semimajor axis as a function of the orbit number n.

(e) Calculate the speed of the satellite at apogee of its last orbit. Compare this speed to its
speed at apogee on its initial orbit. Explain why the speed of the satellite increases at
each successive apogee when it is being acted on by a resistive air drag force. (The mass
and radius of Earth are given in Problem 6.21.)



Two equal bodies which are in direct impact with each other and have equal
‘and opposite velocities before impact, rebound with velocities that are, apart
from the sign, the same.” “The sum of the products of the magnitudes of each
hard body, multiplied by the square of the velocities, is always the same, before
and after the collision.”

— Christiaan Huygens, memoir, De Motu Corporum ex mutuo impulsu Hypothesis,
composed in Paris, 5-Jan-1669, to Oldenburg, Secretary of the Royal Society

7.1] Introduction: Center of Mass and
Linear Momentum of a System

We now expand our study of mechanics of systems of many particles (two or more). These
particles may or may not move independently of one another. Special systems, called rigid
bodies, in which the relative positions of all the particles are fixed are taken up in the next
two chapters. For the present, we develop some general theorems that apply to all sys-
tems. Then we apply them to some simple systems of free particles.

Our general system consists of n particles of masses m,, my, . . ., m, whose position
vectors are, respectively, ry, ry, . . ., r,. We define the center of mass of the system as the
point whose position vector r,,, (Figure 7.1.1) is given by

X mx,

_mntmer +-- -+ mer, G (7.11)

on my+my+- o+ m, m

where m =Z m; is the total mass of the system. The definition in Equation 7.1.1 is equiv-
alent to the three equations

Z myY;

4 Zom

Z mgx;
= i
m m m

om Yom =

. _ 2m 719

275
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r;

Figure 7.1.1 Center of mass of a system o
of particles. x

We define the linear momentum p of the system as the vector sum of the linear
momenta of the individual particles, namely,

P=2 Pi=, mv, (7.1.3)
i i

On calculating ¥, =v,, from Equation 7.1.1 and comparing with Equation 7.1.3,
it follows that

p=mv., (7.14)

that is, the linear momentum of a system of particles is equal to the velocity of the center
of mass multiplied by the total mass of the system.

Suppose now that there are external forces F1, Fy, ..., F;, ..., F, acting on the
respective particles. In addition, there may be internal forces of interaction between any
two particles of the system. We denote these internal forces by Fy, meaning the force
exerted on particle ¢ by particle j, with the understanding that F,;= 0. The equation of
motion of particle i is then

F,+) F,=mi =p, (7.1.5)
=1

where F; means the total external force acting on particle i. The second term in
Equation 7.1.5 represents the vector sum of all the internal forces exerted on particle i
by all other particles of the system. Adding Equation 7.1.5 for the n particles, we have

SE+Y Y F=3p (7.1.6)
i=1 =l =l i=1

In the double summation in Equation 7.1.6, for every force Fy there is also a force F;,
and these two forces are equal and opposite

F, =-F, (7.1.7)

from the law of action and reaction, Newton’s third law. Consequently, the internal forces
cancel in pairs, and the double sum vanishes. We can, therefore, write Equation 7.1.7 in

the following way:
2 F =p=mas, (7.18)
" ‘
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In words: The acceleration of the center of mass of a system of particles is the same
as that of a single particle having a mass equal to the total mass of the system and
acted on by the sum of the external forces.

Consider, for example, a swarm of particles moving in a uniform gravitational field.
Then, because F; = m,g for each particle,

Y. F=Y mg=mg (7.1.9)
The last step follows from the fact that g is constant. Hence,
a, =g (7.1.10)

This is the same as the equation for a single particle or projectile. Thus, the center of
mass of the shrapnel from an artillery shell that has burst in midair follows the same par-
abolic path that the shell would have taken had it not burst (until any of the pieces
strikes something).

In the special case in which no external forces are acting on a system (or if Z F; = 0),
then a,,, = 0 and v,,,, = constant; thus, the linear momentum of the system remains constant:

2 p: =Pp =mv,, = constant (7.1.11)

This is the principle of conservation of linear momentum. In Newtonian mechanics the
constancy of the linear momentum of an isolated system is directly related to, and is in
fact a consequence of, the third law. But even in those cases in which the forces between
particles do not directly obey the law of action and reaction, such as the magnetic forces
between moving charges, the principle of conservation of linear momentum still holds
when due account is taken of the total linear momentum of the particles and the elec-
tromagnetic field."

EXAMPLE 7.1.1

At some point in its trajectory a ballistic missile of mass m breaks into three fragments
of mass m/3 each. One of the fragments continues on with an initial velocity of one-half
the velocity v, of the missile just before breakup. The other two pieces go off at right
angles to each other with equal speeds. Find the initial speeds of the latter two fragments
in terms of v,.

Solution:

At the point of breakup, conservation of linear momentum is expressed as

_ _m m m
mv,, =mv, —-EVI +—3—V2 +—§-V3

!See, for example, P. M. Fishbane, S. Gasiorowicz, S. T. Thornton, Physics for Scientists and Engineers.
Prentice-Hall, Englewood Cliffs, NJ, 1993.
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The given conditions are: v; = vy/2, v, « v3 = 0, and v, = v3. From the first we get, on
cancellation of the m’s, 3vy = (v(/2) + v, + v3, Or

%vo =v,+V,

Taking the dot product of each side with itself, we have

?vg =(Vy+Vy) - (Vg +V3)=0s +2v, - vy + 05 =205
Therefore,
Dy =0y ivo =1.7TTv,
22

7.2] Angular Momentum and Kinetic
Energy of a System

We previously stated that the angular momentum of a single particle is defined as the cross
product r X mv. The angular momentum L of a system of particles is defined accordingly,
as the vector sum of the individual angular momenta, namely,

L= (0, xmv,) (7.2.1)

i=1
Let us calculate the time derivative of the angular momentum. Using the rule for differ-
entiating the cross product, we find

% = z (v;Xmyv,)+ 2 (r; Xm;a;) (7.2.2)
i=1 i=1

Now the first term on the right vanishes, because, v; X v; = 0 and, because m,a, is equal
to the total force acting on particle £, we can write

dL n n
> [rix(Fi+jz=‘;F,jH
=zn:rixFi+zn:zn:rixFy

i=1 =1 j=1

(7.2.3)

where, as in Section 7.1, F; denotes the total external force on particle i, and F denotes
the (internal) force exerted on particle i by any other particle j. Now the double summation
on the right consists of pairs of terms of the form

(r; X Fij)+ (rj x Fﬁ) (7.2.4)

Denoting the vector displacement of particle j relative to particle i by ry, we see from the
triangle shown in Figure 7.2.1 that

L =1 = (7.2.5)
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Figure 7.2.1 Definition of the vector ry.

Therefore, because F,;=—F, expression 7.2.4 reduces to

(7.2.6)

which clearly vanishes if the internal forces are central, that is, if they act along the lines
connecting pairs of particles. Hence, the double sum in Equation 7.2.3 vanishes. Now the
cross product r; X F, is the moment of the external force F,. The sum X r; X F; is, there-
fore, the total moment of all the external forces acting on the system. If we denote the
total external torque, or moment of force, by N, Equation 7.2.3 takes the form

dL
XN
dt
That is, the time rate of change of the angular momentum of a system is equal to the total
moment of all the external forces acting on the system.

If a system is isolated, then N = 0, and the angular momentum remains constant in
both magnitude and direction:

(7.2.7)

L= 2 r; X m,v, = constant vector (7.2.8)
i
This is a statement of the principle of conservation of angular momentum. It is a gener-
alization for a single particle in a central field. Like the constancy of linear momentum
discussed in the preceding section, the angular momentum of an isolated system is also
constant in the case of a system of moving charges when the angular momentum of the
electromagnetic field is considered.”
It is sometimes convenient to express the angular momentum in terms of the motion
of the center of mass. As shown in Figure 7.2.2, we can express each position vector r; in
the form

T =Ty +T, (7.2.9)
where T, is the position of particle i relative to the center of mass. Taking the derivative
with respect to ¢, we have

Vi =Vom Vi (7.2.10)

2See footnote 1.



280 CHAPTER 7 Dynamics of Systems of Particles

Center of mass

Figure 7.2.2 Definition of the vector F,. o

Here v,,, is the velocity of the center of mass and ¥, is the velocity of particle i relative
to the center of mass. The expression for L can, therefore, be written

L= Z (T +E)Xmy(v,, +7))
1
=Y (O XMy, )+ Y, (5, Xmv,)
] i

+Z (¥, X mivcm)+z (T, X m;¥v,)
i i

(7.2.11)
=r,, X [z mi)vm +r, X 2 myv,
i )
+(Z m,l_',) X Vo + 3, (F, Xm,7,)
: i
Now, from Equation 7.2.9, we have
2 mpF, = 2 my(r,—r,)= 2 myx, —mr,, =0 (7.2.12)
i i i
Similarly, we obtain
z myv, = z m;v,—mv, =0 (7.2.13)

by differentiation with respect to ¢. (These two equations merely state that the position
and velocity of the center of mass, relative to the center of mass, are both zero.)
Consequently, the second and third summations in the expansion of L vanish, and we can
write

L=r,, Xmv,, +2 T, Xmy, (7.2.14)

expressing the angular momentum of a system in terms of an “orbital” part (motion of the
center of mass) and a “spin” part (motion about the center of mass).
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EXAMPLE 7.2.1

A long, thin rod of length ! and mass m hangs from a pivot point about which it is free
to swing in a vertical plane like a simple pendulum. Calculate the total angular momen-
tum of the rod as a function of its instantaneous angular velocity @. Show that the
theorem represented by Equation 7.2.14 is true by comparing the angular momentum
obtained using that theorem to that obtained by direct calculation.

Solution:

The rod is shown in Figure 7.2.3a. First we calculate the angular momentum L, of the
center of mass of the rod about the pivot point. Because the velocity v,,, of the center
of mass is always perpendicular to the radius vector r denoting its location relative to
the pivot point, the sine of the angle between those two vectors is unity. Thus, the mag-
nitude of L, is given by

L, =£pcm =m—l-um =m—l-(—l-w)=iml2w
2 2 2\2 4

Figure 7.2.3b depicts the motion of the rod as seen from the perspective of its center
of mass. The angular momentum dL,, of two small mass elements, each of size dm
symmetrically disposed about the center of mass of the rod, is given by

dL,; = 2rdp = 2rodm = 2r(r@)Adr

where A is the mass per unit length of the rod. The total relative angular momentum is
obtained by integrating this expression from r=0to r=1/2.

Ly =240 " r'dr = LADI0 = (Lml*)o

We can see in the preceding equation that the angular momentum of the rod about its
center of mass is directly proportional to the angular velocity @of the rod. The constant
of proportionality m’/12 is called the moment of inertia I, of the rod about its center
of mass. Moment of inertia plays a role in rotational motion similar to that of inertial mass
in translational motion as we shall see in the next chapter.

‘rdm

Vem  dm L'
1

r
Figure 7.2.3 Rod of mass m and length

l 2
dm
e e
e
I free to swing in a vertical plane about a

fixed pivot. (a) ®) ©)
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Finally, the total angular momentum of the rod is
Ly =Ly + Ly = 3mi’0

Again, the total angular momentum of the rod is directly proportional to the angular
velocity of the rod. Here, though, the constant of proportionality is the moment of
inertia of the rod about the pivot point at the end of the rod. This moment of inertia is
larger than that about the center of mass. The reason is that more of the mass of the rod
is distributed farther away from its end than from its center, thus, making it more dif-
ficult to rotate a rod about an end.

The total angular momentum can also be obtained by integrating down the rod, start-
ing from the pivot point, to obtain the contribution from each mass element dm, as shown
in Figure 7.2.3c

dL,, =rdp=r(vdm)=r(ro)Adr
L, = leZr2dr = %—ml2a)

And, indeed, the two methods yield the same result.

Kinetic Energy of a System
The total kinetic energy T of a system of particles is given by the sum of the individual

energies, namely,
T = ; %mi"% = ; %mi(vi -v,) (7.2.15)
As before, we can express the velocities relative to the mass center giving
T= Z %mi(vm +¥,) (Vo + V)
Lmo?, +Zm(v v,)+2—mv (7.2.16)
Zmi+vm vat+z m,_2

Because the second summation ¥ m, ¥, vanishes, we can express the kinetic energy as
i

follows:

mv +Z +m,Be (7.2.17)

The first term is the kinetic energy of translation of the whole system, and the second is
the kinetic energy of motion relative to the mass center.

The separation of angular momentum and kinetic energy into a center-of-mass part
and a relative-to-center-of-mass part finds important applications in atomic and molec-
ular physics and in astrophysics. We find the preceding two theorems useful in the study
of rigid bodies in the following chapters.
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EXAMPLE 7.2.2

Calculate the total kinetic energy of the rod of Example 7.2.1. Use the theorem repre-
sented by Equation 7.2.17. As in Example 7.2.1, show that the total energy obtained for
the rod according to this theorem is equivalent to that obtained by direct calculation.

Solution:

The translational kinetic energy of the center of mass of the rod is

2
1 1, (! 17292
Ton = 5MVy* Vo = Em(ga)) =zml®
The kinetic energy of two equal mass elements dm symetrically disposed about the
center of mass is

dTnel = %(2dm)v-v = Ad,-(,-w)2 = A0%ridr

where A, again, is the mass per unit length of the rod. The total energy relative to the center
of mass can be obtained by integrating the preceding expression from r =0 tor =1/2.
112
a2 2y 1 a-953 _1(1 g3\ 9 _1 2
T,=20 jo rdr = 5 A0l ‘E(Eml )w =310
(Note: Asin Example 7.2.1, the moment of inertia term I,,,, appears as the con-
stant of proportionality to @” in the previous expression for the rotational kinetic
energy of the rod about its center of mass. Again, the moment of inertia term
that occurs in the expression for rotational kinetic energy can be seen to be com-
pletely analogous to the inertial mass term in an expression for the translational
kinetic energy of a particle.)

The total kinetic energy of the rod is then

— _ 1 942,92 1 __q2 9 1(1 42) 2 14 .9
T=T,+T, =m0 +5ml —g(gml )a) =;lo

where we have expressed the final result in terms of the total moment of inertia of the
rod about its endpoint, exactly as in Example 7.2.1.

We leave it as an exercise for the reader to calculate the kinetic energy directly and
show that it is equal to the value obtained previously. The calculation proceeds in a fash-
ion completely analogous to that in Example 7.2.1.

7.3] Motion of Two Interacting Bodies:
The Reduced Mass

Let us consider the motion of a system consisting of two bodies, treated here as particles,
that interact with each other by a central force. We assume the system is isolated, and,
hence, the center of mass moves with constant velocity. For simplicity, we take the center
of mass as the origin. We have then

myE +myF, =0 (7.3.1)
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M

Figure 7.3.1 The relative =
position vector R for the two-body
problem. my

where, as shown in Figure 7.3.1, the vectors ¥, and ¥, represent the positions of the par-
ticles m, and m, respectively, relative to the center of mass. Now; if R is the position vector
of particle 1 relative to particle 2, then

R=T-T, =1 [1 + -———) (7.3.2)

The last step follows from Equation 7.3.1.
The differential equation of motion of particle 1 relative to the center of mass is

d2_
m, dT‘; =F, = f(R)% (7.3.3)

in which | f(®)] is the magnitude of the mutual force between the two particles. By using
Equation 7.3.2, we can write

d*r

R
where
u= L UL (7‘3‘ 5)
m + my

The quantity p is called the reduced mass. The new equation of motion (Equation 7.3.4)
gives the motion of particle 1 relative to particle 2, and an exactly similar equation gives
the motion of particle 2 relative to particle 1. This equation is precisely the same as the
ordinary equation of motion of a single particle of mass y moving in a central field of force
given by f(R). Thus, the fact that both particles are moving relative to the center of mass
is automatically accounted for by replacing m,; by the reduced mass p. If the bodies are
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of equal mass m, then g =m/2. On the other hand, if m, is very much greater than m,, so
that m,/m, is very small, then y is nearly equal to m;.
For two bodies attracting each other by gravitation

Gm,m
f®)= ——R; 2 (7.3.6)
In this case the equation of motion is
. Gm,m
'uR = ——‘—R12 2 eR (7.3.7)

or, equivalently,

mR = —Mex (7.3.8)
where ez = R/R is a unit vector in the direction of R.
In Section 6.6 we derived an equation giving the periodic time of orbital motion of
a planet of mass m moving in the Sun’s gravitational field, namely, 7= 27 (GMo)*a*
where M, is the Sun’s mass and a is the semimajor axis of the elliptical orbit of the planet
about the Sun. In that derivation we assumed that the Sun was stationary, with the origin
of our coordinate system at the center of the Sun. To account for the Sun’s motion about
the common center of mass, the correct equation is Equation 7.3.8 in which m =m, and
Mg =m,. The constant k, which was taken to be GMym in the earlier treatment, should
be replaced by G(M+ m)m so that the correct equation for the period is

>

=97 [G(Mg +m)] a*? (7.3.9a)
or, for any two-body system held together by gravity, the orbital period is
T =28 [G(m, +m,)] a®? (7.3.9b)

If m, and my, are expressed in units of the Sun’s mass and g is in astronomical units (the
mean distance from Earth to the Sun), then the orbital period in years is given by

T=(m; +my, ) V2 g2 (7.3.9¢)

For most planets in our solar system, the added mass term in the preceding expression
for the period makes very little difference—Earth’s mass is only 1/330,000 the Sun’s
mass. The most massive planet, Jupiter, has a mass of about 1/1000 the mass of the Sun,
so the effect of the reduced-mass formula is to change the earlier calculation in the ratio
(1.001)™* = 0.9995 for the period of Jupiter’s revolution about the Sun.

Binary Stars: White Dwarfs and Black Holes

About half of all the stars in the galaxy in the vicinity of the Sun are binary, or double;
that is, they occur in pairs held together by their mutual gravitational attraction, with each
member of the pair revolving about their common center of mass. From the preceding
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analysis we can infer that either member of a binary system revolves about the other in
an elliptical orbit for which the orbiting period is given by Equations 7.3.9b and ¢, where
a is the semimajor axis of the ellipse and m; and m, are the masses of the two stars. Values
of a for known binary systems range from the very least (contact binaries in which the
stars touch each other) to values so large that the period is measured in millions of years.
A typical example is the brightest star in the night sky, Sirius, which consists of a very lumi-
nous star with a mass of 2.1 M and a very small dim star, called a white dwarf, which
can only be seen in large telescopes. The mass of this small conipanion is 1.05 M, but
its size is roughly that of a large planet, so its density is extremely large (30,000 times
the density of water). The value of @ for the Sirius system is approximately 20 AU (about
the distance from the Sun to the planet Uranus), and the period, as calculated from
Equation 7.3.9¢, should be about

=(2.1+1.05)"2(20)** years = 50 years

which is what it is observed to be.

A binary system that is believed to harbor a black hole as one of its components is
the x-ray source known as Cygnus X-1.° The visible component is the normal star HDE
226868. Spectroscopic observation of the optical light from this star indicates that the
period and semimajor axis of the orbit are 5.6 days and about 30 x 10° km, respectively.
The optically invisible companion is the source of an x-ray flux that exhibits fluctuations
that vary as rapidly as a millisecond, indicating that it can be no larger than 300 km across.
These observations, as well as a number of others, indicate that the mass of HDE
226868 is at least as large as 20 M, while that of its companion is probably as large as
16 Mo but surely exceeds 7 M. It is difficult to conclude that this compact, massive
object could be anything other than a black hole. Black holes are objects that contain
so much mass within a given radius® that nothing, not even light, can escape their grav-
itational field. If black holes are located in binary systems, however, mass can “leak over”
from the large companion star and form an accretion disk about the black hole. As the
matter in this disk orbits the black hole, it can lose energy by frictional heating and
crash down into it, ultimately heating to temperatures well in excess of tens of millions
of degrees. X-rays are emitted by this hot matter before it falls completely into the hole
(Figure 7.3.2). Black holes are predicted mathematically by the general theory of
relativity, and unequivocal proof of their existence would constitute a milestone in
astrophysics.

AP Cowley, Ann. Rev. Astron. Astrophys. 30, 287 (1992).

* According to the theory of general relatively, a nonrotating, spherically symmetric body of mass m becomes a
Schwarzschild black hole if it is compressed to a radius r,, Schwarzschild radius, where

2Gm
r =

§ ci

in which ¢ is the speed of light. The Earth would become a black hole if compressed to the size of a small marble;
the Sun would become one if compressed to a radius of about 3 km, much smaller than the white dwarf com-
panion of Sirius.
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HDE 226868 ©

Figure 7.3.2 The Cygnus
X-1 System.

EXAMPLE 7.3.1

A certain binary star system is observed to be both eclipsing and spectroscopic. This
means that the system is seen from Earth with its orbital plane edge-on and that the
orbital velocities v, and v, of the two stars that constitute the system can be determined
from Doppler shift measurements of observed spectral lines. You don’t need to under-
stand the details of this last statement. The important point is that we know the orbital
velocities. They are, in appropriate units, v; = 1.257 AU/year and v, = 5.027 AU/year.
The period of revolution of each star about its center of mass is 7= 35 years. (That can
be ascertained from the observed frequency of eclipses.) Calculate the mass (in solar
mass units M) of each star. Assume circular orbits.

Solution:
The radius of the orbit of each star about their common center of mass can be calcu-
lated from its velocity and period

r1=%vl‘r=lAU r2=%021=4AU

Thus, the semimajor axis a of the orbit is
a=nr+r,=5AU

The sum of the masses can be obtained from Equation 7.3.9¢

aS
m1+m2 =T_2=5Mo
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The ratio of the two masses can be determined by differentiating Equation 7.3.1

my _| %

ENE

mvy +myvy, =0

m |V,

Combining these last two expressions yields the values for each mass, m; = 4 M and
ny = 1 M@.

*7.4| The Restricted Three-Body Problem’

In Chapter 6, we considered the motion of a single particle subject to a central force. The
motion of a planet in the gravitational field of the Sun is well described by such a theory
because the mass of the Sun is so large compared with that of a planet that its own motion
can be ignored. In the previous section, we relaxed this condition and found that we could
still apply the techniques of Newtonian analysis to this more general case and find an ana-
lytic solution for their motion. If we add just one more, third body, however, the problem
becomes completely intractable. The general three-body problem, namely the calculation
of the motion of three bodies of different masses, initial positions, and velocities, subject
to the combined gravitational field of the others, confounded some of the greatest minds
in the post-Newtonian era. It is not possible to solve this problem analytically because of
insurmountable mathematical difficulties. Indeed, the problem is described by a system
of nine second-order differential equations: three bodies moving in three dimensions.
Even after a mathematical reduction accomplished by a judicious choice of coordinate
system and by invoking laws of conservation to find invariants of the motion, the problem
continues to defy assault by modern analytic techniques.

Fortunately, it is possible to solve a simplified case of the general problem that none-
theless describes a wide variety of phenomena. This special case is called the restricted
three-body problem. The simplifications involved are both physical and mathematical: We
assume that two of the bodies (called the primaries®) are much more massive than the third
body (called the tertiary) and that they move in a plane—in circular orbits about their
center of mass. The tertiary has a negligible mass compared with either of the primaries,
moves in their orbital plane, and exerts no gravitational influence on either of them.

No physical system meets these requirements exactly. The tertiary always perturbs
the orbits of the primaries. Perfectly circular orbits never occur, although most of the
orbits of bodies in the solar system come very close—with the exception of comets. The
orbit of the tertiary is almost never coplanar with those of the primaries, although devi-
ations from coplanarity are often quite small. Gravitational systems with a dominant
central mass exhibit a remarkable propensity for coplanarity. Again, disregarding the
comets, the remaining members of the solar system exhibit a high degree of coplanarity,
as do the individual systems of the large Jovian planets and their assemblage of moons.

Sour analysis of the restricted three-body problem is based on P. Hellings, Astrophysics with a PC, An
Introduction to Computational Astrophysics, Willman-Bell, Inc., Richmond, VA (1994). Also, for an even more
in-depth analysis see V. Szebehely, Theory of Orbits, Academic Press, New York (1967).

8Usually, the most massive of the pair is called the primary and the least massive is called the secondary. Here,
we lump them together as the two primaries because their motion is only incidental to our main interest—the

motion of the third body.
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The restricted three-body problem serves as an excellent model for calculating the
orbital motion of a small tertiary in the gravitational field of the other two. It is fairly
easy to see two possible solutions depicting two extreme situations. One occurs when the
tertiary more or less orbits the center of mass of the other two at such a remote distance
that the two primaries appear to blur together as a single gravitational source. A second
occurs when the tertiary is bound so closely to one of the primaries that it orbits it in
Keplerian fashion, seemingly oblivious to the presence of the second primary. Both of these
possibilities are realized in nature. In this section, however, we attempt to find a third,
not so obvious, “stationary” solution; that is, one in which the tertiary is “held fixed” by
the other two and partakes of their overall rotational motion. In other words, it remains
more or less at rest relative to the two primaries; the orientation in space of the entire
system rotates with a constant angular speed, but its relative configuration remains fixed
in time. The great 18th-century mathematician Joseph-Louis Lagrange (1736-1813)
solved this problem and showed that such orbits are possible.

Equations of Motion for the Restricted
Three-Body Problem

The restricted problem is a two-dimensional one: All orbits lie within a single, fixed plane
in space. The orbit of each of the two primaries is a circle with common angular velocity
o about their center of mass. We assume that the center of mass of the two primaries
remains fixed in space and that the rotational sense of their orbital motion viewed from
above is counterclockwise as shown in Figure 7.4.1

We designate M, the mass of the most massive primary, M, the mass of the least mas-
sive one, and m the small mass of the tertiary whose orbit we wish to calculate. We choose
a coordinate system x’-y” that rotates with the two primaries and whose origin is their
center of mass. We let the +x-axis lie along the direction toward the most massive pri-
mary M,. The radii of the circular orbits of M; and M, are designated & and b, respec-
tively. These distances remain fixed along the x’-axis in the rotating coordinate system.

yl y
e
m
A ~\
/ - .
4 \ T
’ \ ~d . M -
rl , / rl \ ~
2 N
, \

Figure 7.4.1 Coordinate ‘A/ b /
system for restricted \4/
three-body problem.
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Letting the coordinates of the tertiary be (x’, "), the distance between it and each of

the two primaries is
= w/(x' —a)* + y'2 (74.1a)
13 =& +b)? +y (74.1b)

The net gravitational force exerted on m (see Equation 6.1.1) is thus

F=-mSM (r_l) —m EMe (r_zj (74.2)
1; 1"2

n 1 Ty

where rj and r; are the vector positions of m with respect of M; and M,. This force is the
only real one that acts on m, but because we have effectively nullified the motion of the
two primaries by choosing to calculate the motion in a frame of reference that rotates
with them, we must include the effect of the noninertial forces that are introduced as a
result of this choice.

The general equation of motion for a particle in a rotating frame of reference was given
by Equation 5.3.2. Because the origin of the rotating coordinate system remains fixed in
space, Ay =0, and because the rate of rotation is a constant, @ =0 and Equation 5.3.2 takes
the form

F =ma’'=F-2moXv -moX(wXr’) (74.3)

Because m is common to all terms in Equation 7.4.3, we can rewrite it in terms of accel-
erations as

a'=£—2w><v'—w><(w><r') (74.4)
m

We are now in a position to calculate the later two noninertial accelerations in
Equation 7.4.4—the Coriolis and centrifugal accelerations

20X v’ =20k’ X (i +j§)=-i207 + j 201’ (7.4.5)
and

o X (wXr’) =0k X [ok’ X ({ix"+ jy")]
. sr, 2.1 e, 2 y (746)
=0’ - jo’y
We now insert Equations 7.4.1aand b, 7.4.2, 7.4.5, and 7.4.6 into 7.4.4 to obtain the equa-
tions of motion of mass m in the x” and y” coordinates

. x'—a " +b

¥ =—-GM -GM
G —a)? + 471" [+ b +y (7.4.72)
+ 0%’ + 201’
y Yy
y (' —a)? +y 21 Pl + b +y 71 (7.4.7b)

+0%y’ — 2w%’
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The Effective Potential: The Five Lagrangian Points

Before solving Equations 7.4.7a and b, we would like to speculate about the possible
solutions that we might obtain. Toward this end, we note that the first three terms in each
of those equations can be expressed as the gradient of an effective potential function, V(r)
in polar coordinates

Vi) =- - e (7.4.82)

or V(x’, 4’) in Cartesian coordinates

GM GM , ,
— 220" +y"")  (7.48b)
J(x'—a) +y’ J(x'+b) +y’

V', y')=—

The last term in Equations 7.4.7a and b is velocity-dependent and cannot be expressed
as the gradient of an effective potential. Thus, we must include the Coriolis term as an
additional term in any equation that derives the force from the effective potential. For
example, Equation 7.4.3 becomes

F'=-VV(&', y)-2mw X v (74.9)

A considerable simplification in all further calculations may be achieved by express-
ing mass, length, and time in units that transform V(x’, 4’ into an invariant form that
makes it applicable to all restricted three-body situations regardless of the values of
their masses. First, we scale all distances to the total separation of the two primaries; that
is, we let @ + b equal one length unit. This is analogous to the convention in which the
astronomical unit, or AU, the mean distance between the Earth and the Sun, is used
to express distances to the other planets in the solar system. Next, we set the factor
G(M; + M,), equal to one “gravitational” mass unit. The “gravitational” masses GM; of
each body can then be expressed as fractional multiples ¢; of this unit. Finally, we set
the orbital period of the primaries 7 equal to 27 time units. This implies that the angu-
lar velocity of the two primaries about their center of mass and, by association, the rate
of rotation of the x"-¢" frame of reference, is @ = 1 inverse time unit. Use of these scaled
units allows us to characterize the equations of motion by the single parameter ¢, where
0 < o< 0.5. In addition, it has the added benefit of riding our expressions of the obnox-
ious factor G.

In terms of ¢, the distance of each primary from the center of mass is then

a
= = =1— B
o > B o (7.4.10)

The coordinates of the first primary are, thus, (¢, 0) and those of the second primary are
(1- ¢, 0). Furthermore, because the origin of the coordinate system is the center of mass,
from Equation 7.3.1, we have

Ma=M,b (7.4.11)
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and the “gravitational” masses of each primary can then be expressed also in terms of the
factor «

n=—SM_ _ b _, , (7.4.122)
GM,+M,) a+b -
GM, b

0y = G(M, +M,) “a+b o (7.4.12b)

M, is the mass of the larger primary, and M, is the mass of the smaller one, hence, 0 < &
<05and0.5<1-a<l

EXAMPLE 7.4.1

Using the previously discussed units, describe the general properties for the binary star
system in Example 7.3.1. The mass of the Sun is Mo = 1.99 x 10% kg. The astronomi-
cal unit is 1 AU = 1.496 x 10" m.

Solution:

The masses of the two primaries: M, 4 Mg and 1 Mg, respectively

The parameter o:: 1/(1+4)=02.

The scaled masses of the two primaries o;: l-a=08 a=0.2.

Coordinates (xi, y;) of the two primaries: 0.2, 0), (08, 0)

Unit of “gravitational” mass G(M; + M,): 6.6 X 10% m%s*

Orbital period: 7= 5 years = 27 time units 1.58x 10° s

Unit of time: 7/27 2.51 x 10 s (0.796 year)

Angular speed: =27/t (=1 inverse time unit) ~ 3.98 X 10°%s7

Unit of length: a + b =5 AU 7.48 x 10" m

In terms of these new units, the effective potential function of Equation 7.4.8b
becomes

l1-o o 22 +y?

V', y)=— - -
Yy J(x,_a)z +y? 1/(x'+1—a)2 +y? 9

(74.13)

A plot of the effective potential V(x’, y’) is shown in Figure 7.4.2 for the Earth—Moon
primary system, where the parameter & = 0.0121. Plots of the effective potential of
other binary systems, such as binary stars where the parameter s rarely less than 20%
or, at the other extreme, the Sun—Jupiter system where o = 0.000953875, are qualita-
tively identical.

It is worth taking the time to examine this plot closely because it exhibits a number
of features that give us some insight into the possible orbits of the tertiary.

* V(x’,y") = — oo at the location of the two primaries. These points are singularities.
This is a consequence of the fact that each primary has been treated as though it
was a point mass. We might imagine that, if a tertiary were embedded somewhere
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Figure 7.4.2 Effective
potential V(x’, y) for the
Earth—Moon system.

within one of those potential “holes,” it might orbit that primary as though the other
primary didn’t even exist. As an example, consider the Sun—Jupiter system: Each
primary is the source of an accouterment of “satellites”; Jupiter has its moons and
the Sun has its four inner, terrestrial planets. Neither primary interferes with the
attachments of the other (at least not very much). Note, though, that the angular
speeds of all these “satellites” about their respective primary are much greater
than the angular speed of the two primaries about their center of mass. In addi-
tion, tertiaries in such orbits are dragged along by the primary in its own orbit.

® V(x', y") — —oo as either x” or y” — oo. This is a consequence of the rotation of the
x'y’ coordinate system. In essence, any tertiary initially at rest with respect to this
rotating system, but far from the center of mass of the two primaries, experiences
alarge centrifugal force that tends to move the body even farther from the origin.
Eventually, such a body might find itself in a stable orbit at some remote distance
[’ > (a + b)] around the center of mass of the two primaries but not at rest in the
rotating frame of reference. The angular speed of such a tertiary would be so much
smaller than the angular speed of the two primaries that a stable, counterclockwise,
prograde orbit in a fixed frame of reference would appear to be a stable, clockwise,
retrograde orbit in the rotating system, with an angular velocity that is the nega-
tive of that of the primaries. An example of this is our nearest stellar neighbor, the
three-body, a-Centauri star system, made up of two primaries, o-Centauri A and
B and a tertiary, Proxima Centauri (Figure 7.4.3).

* There are five locations where VV(x’, ') = 0, or where the force on a particle at
rest in the x"y’ frame of reference vanishes. These points are called the Lagrangian
points, after Joseph-Louis Lagrange. They are designated L;—Ls in his honor. Three
of these points are collinear, lying along the x"-axis. L, lies between the two pri-
maries. L, lies on the side opposite the least massive primary, and L; lies on the
side opposite the most massive primary. These three points are saddle points of
V(x', y'). Along the x” direction they are local maxima, but along the " direction
they are local minima.

e The two primaries form a common base of two equilateral triangles at whose apex
lie the points L, and L, which are absolute maxima of the function V(x’, ¥"). As
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the primaries rotate about their center of mass, L, remains 60° ahead of the least
massive primary (in the +y’ direction), and Ls remains 60° behind it (in the —y’
direction). The location of these five points can be more easily visualized by exam-
ining a contour plot of the effective potential function shown in Figure 7.4.4.

* Each line in the contour plot is an equipotential, that is, a line that satisfies the con-
dition V(x;, y;) =V,, where V; is a constant. Normally, the equipotential lines in con-
tour plots represent “heights” V; that differ from one another by equal amounts.
This means that regions of the plot where the gradient, VV(x’, y), is “steep” (or
the force is large) would exhibit closely packed contour lines. Regions where the
gradient is “flat” (or the force approaches zero) would exhibit sparsely packed



7.4 The Restricted Three-Body Problem 295

contour lines. We have not adhered to this convention in Figure 7.4.4. We have
decreased the “step size” between contour heights that pass near the five Lagrangian
points to illuminate those positions more clearly.

You might guess that it would be possible for a tertiary to remain at any one of these
five points, synchronously locked to the two primaries as they rotate about their center
of mass. It turns out that this never happens in nature for any tertiary located at L,—Ls.
These are points of unstable equilibrium. If a body located at one of these points is per-
turbed ever so slightly, it moves toward one primary and away from the other, or away
from both primaries.

Close examination of Figures 7.4.3 and 7.4.4 reveals that the effective potential is
rather flat and broad around L, and Ls, suggesting that a reasonably extensive, almost force-
free, region exists where a tertiary might comfortably sit, more or less balanced by the
opposing action of the gravitational and centrifugal forces. Because L, and Ls are loca-
tions of absolute maxima, however, you might also guess that no stable, synchronous orbit
is possible at these points either. Remember, though, that all the forces acting on the ter-
tiary are not derived from the gradient of V(x’, 4’). The velocity-dependent Coriolis force
must be considered and it has a nonnegligible effect, particularly in any region where it
dominates, which under certain conditions can be the case in the region surrounding L,
and Ls. The Coriolis force always acts perpendicular to the velocity of a particle. Thus, it
does not alter its kinetic energy because F - v =0. If a tertiary is nearly stationary in the
x"y’ frame of reference, moving slowly in the proper direction near either L, or Ls, the
Coriolis force might dominate the nearly balanced gravitational and centrifugal forces and
simply redirect its velocity, causing the tertiary to circulate around L, or Ls. In fact, this
can and does happen in nature. The Coriolis force creates an effective, quasi-elliptical bar-
rier around the L, and Ly points, thus, turning the maxima of the effective potential into
small “wells” of stability. Given the right conditions, we might expect the tertiary to
closely follow one of the equipotential contours around L, and Ls, both its kinetic and
potential energies remaining fairly constant throughout its motion.

The situation just described is analogous to the circulation of air that occurs around
high-pressure systems, or “bumps,” in the Earth’s atmosphere. Gravity tries to pull the
air toward the Earth; centrifugal force tries to throw it out; as air spills down from the
high, the Coriolis force causes it to circulate about the high-pressure bump, clockwise in
the Northern Hemisphere. Such circulating systems in the atmosphere of Earth are only
stable temporarily. They form and then dissipate. The Great Red Spot on Jupiter, how-
ever, is a high-pressure storm that is a permanent feature of its atmosphere— permanent
in the sense that it has been there ever since Galileo saw it with his telescope about
400 years ago! Note that these circulatory patterns are “stationary” with respect to the
rotating system. The same holds true for the orbit of a tertiary around L, and Ls.

The Trojan Asteroids

The Trojan asteroids are a particular group of asteroids in a 1:1 orbital resonance with
Jupiter and whose centroids lie along the orbit of Jupiter, 60° ahead of it and 60° behind
(see Figure 7.4.5). These are the L, and L; points in the Sun—Jupiter primary system.
Notice that the Trojans are spread out somewhat diffusely about the L, and L points.
Each member of the group rotates with Jupiter about the Sun in a fixed frame of reference
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Trojan asteroids. (b) Trojan
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belt shown with orbits of
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but is slowly circulating clockwise about L, and Ly, as viewed from above in the xy’ frame
of reference. In this section, we calculate some examples of the orbits of these asteroids.

First, we rewrite the equations of motion (Equations 7.4.7a and b) using the scaled
coordinates we just introduced. Letting

=& — o) +y rg = +1-a)? +y'° (7.4.14)

Equations 7.4.7a and b become

¥==(l-a) (x Tsa) - a(x +}3_ ) + ' +2¢’ (7.4.15a)
n Ty
o). —al ' _oq
i=-(-a)=; a3 +y' -2% (7.4.15b)
n Ty

In Example 4.3.2, we employed Mathematica’s numerical differential equation solver,
NDSoluve, to solve a set of coupled, second-order differential equations like the ones
in Equations 7.4.15a and b. We employ the same technique here with one minor
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difference: we introduce two additional variables #” and v’, such that
o (7.4.16a)
v’ (7.4.16b)

to convert the pair of second-order equations in Equations 7.4.15a and b into two first-
order ones

x-:/
-7
y

(x'—a)_a(x'+1—a)

v=->0-a) 3 -3 +x'+20 (7.4.16¢)
1 £
ot _ 1_ y, _ y, 1_2 ’
'=—-(1-0)=5 o3 +y —2u (7.4.16d)
L4 £

This was the same trick we used in Section 3.8, where we solved for the motion of the
self-limiting oscillator. The trick is a standard ploy used to convert n second-order dif-
ferential equations into 27 first-order ones, making it possible to use Runge-Kutta tech-
niques to solve the resulting equations. Most numerical differential equation solvers use
this technique. Mathcad requires that the user input the 2n equations in first-order form.
This is not a requirement in Mathematica, although it is still an option. We use the tech-
nique because it is so universally applicable. In the following section, we outline the spe-
cific call that we made to NDSolve. It is analogous to the one discussed in Example 4.3.2.
We dropped the superfluous primes used to label the rotating coordinates because
Mathematica uses primes in place of dots to denote the process of differentiation, that is,
2’ means i. We urge you to remember that the variables x, y, u, and v used in Mathematica
calls refer to the rotating coordinate system, and the number of primes beside a variable
refer to the order of the derivative.

NDSolve [{equations, initial conditions}, {u, v, x, y}, {t, tnin, tma]

e {equations, initial conditions}
Insert the four numerical differential equations and initial conditions using the fol-
lowing format

{x’[t] == ul¢],

y'[t]==[t],
w'[t]==—(-a)(x[t]- a)/r,(xlt], y[t])* — o(x[t]+1 - aVry(x[t], y[t])°
+x[t]+ 20[¢t],

v'[t] ==~ (- o)yl (x[¢], y[2])°
— oyt (xle], yle)® +y[e]-2 ult],
x[0]==x,, y[0] == y,, u[0] = = u;, v[0] == v,}
e {x,y, u, v}
Insert the four dependent variables whose solutions are desired
{x, y, u, v}

o {t’ tmim tmwc}
Insert the independent variable and its range over which the solution is to be eval-
uated {t, 0, £,,,.}
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TABLE 7.4.1
Parameter Orbit 1 Orbit 2 Orbit 3 Orbit 4 Orbit 5
Xy -0.509 -0.524 -0.524 -0.509 -0.532
Yo 0.883 0.909 0.920 0.883 0.920
U 0.0259 0.0647 0.0780 -0.0259 0.0780
Vo 0.0149 0.0367 0.0430 —0.0:19 0.0430
T (units) 80.3 118 210.5 80;3 —
T (years) 152 223 397 152 —

Orbit 1

Figure 7.4.6 Orbits 1,2,3 of the
Trojan asteroids corresponding to the
conditions given in Table 7.4.1.

Note, the two functions ry[x,y] and r,[x,y] (see Equation 7.5.14) must be defined in
Mathematica before the call to NDSolve. This is also true for the initial conditions xq, ¥y,
19, and vy and the value of ¢. The value of & for the Sun—Jupiter system is 0.000953875.

We calculated orbits for five sets of initial conditions, in each case starting the terti-
ary near L. The starting conditions and period of the resulting orbit (if the result is a stable
orbit) are shown in Table 7.4.1.

As before (Example 4.3.2) we used Mathematica’s ParametricPlot to generate plots
of each of the orbits whose initial conditions are given in Table 7.4.1. Plots of the first three
orbits are shown in Figure 7.4.6.

The unit of len%th is the mean distance between Jupiter and the Sun, a +b = 5.203 AU,
or about 7.80 X 10" m. The unit of time was defined such that one rotational period
of the primary system, the orbital period of Jupiter (T;= 11.86 years), equals 2 time units.
Thus, one time unit equals T;/27 = 1.888 years. Tertiaries that follow orbits 1 and 2 cir-
culate slowly, clockwise, around L. Their calculated periods are 80.3 and 118 time units,
respectively. Using the conversion factor gives us the periods of their orbits in years listed
in the last row of Table 7.4.1. Orbit 3 is particularly interesting. The tertiary starts closer
to Jupiter than do the other two and moves slowly over L, and back around the Sun, more
or less along Jupiter’s orbital path. It then slowly migrates toward Jupiter, passing under



7.4 The Restricted Three-Body Problem 299

Figure 7.4.7 Trojan asteroids—
orbit 4 (see Table 7.4.1).

L5 and approaching as close to Jupiter as when it started near L,. Then it loops around
Ls, passes back around the Sun, and moves back toward Jupiter, passing just under L, to
the point where it started. The period of this orbit is 397 years.

Notice that the orbits closely follow the equipotential contours shown in Figure 7.4.4.
This is not too surprising because as we remarked earlier, the Coriolis force does not
change the kinetic energy of the tertiary. Thus, because the gravitational and centrifugal
forces are more or less in balance, the orbits ought to follow the equipotential contours
rather closely. The contours circulate around L, and Ly individually, as do orbits 1 and 2,
and a few contours circulate around L, and Ly together, as does orbit 3. Given the shape
of these orbits, it is easy to understand why the Trojan asteroids appear to be the rather
loosely strung out cluster that you see in Figure 7.4.5.

In all cases, the orbits circulate in clockwise fashion like the air around high pressures
in the Northern Hemisphere of Earth. The Coriolis force is directed “inward” for clock-
wise rotation and “outward” for counterclockwise rotation because of the sign of @ X v.
Orbit 4, shown in Figure 7.4.7, reflects the consequences of a sign reversal in @ X v if we
try to set up a counterclockwise circulation about Ly. The orbit was generated with the
same parameters as those of the stable orbit 1, except the sign of the initial velocity was
reversed. The tertiary, after executing several loopty-loops, is soon thrown completely out
of the region between Jupiter and the Sun. A velocity reversal like this would have no effect
on the shape of a Keplerian orbit about a single, central gravitational force. The result-
ing stable orbit would simply be a reversed direction, retrograde orbit. Although most orbits
in the solar system are prograde (counterclockwise as seen from above the plane of the
ecliptic), retrograde (clockwise) orbits do occur, as, for example, Triton, Neptune’s major
moon. Reversed orbits are not possible around L, and Ls.

The conditions for the stability of these clockwise orbits around L, and Ls have been
studied in much more detail than can be presented here. The interested reader is referred
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Figure 7.4.8 Trojan asteroids—
orbit 5 (see Table 7.4.1).

to the book by V. Szebehely referenced in footnote 4. Stable orbits are only possible for
values of the mass parameter o, = 0.03852. The Jupiter—Sun system easily meets that
condition, but the orbits of some of the Trojans are only marginally stable. This is par-
ticularly true for orbits such as orbit 3. Perturbations, if large enough, can have dramatic
consequences for tertiaries in such orbits. Examine the starting conditions for orbit 5,
which are virtually identical to those for orbit 3 except for the initial x* coordinate, which
was changed by about 2%. The resultant “orbit” is shown in Figure 7.4.8. The trajectory
of the tertiary was followed for 300 time units, or about 566 years. Eventually, as was the
case for orbit 4, the asteroid was thrown completely out of the L,~Ls region, finally set-
tling down in orbit about both primaries at a distance of about 3 units, or 15 AU, which
places it somewhere between Saturn and Neptune. In fact, Jupiter is believed to have had
just this effect on many of the asteroids that existed near it during the formative stages
of the solar system.

Are there any other examples of objects orbiting primaries at the L, and Lg points?
A prime example is that of a number of Saturn’s large supply of moons. Telesto and
Calypso, two moons discovered by the Voyager mission, share an orbit with Tethys. Saturn
and Tethys are the primaries, and Telesto is at L, and Calypso at Ls. Helene and Dione
share another orbit that is 1.28 times farther from Saturn than the one occupied by
Tethys, Telesto, and Calypso. Helene is located at the L, point of this orbit, and Dione is
the primary. No moon is found for this orbit at Ls.

A number of space colony enthusiasts have argued that a large space colony could be
deployed in a stable orbit at Ls of the Earth—Moon primary system.” The mass parame-
ter for the Earth—Moon system is &= 0.0121409, which is certainly less than the critical

"G. K. O’Neill, “The Colonization of Space,” Phys. Today, pp. 32—40 (September, 1974).
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value &, so one might guess that orbits about Ly would be stable. The Sun would exert
perturbations on such an orbiting colony, however, and it is not obvious that its orbit
would remain stable for long. This particular restricted four-body problem was only
solved recently, in 1968. Quasi-elliptical orbits around Ly, with excursions limited to a few
tenths of the Earth—Moon distance, were found to be stable.® If one adds the effects of
Jupiter to the problem, however, long-term stability becomes problematical. The indus-
trious student might want to tackle this problem numerically.

EXAMPLE 7.4.2

Calculate the coordinates of the L;~L; collinear Lagrange points for the Earth—~Moon
system and the values of the effective potential function at those points.

Solution:

These three collinear Lagrange points all lie along the x’-axis, where y” = 0. These points
represent extrema of the effective potential function, V(x’, 4*). Normally, we would find
these points by searching for solutions of the equation

0
V', y' =0
ox’ =y

y'=0

Mathematica, however, has a tool, its FindMinimum function, that allows us to locate
minima of functions directly, without first calculating their derivatives. Mathematica
saves us a lot of work by effectively taking these derivatives for us. The Lagrange points,
Ly~Ls, are located at the maxima of V(x’, 4’ = 0), however, so, to use Mathematica’s
FindMinimum, we need to pass to it a function f(x") = -V(x", y’ = 0) whose minima are
the locations of L,—L.

-« a x’?

= + —
| —a| |2~ (a-D] 2

f&)=-V(', y)

y'=0

We have written the denominators in the preceding equation as absolute values to
emphasize that they are positive definite quantities regardless of the value of x” relative
to the critical values & and &~ 1. When we pass f(x") to Mathematica’s FindMinimum
function, we need to ensure that: (1) FindMinimum can calculate the derivatives of f(x”)
because that is one of the things it does in attempting to locate the minima and that (2)
the values in the denominator remain positive definite regardless of any action that
FindMinimum takes onf(x"). Thus, we need to remove the absolute values in the denom-
inators of f(x’) to eliminate any possible pathologies in the derivative-taking process, but
then we must replace their effect, for example, by multiplying the first two terms in the
expression by a “step” function defined to take on the values %1 depending on the
value of x” relative to ot and a — 1. We call this “step” function sgn(x) and define it to
equal ~1 when its argument x < 0 and +1 when x > 0.

®R. Kolenkiewicz, L. Carpenter, “Stable Periodic Orbits About the Sun-Perturbed Earth-Moon Triangular
Points” ATAA J. 6, 7, 1301 (1968).
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Figure 7.4.9 Regions of | | I |

applicability for the sgn functions. -2 -1 1 2 x

TABLE 7.4.2
Lagrange
Call Point X sgnx —a)  sgnlx—(@—1) =, )
1 L, -1.2 -1 -1 ~-1.06883 1.51874
2 L, -0.8 -1 +1 -0.932366 1.51938
3 L, 1.0 +1 +1 1.0004 1.50048

Inserting it into the expression above gives

’2
&) = sgn(e’ - o)== &,z

o ’

o +sgn(x’ - (x-1)) Y —@-D + 3

We can now pass the preceding function to FindMinimum. The sgn function takes
on a value that insures that the terms in the equation always remain positive regardless
of the region along the x"-axis that is being searched for one of the minima of f(x"). We
also need to pass FindMinimum initial values of 2" to begin the search. We plot f(x”) in
Figure 7.4.9 to find approximate locations of the three minima we are using as these start-
ing points. Ly is the minimum located exterior to the singularity at x” = —1 that repre-
sents the location of Jupiter. Thus, Ly = —(1 + €). L, is located on the interior side of
this singularity. Thus, L, = —(1 - €) and L is located just beyond the mirror image of
Jupiter’s singularity at x” = +1 opposite the Sun. Thus, Ls = +(1 + €). € simply denotes
some unknown small value. We now make three calls to FindMinimum to locate each
of the three collinear Lagrange points.

Each call takes the form: Find Minimum [function, {x, x,}] where the argument func-
tion means f(x) as previously defined. Again, we drop the prime notation. x is the inde-
pendent variable of the function, and x, is the value used to start the search. Table 7.4.2
lists the parameters input to each call. The output of the call are the locations x,,, of
the Lagrange points and the corresponding values of f(x,,,). The values of x, were
chosen to ensure that the search starts in the region in which the desired Lagrange point
is located and fairly near to it.
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7.5] Collisions

Whenever two bodies undergo a collision, the force that either exerts on the other during
the contact is an internal force, if the bodies are regarded together as a single system. The
total linear momentum is unchanged. We can, therefore, write

P1+P: =P +Ps (7.5.1a)
or, equivalently,
myvy +myvy =myvi +myvy (7.5.1b)

The subscripts 1 and 2 refer to the two bodies, and the primes indicate the respective
momenta and velocities after the collision. Equations 7.5.1a and b are quite general.
They apply to any two bodies regardless of their shapes, rigidity, and so on.

With regard to the energy balance, we can write

2 2 ’2 ’2
Pr , Pz _PL , P2 +Q (7.5.2a)
2m, 2m, 2m; 2m,

or

(7.5.2b)

%mluf +%mzu§ = %mlufz +%mzu§2 +Q
Here the quantity Q is introduced to indicate the net loss or gain in kinetic energy that
occurs as a result of the collision.

In the case of an elastic collision, no change takes place in the total kinetic energy, so
that Q = 0. If an energy loss does occur, then Q is positive. This is called an exoergic
collision. It may happen that an energy gain occurs. This would happen, for example, if
an explosive was present on one of the bodies at the point of contact. In this case Q is neg-
ative, and the collision is called endoergic.

The study of collisions is of particular importance in atomic, nuclear, and high-energy
physics. Here the bodies involved may be atoms, nuclei, or various elementary particles,
such as electrons and quarks.

Direct Collisions

Let us consider the special case of a head-on collision of two bodies, or particles, in which
the motion takes place entirely on a single straight line, the x-axis, as shown in Figure 7.5.1.
In this case the momentum balance equation (Equation 7.5.1b) can be written

Mm%, + Mok, = myx; + mgyxy (7.5.3)

The direction along the line of motion is given by the signs of the .

To compute the values of the velocities after the collision, given the values before
the collision, we can use the preceding momentum equation together with the energy
balance equation (Equation 7.5.2b), if we know the value of Q. It is often convenient in
this kind of problem to introduce another parameter e called the coefficient of restitution.
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Figure 7.5.1 Head-on collision of two particles. * )

This quantity is defined as the ratio of the speed of separation v’ to the speed of approach
v. In our notation € may be written as

il _v

2T (7.5.4)
|ty -4 v
The numerical value of € depends primarily on the composition and physical makeup of
the two bodies. It is easy to verify that in an elastic collision the value of € = 1. To do this,
we set Q =0in Equation 7.5.2b and solve it together with Equation 7.5.3 for the final veloc-
ities. The steps are left as an exercise.

In the case of a totally inelastic collision, the two bodies stick together after collid-
ing, so that € =0. For most real bodies € has a value somewhere between the two extremes
of 0 and 1. For ivory billiard balls it is about 0.95. The value of the coefficient of restitu-
tion may also depend on the speed of approach. This is particularly evident in the case of
a silicone compound known as Silly Putty. A ball of this material bounces when it strikes
a hard surface at high speed, but at low speeds it acts like ordinary putty.

We can calculate the values of the final velocities from Equation 7.5.3 together with
the definition of the coefficient of restitution (Equation 7.5.4). The result is

(m;, —emy)x, +(my +emy)i,

% =
. . (7.5.5)
%) = (m, +em )%, +(my — em)%,

my +my
Taking the totally inelastic case by setting € = 0, we find, as we should, that %] = %5; that
is, there is no rebound. On the other hand, in the special case that the bodies are of equal
mass m; =m, and are perfectly elastic € = 1, we obtain
o
=% (7.5.6)
g =%
The two bodies, therefore, just exchange their velocities as a result of the collision.
In the general case of a direct nonelastic collision, it is easily verified that the energy
loss Q is related to the coefficient of restitution by the equation

Q=gu’(l-€?) (75.7)
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in which g = mymy/(m, + my) is the reduced mass, and v = |%, — %, is the relative speed
before impact. The derivation is left as an exercise (see Problem 7.9).

Impulse in Collisions

Forces of extremely short duration in time, such as those exerted by bodies undergoing
collisions, are called impulsive forces. If we confine our attention to one body, or particle,
the differential equation of motion is d(mv)/dt = F, or in differential form d(mv) = F dt.
Let us take the time integral over the interval ¢ =¢, tot =t,. This is the time during which
the force is considered to act. Then we have

Amv) = | ? F dt (7.5.8a)

The time integral of the force is the impulse. It is customarily denoted by the symbol P.
Equation 7.5.8a is, accordingly, expressed as

A(mv) =P (7.5.8b)

We can think of an ideal impulse as produced by a force that tends to infinity but lasts
for a time interval that approaches zero in such a way that the integral /F dt remains finite.
Such an ideal impulse would produce an instantaneous change in the momentum and
velocity of a body without producing any displacement.

Determining the Speed of a Bullet

A gun is fired horizontally, point-blank at a block of wood, which is initially at rest on a
horizontal floor. The bullet becomes imbedded in the block, and the impact causes the
system to slide a certain distance s before coming to rest. Given the mass of the bullet
m, the mass of the block M, and the coefficient of sliding friction between the block and
the floor y, find the initial speed (muzzle velocity) of the bullet.

Solution:

First, from conservation of linear momentum, we can write
. - 7
mx, = (M +m)x;

where %, is the initial velocity of the bullet, and 17 is the velocity of the system (block
+ bullet) immediately after impact. (The coefficient of restitution € is zero in this
case.) Second, we know that the magnitude of the retarding frictional force is equal
to (M +m) pg = (M +m)a, where a =~ is the deceleration of the system after impact,
so a = i g. Now, from Chapter 2 we recall that s = va/2a for the case of uniform accel-
eration in one dimension. Thus, in our problem

.12 LN
o= % =( msx, ) ( 1 )
2ue \M+m) \ 2ug
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Solving for %, we obtain

M+
%o =( mm)(zu,dgs)u2

for the initial velocity of the bullet in terms of the given quantities.

As a numerical example, let the mass of the block be 4 kg, and that of the bullet
10 g = 0.01 kg (about that of a .38 calibre slug). For the coefficient of friction (wood-
on-wood) let us take y; = 0.4. If the block slides a distance of 15 cm = 0.15 m, then we find

4.01

i, = ——(2x0.4% 9.8 ms2 x0.15 m)"? = 435 m/s
°7 0.01

7.6| Oblique Collisions and Scattering: Comparison
of Laboratory and Center of Mass Coordinates

We now turn our attention to the more general case of collisions in which the motion is
not confined to a single straight line. Here the vectorial form of the momentum equa-
tions must be employed. Let us study the special case of a particle of mass m, with initial
velocity v, (the incident particle) that strikes a particle of mass m, that is initially at rest
(the target particle). This is a typical problem found in nuclear physics. The momentum
equations in this case are

P1=PitP: (7.6.1a)
myv, =mvy+myvy (7.6.1b)
The energy balance condition is
2 ’2 ’2
BP9 (7.6.22)

2m, 2m,; 2m,

or
gmv] = gmyof’ + ymyo’ +Q (7.6.2b)

Here, as before, the primes indicate the velocities and momenta after the collision, and
Q represents the net energy that is lost or gained as a result of the impact. The quantity
Q is of fundamental importance in atomic and nuclear physics, because it represents the
energy released or absorbed in atomic and nuclear collisions. In many cases the target par-
ticle is broken up or changed by the collision. In such cases the particles that leave the
collision are different from those that enter. This is easily taken into account by assign-
ing different masses, say m3 and my, to the particles leaving the collision. In any case, the
law of conservation of linear momentum is always valid.

Consider the particular case in which the masses of the incident and target particles
are the same. Then the energy balance equation (Equation 7.6.2a) can be written

p? = p;® +pi +2mQ (7.6.3)
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where m =m, =m,. Now if we take the dot product of each side of the momentum equa-
tion (Equation 7.6.1a) with itself, we get

p1=(pi+Py)-(pi +P2) =pi* +p5 +2p] - Py (7.6.4)

Comparing Equations 7.6.3 and 7.6.4, we see that
Pi-p; =mQ (7.6.5)

For an elastic collision (Q = 0) we have, therefore,
pi-p:=0 (7.6.6)

so the two particles emerge from the collision at right angles to each other.

Center of Mass Coordinates

Theoretical calculations in nuclear physics are often done in terms of quantities referred
to a coordinate system in which the center of mass of the colliding particles is at rest. On
the other hand, the experimental observations on scattering of particles are carried out
in terms of the laboratory coordinates. We, therefore, consider briefly the problem of con-
version from one coordinate system to the other.

The velocity vectors in the laboratory system and in the center of mass system are
illustrated diagrammatically in Figure 7.6.1. In the figure ¢, is the angle of deflection of
the incident particle after it strikes the target particle, and ¢, is the angle that the line of
motion of the target particle makes with the line of motion of the incident particle. Both
¢, and ¢, are measured in the laboratory system. In the center of mass system, because
the center of mass must lie on the line joining the two particles at all times, both parti-
cles approach the center of mass, collide, and recede from the center of mass in opposite
directions. The angle 8 denotes the angle deflection of the incident particle in the center
of mass system as indicated.

4 .7
my Vi my Vi
Center of mass
system

/

ae “\
e & & - \4

Laboratory
system

my v ,,,2

o7

v2

Figure 7.6.1 Comparison of laboratory and center of mass coordinates.
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From the definition of the center of mass, the linear momentum in the center of mass
system is zero both before and after the collision. Hence, we can write
L +P> =0 (7.6.7a)
p.+p:=0 (7.6.7b)
The bars are used to indicate that the quantity in question is referred to the center of mass
system. The energy balance equation reads
_9 =2 —r2 =12
Pr P2 _P P +0

2m, 2my, 2m, 2m,

(7.6.8)

We can eliminate 7, and p; from Equation 7.6.8 by using the momentum relations in
Equations 7.6.7a and b. The result, which is conveniently expressed in terms of the
reduced mass, is

=2 =12

Pr_hP

=t .6.
o5 2 Q (7.6.9)

The momentum relations, Equations 7.6.7a and b expressed in terms of velocities,
read

m,v, +myv, =0 (7.6.10a)
mv] +myvy =0 (7.6.10b)

The velocity of the center of mass is (see Equations 7.1.3 and 7.1.4)

v, =—a (7.6.11)
ml + m2
Hence, we have
Y, =v -V, = —2 (7.6.12)
ml + m2

The relationships among the velocity vectors v,,, v4, and ¥ are shown in Figure 7.6.2.
From the figure, we see that

’ —
vy sing, = T/sinf

(7.6.13)

’ ——
v cos@, = D) cos @ + v,

Figure 7.6.2 Velocity vectors in the laboratory system
and the center of mass system.
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Hence, by dividing, we find the equation connecting the scattering angles to be express-
ible in the form

tang, = (7.6.14)

y=lom = WO (7.6.15)

The last step follows from Equation 7.6.11.

Now we can readily calculate the value of ?j in terms of the initial energy of the
incident particle from the energy equation (Equation 7.6.9). This gives us the neces-
sary information to find yand, thus, determine the relationship between the scatter-
ing angles. For example in the case of an elastic collision Q =0, we find from the energy
equation that Py =Py, or &y = y. This result, together with Equation 7.6.12, yields the
value

y="1 (7.6.16)
my

for an elastic collision.

Two special cases of such elastic collisions are instructive to consider. First, if the mass
my of the target particle is very much greater than the mass m; of the incident particle,
then yis very small. Hence, tan ¢, = tan 0, or ¢; = 6. That is, the scattering angles as seen
in the laboratory and in the center of mass systems are nearly equal.

The second special case is that of equal masses of the incident and target particles
my =my. In this case ¥ = 1, and the scattering relation reduces to

tang, = sin® = tan2
1+ cos@ 2 7.6.17)
P .6.
& ='2'

That is, the angle of deflection in the laboratory system is just half that in the center of
mass system. Furthermore, because the angle of deflection of the target particle is 7— 6
in the center of mass system, as shown in Figure 7.6.1, then the same angle in the labo-
ratory system is (7 — 6)/2. Therefore, the two particles leave the point of impact at right
angles to each other as seen in the laboratory system, in agreement with Equation 7.6.6.

In the general case of nonelastic collisions, it is left as a problem to show that y is

expressible as
0 -v2
my m
=—1-=|1+—
4 - li T ( ™, ]:| (7.6.18)
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in which T is the kinetic energy of the incident partitle as measured in the laboratory
system.

EXAMPLE 7.6.1

In a nuclear scattering experiment a beam of 4-MeV alpha particles (helium nuclef)
strikes a target consisting of helium gas, so that the incident and the target particles have
equal mass. If a certain incident alpha particle is scattered through an angle of 30° in
the laboratory system, find its kinetic energy and the kinetic energy of recoil of the
target particle, as a fraction of the initial kinetic energy T of the incident alpha particle.
(Assume that the target particle is at rest and that the collision is elastic.)

Solution:

For elastic collisions with particles of equal mass, we know from Equation 7.6.6 that
¢, + ¢, = 90° (see Figure 7.6.1). Hence, if we take components parallel to and perpen-
dicular to the momentum of the incident particle, the momentum balance equation
(Equation 7.6.1a) becomes

P1 = P} cos¢y +p; singy
0= pjsing, —p; cosy
in which ¢; = 30°. Solving the preceding pair of equations for the primed components,
we find
P1 =Py cosdy =p, cos30°= gm
P; =pysing, =p;sin30° = 3p;

Therefore, the kinetic energies after impact are

2 2
= P1 =%p_1=%T=3MeV
2m1 m,
2 2
=P _1P1 _1p_{Mev

EXAMPLE 7.6.2

What is the scattering angle in the center of mass system for Example 7.6.1?

Solution:
Here Equation 7.6.17 gives the answer directly, namely,
8 = 2¢, = 60°
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EXAMPLE 7.6.3

(a) Show that, for the general case of elastic scattering of a beam of particles of mass m;
off a stationary target of particles whose mass is m,, the opening angle y in the lab is
given by the expression

T L my
V=9 +0,= —2—+%—%sm l[m—:sm(pl]
(b) Suppose the beam of particles consists of protons and the target consists of helium
nuclei. Calculate the opening angle for a proton scattered elastically at a lab angle

¢, = 30°.
Solution:

(a) Because particle 2 s at rest in the lab, its center of mass velocity T, is equal in magni-
tude (and opposite in direction) to v,,. For elastic collisions in the center of mass,
momentum and energy conservation can be written as

PtP =P +P; =0
—92 =2 —r2 —=r2
P, P2 _ P Po
2m, 2m, 2m; 2m,

Solving for the magnitudes of the center of mass momenta of particle 1 in terms of
particle 2, we obtain

PL=Ps P =Ps

These expressions can be inserted into the energy conservation equation to obtain

B, mm
2u  2u m; +my

Dy =Ty =0,
Thus, in an elastic collision, the center of mass velocities of particle 2 are the same
before and after the collision, and both are equal to the center of mass velocity. Moreover,
the values of the center of mass velocities of particle 1 are also the same before and
after the collision, and, from conservation of momentum in the center of mass,
they are
= _My,_, My

= _
T =0, =—=0; =—=v

cm
m m,

Shown below in Figure 7.6.3 is a vector diagram that relates the parameters of elas-
tic scattering in the laboratory and center of mass frames of reference. From the
geometry of Figure 7.6.3, we see that

V=¢+¢,
2¢,=m—-0
9, _E_g'

T2 2
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Figure 7.6.3 Velocity vectors in
laboratory and center of mass
frame for elastic scattering,

Now, applying the law of sines to the upper triangle of the figure, we obtain
(my/m))v,,, — O
sing, sin(60-¢,)

sin(@-¢,) = ﬂsin(j)1
my

SLO=¢ + sin_l(ﬂ sin¢lj
m

2

Finally, substituting this last expression for @into the one preceding it for ¢, and solv-
ing for the opening angle y, we obtain

0
v=g+,-0+(2-2]

(b) For elastic scattering of protons off helium nuclei at ¢, =30°, m/my= %, and ¢y = 101°.

(Note: In the case where m; = my, y = 90° as derived in the text.)

7.7] Motion of a Body with Variable
Mass: Rocket Motion

Thus far, we have discussed only situations in which the masses of the objects under con-
sideration remain constant during motion. In many situations this is not true. Raindrops
falling though the atmosphere gather up smaller droplets as they fall, which increases their
mass. Rockets propel themselves by burning fuel explosively and ejecting the resultant
gasses at high exhaust velocities. Thus, they lose mass as they accelerate. In each case, mass
is continually being added to or removed from the body in question, and this change in
mass affects its motion. Here we derive the general differential equation that describes
the motion of such objects.

So as not to get too confused with signs, we derive the equation by considering the
case in which mass is added to the body as it moves. The equation of motion also applies
to rockets, but in that case the rate of change of mass is a negative quantity. Examine
Figure 7.7.1. A large mass is moving through some medium that is infested with small
particles that stick to the mass as it strikes them. Thus, the larger body is continually gath-
ering up mass as it moves through the medium. At some time ¢, its mass is m(t) and its
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Figure 7.7.1 A mass m gathering Am ?
up a small mass Am as it moves )
through a medium.

v(t+At)

velocity is v(t). The small particles are, in general, not at rest but are moving through the
medium also with a velocity that we assume to be u(t). At time ¢ + At, the large moving
object has collided with some of these smaller particles and accumulated an additional
small amount of mass Am. Thus, its mass is now m(t + At) = m(t) + Am and its velocity
has changed to v(¢ + At). In the small time interval At, the change (if any) in the total linear
momentum of the system is

AP = (D) tsnr = (Protar) (7.7.1)

This change can be expressed in terms of the masses and velocities before and after the
collision

AP = (m +Am)(v +Av)— (mv +u Am) (7.7.2)
Because the velocity of Am relative to m is V=u —v, Equation 7.7.2 can be expressed as
AP=mAv+AmAv—-V Am (7.7.3)

and on dividing by At we obtain
% = (m+Am)i—:—VAA—1:L (7.7.4)

In the limit as At — 0, we have
F_ =P=mv-Vmn (7.7.5)

The force F,,, represents any external force, such as gravity, air resistance, and so forth
that acts on the system in addition to the impulsive force that results from the interaction
between the masses m and Am. If F,, = 0, then the total momentum P of the system is a
constant of the motion and its net change is zero. This is the case for a rocket in deep space,
beyond the gravitational influence of any planet or star, where F,, is essentially zero.
We now apply this equation of motion to two special cases in which mass is added to
or lost from the moving body. First, suppose that, as we have described, the body is falling
through a fog or mist so that it collects mass as it goes, but assume that the small droplets
of matter are suspended in the atmosphere such that their initial velocity prior to accre-
tion is zero. In general, this will be a good approximation. Hence, V = —v, and we obtain

F,=mv+vm= %(mv) (7.7.6)
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for the equation of motion. It applies only if the initial velocity of the matter that is being
swept us is zero. Otherwise, the more general Equation 7.7.5, must be used.

For the second case, consider the motion of a rocket. The sign of 7 is negative
because the rocket is losing mass in the form of ejected fuel. The term Vi in Equation 7.7.5
is called the thrust of the rocket, and its direction is opposite the direction of V, the rel-
ative velocity of the exhaust products. Here, we solve the equation of motion for the sim-
plest case of rocket motion in which the external force on it is zero; that is, the rocket is
not subject to any force of gravity, air resistance, and so on. Thus, in Equation 7.7.5,
F,,; =0, and we have

mv=Vm (7.7.7)
We can now separate the variables and integrate to find v as follows:

[av= Vdm (1.7.8)

m

If we assume that V is constant, then we can integrate between limits to find the speed
as function of m:

v dm
J;O dvo=-V o W

(7.7.9)
v=0,+V mZe
m
Here m, is the initial mass of the rocket plus unburned fuel, m is the mass at any time,
and V is the speed of the ejected fuel relative to the rocket. Owing to the nature of the

logarithmic function, the rocket must have a large fuel-to-payload ratio to attain the large
speeds needed for launching satellites into space.

EXAMPLE 7.7.1

Launching an Earth Satellite from Cape Canaveral

We know from Example 6.5.3 that the speed of a satellite in a circular orbit near Earth
is about 8 km/s. Satellites are launched toward the east to take advantage of Earth’s
rotation. For a point on the Earth near the equator the rotational speed is approxi-
mately Rgg4, @ggpn, Which is about 0.5 km/s. For most rocket fuels the effective ejec-
tion speed is of the order of 2 to 4 km/s. For example, if we take V = 3 km/s, then we
find that the mass ratio calculated from Equation 7.7.9 is

my _ v-v)_ 8.0—0.5)_ 25 _
m—exp( v ) exp( 3 =e 12.2

to achieve orbital speed from the ground. Thus, only about 8% of the total initial mass
my is payload.
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Multi-Stage Rockets

Example 7.7.1 demonstrates that a large amount of fuel is necessary to put a small pay-
load into low earth orbit (LEO) even if the effects of gravity and air resistance are absent.
Neglecting air resistance is not a bad approximation because careful shaping of the rocket
can greatly minimize its effect. However, as you most assuredly would suspect, we cannot
ignore the effect of gravity because it greatly magnifies the problem of putting something
into orbit.

The equation of motion of the rocket with gravity acting is given by Equation 7.7.5

dv . dm
v = 7.7.10
" a8 ( )
Choosing the upward direction as positive and rearranging terms, we get
do_ _dm_g ., (7.7.11)
\% m V

For the rocket to achieve liftoff, the first term on the right of Equation 7.7.11 must exceed
the second (remember, dm is negative); in other words, the rocket must eject a lot of
matter, dm, at high exhaust velocity V. The reciprocal of the constant g/V in the second
term is a “parameter of goodness” for a given type of rocket and has been given a special
name, the specific impulse 7, of the rocket engine.

T,=— (7.7.12)

It has the dimensions of time, and its value depends on the exhaust velocity of the rocket.
This, in turn, depends primarily on the thermodynamics of what goes on inside the
rocket’s combustion chamber and the shape of the rocket nozzle. A well-designed chem-
ical rocket that works by rapid oxidation of a fuel typically has an exhaust velocity of
about 3000 m/s where the average molecular weight of the combustibles is about 30. Thus,
%,=V/g=300s.

We now integrate Equation 7.7.11 during the fuel burn up to the time of burnout 13
to find the final velocity attained by the rocket.

%I:fdu=—jmfd—m—%":ndt (7.7.13a)

my m

Completing the integration, we get

v_fﬂ{W]_@

v g+ 7 (7.7.13b)

§

The masses in the above equation are mz = mass of the rocket, m,, = mass of the payload,
and my = mass of the fuel (plus oxidizer).
Solving Equation 7.7.13b for the mass ratio, we get

%, %
[m] _ 2 771
mp +m,
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The question of interest here is how much fuel is needed to boost the rocket and payload
into LEO? The final velocity of the rocket must be about 8 km/s. Solving for the mass of
the fuel relative to the mass of the rocket and its payload, we get

]
_Mr Vos)_1 (7.7.15)

=e
mg +m,

The burnout time of a rocket lifting a payload into LEO is about 600 s. Putting the rele-

vant numbers into Equation 7.7.15 yields the result

Mp__ _ 2674200 _1 105

my +m,
In other words, it takes about 105 kg of fuel to place 1 kg of stuff into orbit! This ratio
is larger than that which is typically required. For example, the liftoff weight of the
Saturn V was about 3.2 million kg and it could put 100,000 kg into orbit. This is a ratio
of about 32 kg of fuel for every kilogram of orbital stuff. Why is our result a factor of 3
larger?

; Saturn V used a more efficient, two-stage rocket to launch a payload into LEO. The
tanks that hold the fuel for the first stage are jettisoned after the first stage burn is com-
pleted; thus, this now useless mass is not boosted into orbit, which greatly reduces the
overall fuel requirement. Let’s take a look at Equation 7.7.14 to see how this works. We
denote the mass ratio by the symbol,

{—R———ﬁ———i} =u (1.7.16)
My +m,

We assume that the mass ratio of the first stage g, is equal to that of the second p, and
that the burnout times 7; and 73, for each stage are identical. We can then calculate the
final velocities achieved by each stage from Equation 7.7.13b

% =lny- T—B (7.7.17)
and
O“T—Of‘ =lnp- 1—3 (7.7.18)
Solving for vy, gives
e Tp
L =olnp-272 (7.7.19)

Solving for the fuel to rocket and payload mass ratio as before gives

Vfe . T
Zfe s

Mg =e[2v a]_l (7.7.20)

mp+m,
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Putting in the numbers, we get

My
—F— =27
——y (7.7.21)
Thus, it takes only about 27 kg of fuel to put 1 kg of stuff into orbit using a two-stage
rocket. Clearly, there is an enormous advantage to staging as was demonstrated in
Saturn V.

The lon Rocket

Chemical rockets use the thermal energy released in the explosive oxidation of the fuel
in the rocket motor chamber to eject the reactant products out the rear end of the rocket
to propel it forward. In an ion rocket, such as NASA’s Deep Space 1,” atoms of xenon gas
are stripped of one of their electrons, and the resulting positive Xe" ions are accelerated
by an electric field in the rocket motor. These ejected ions impart a forward momentum
to the rocket exactly in the same way as described by Equation 7.7.7. There are two
essential differences between ion and chemical rockets:

* The exhaust velocity of an ion rocket is about 10 times larger than that of a chem-
ical rocket, which gives a larger specific impulse (see Equation 7.7.12)

* The mass ejected per unit time, 7, is much smaller in ion rockets, which gives a
much smaller thrust (the term Vi in Equation 7.7.7).

These differences crop up because, even though the electrostatic acceleration of ions is
more efficient than thermal acceleration by chemical explosions, the density of ejected
ions is much less than the density of the ejected gasses. The upshot is that an ion rocket
is more efficient than a chemical rocket in the sense that it takes much less fuel mass to
propel the rocket to some desired speed, but the acceleration of the rocket is quite gentle,
so that it takes more time to attain that speed. This makes ion rockets more suitable for
deep space missions to, say, comets and asteroids and, perhaps, ultimately, to nearby star
systems! Indeed, one of the purposes of NASA's Deep Space 1 mission is to test this
hypothesis. Here we discuss its propulsion system to see what has been achieved so far
with this new technology.

The electrostatic potential ®, through which the Xe" ions were accelerated, was
1280 volts. The ions were ejected from the 0.3-meter thruster through a pair of focusing
molybdenum grids. We can estimate the maximum possible escape velocity of these ions
by noting that charged particles in an electrostatic potential @, accelerate and gain kinetic
energy by losing electrostatic potential energy e®, where e is their electric charge. The
electrostatic potential energy of a charged particle in an electric field is analogous to the
gravitational potential energy m® (Equation 6.7.6) of a particle in a gravitational field.
Thus, we have

%sz = ed)e (7722)

®See the website http://nmp.jpl.nasa.gov/ds1/tech/ionpropfaq html for a discussion of NASA’s New Millennium
Project, Deep Space 1 mission,
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where m is the mass of a Xe" ion. Solving for the escape velocity, we get

v |22 (7.7.23)
m

m =131 AMU =131x1.66 x 10" kg = 2.17 x 107> kg
e=16x10"°C (7.7.24)
V =43%x10* m/s

Putting in numbers:"’

Thus, the maximum possible specific impulse of the ion rocket is

_V _43x10*ms

2 YO 4.4x10%s (7.7.25)

In fact, the specific impulse of Deep Space I ranges between 1900 s and 3200 s depend-
ing upon throttle power. The maximum calculated here assumes that all the available power
accelerates the ions with 100% efficiency and ejects them exactly in the backward direc-
tion out the rear end of the rocket, which is virtually impossible to do. The specific
impulse of Deep Space I is about 10 times greater than that of Saturn V.

We now calculate the thrust of Deep Space I, again assuming that all available power
is converted into the ejected ion beam with 100% efficiency. The maximum available power
on Deep Space I is P = 2.5 kW. Thus, the rate, N, at which Xe" ions are ejected can be
calculated from the expression

P =E = Ne®, (7.7.26)

Because e®, is the potential energy lost in accelerating a single ion, the power consumed
is equal to the potential energy lost per unit time to all the accelerated ions. The rate at
which mass is ejected, 1, is equal to the mass of each ion times N. Thus,

mP _ (2.17x107% kg)(2500 J/s)
e® (1.6x107*° C)(1280 V)

€

=mN = =26x10°kgs  (7.7.27)

where we have used the fact that 1 Cx 1V =1]. The maximum thrust of the ion rocket
is thus,
Thrust = Vi = (4.3X10* m/s)(2.6 X 10 ° kg/s) = 0.114N

In fact, the maximum thrust achieved by Deep Space I is 0.092 N. We can compare this
with the thrust developed by Saturn V. Saturn V ejected about 11,700 kg/s. Thus,

Thrust(SaturnV) _ Vm(SaturnV) (3000 m/s)(11,700 kg/s)

=— = =3.8x10°
Thrust(Deep Space I)  Vm(Deep Space I) 0.092N

' An AMU is an atomic mass unit. It is equal to 1.66 x 10" kg. The unit of electric charge is the Coulomb (C).
The charge of the electron is ~1.6 X 10™ C; thus, the charge of a singly charged positive ion is +1.6 x 10™ C.
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We conclude that ion rockets are not useful for launching payloads from Earth but are
suitable for deep space missions starting from Earth orbit in which efficient but gentle
propulsion systems can be used.

Problems
7.1 A system consists of three particles, each of unit mass, with positions and velocities as follows:
r=i+j v, =2
=j+k vy=j
=k vy=i+j+k

Find the position and velocity of the center of mass. Find also the linear momentum of
the system.

7.2  (a) Find the kinetic energy of the system in Problem 7.1.
(b) Find the value of mv2,/2.
(¢) Find the angular momentum about the origin.

7.3 Abullet of massm is fired from a gun of mass M. If the gun can recoil freely and the muzzle
velocity of the bullet (velocity relative to the gun as it leaves the barrel) is vg, show that the
actual velocity of the bullet relative to the ground is vo/(1 + 7) and the recoil velocity for
the gun is —yve/(1 + v) , where y=m/M.

7.4 Ablock of wood rests on a smooth horizontal table. A gun is fired horizontally at the block
and the bullet passes through the block, emerging with half its initial speed just before it
entered the block. Showsthat the fraction of the initial kinetic energy of the bullet that is
lost as frictional heatis 7 —77, where 7 is the ratio of the mass of the bullet to the mass

of the block (Y < 1).

7.5  Anartillery shell is fired at an angle of elevation of 60° with initial speed v,. At the uper-
most part of its trajectory, the shell bursts into two equal fragments, one of which moves
directly upward, relative to the ground, with initial speed vy/2. What is the direction and
speed of the other fragment immediately after the burst?

7.6  Aballis dropped from a height h onto a horizontal pavement. If the coefficient of restitu-
tion is € show that the total vertical distance the ball goes before the rebounds cease is
h(1 + €/(1 - €). Find also the total length of time that the ball bounces.

7.7  Asmall car of a mass m and initial speed v colhdes head-on on an icy road with a truck of
mass 4m gomg toward the car with initial speed —00 If the coefficient of restitution in the
collision is 3, find the speed and direction of each vehicle Just after colhdmg

7.8  Show that the kinetic energy of a two-particle system is 2mom +3 su0%, where m =m, +my,
v is the relative speed, and p is the reduced mass.

7.9  If two bodies undergo a direct collision, show that the loss in kinetic energy is equal to
gho’(l-€")
where u is the reduced mass, v is the relative speed before impact, and € is the coefficient

of restitution.

7.10 A moving particle of mass m; collides elastically with a target particle of mass mg, which is
initially at rest. If the collision is head-on, show that the incident particle loses a fraction
4t/m of its original kinetic energy, where  is the reduced mass and m =m; + m,.
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Show that the angular momentum of a two-particle system is
r,, Xmv, +RXuv

where m = mj +my, p1is the reduced mass, R is the relative position vector, and v is the rel-
ative velocity of the two particles.

The observed period of the binary system Cygnus X-1, presumed to be a bright star and a
black hole, is 5.6 days. If the mass of the visible component is 20 M and the black hole has
a mass of 16 Mo, show that the semimajor axis of the orbit of the black hole relative to the
visible star is roughly one-fifth the distance from Earth to the Sun.

(a) Using the coordinate convention given is Section 7.4 for the restricted three-body prob-
lem, find the coordinates (x”, 4") of the two Lagrangian points, L, and L.
(b) Show that the gradient of the effective potential function V(x, ") vanishes at L, and L,

A proton of mass m,, with initial velocity v collides with a helium atom, mass 4m,, that is ini-

tially at rest. If the proton leaves the point of impact at an angle of 45° with its original line of
motion, find the final velocities of each particle. Assume that the collision is perfectly elastic.

Work Problem 7.14 for the case that the collision is inelastic and that Q is equal to one-fourth
of the initial energy of the proton.

Referring to Problem 7.14, find the scattering angle of the proton in the center of mass
system.

Find the scattering angle of the proton in the center-of-mass system for Problem 7.15.

A particle of mass m with initial momentum p, collides with a particle of equal mass at rest.
If the magnitudes of the final momenta of the two particles are p; and pj, respectively, show
that the energy loss of the collision is given by

_pips
Q - cosy

where ¥ is the angle between the paths of the two particles after colliding,

A particle of mass m, with an initial kinetic energy T, makes an elastic collision with a par-
ticle of mass m, initially at rest. m is deflected from its original direction with a kinetic energy
Tj through an angle ¢, as in Figure 7.6.1. Letting o:=m,/m, and y= cos ¢,, show that the
fractional kinetic energy lost by m,, AT\/T, = (T, — T1)/T, is given by

%:L 2—y(y+,/a2+y2—l)
1

l1+a (l+a)
Derive Equation 7.6.18

A particle of mass m, scatters elastically from a particle of mass m, initially at rest as
described in Problem 7.19. Find the curve r(¢,) such that the time it takes the scattered
particle to travel from the collision point to any point along the curve is a constant.

A uniform chain lies in a heap on a table. If one end is raised vertically with uniform veloc-
ity v, show that the upward force that must be exerted on the end of the chain is equal to
the weight of a length z + (u”/g) of the chain, where z is the length that has been uncoiled
at any instant.

Find the differential equation of motion of a raindrop falling through a mist collecting mass
asit falls. Assume that the drop remains spherical and that the rate of accretion is proportional
to the cross-sectional area of the drop multiplied by the speed of fall. Show that if the drop
starts from rest when it is infinitely small, then the acceleration is constant and equal to g/7.
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A uniform heavy chain of length @ hangs initially with a part of length b hanging over the
edge of a table. The remaining part, of length a — b, is coiled up at the edge of the table. If
the chain is released, show that the speed of the chain when the last link leaves the end of
the table is [2g(a® - b%)/34%]">.

A balloon of mass M containing a bag of sand of mass m, is filled with hot air until it becomes
buoyant enough to rise ever so slightly above the ground, where it then hovers in equilibrium.
Sand is then released at a constant rate such that all of it is dumped out in a time #,. Find
(a) the height of the balloon and (b) its velocity when all the sand has been released.
Assume that the upward buoyancy force remains constant and neglect air resistance. (c)
Assume that € =my/M is very small, and find a power series expansion of your solutions for
parts (a) and (b) in terms of this ratio. (d) Letting M = 500 kg, my = 10 kg, and £, = 100's,
and keeping only the first-order term in the expansions obtained in part (c), find a numer-
ical value for the height and velocity attained when all the sand has been released.

A rocket, whose total mass is mq, contains a quantity of fuel, whose mass is em (0 <€ < 1).

Suppose that, on ignition, the fuel is burned at a constant mass-rate k, ejecting gasses with a

constant speed V relative to the rocket. Assume that the rocket is in a force-free environment.

(a) Find the distance that the rocket has traveled at the moment it has burnt all the fuel.

(b) What is the maximum possible distance that the rocket can travel during the burning
phase? Assume that it starts from rest.

A rocket traveling through the atmosphere experiences a linear air resistance —kv. Find the
differential equation of motion when all other external forces are negligible. Integrate the
equation and show that if the rocket starts from rest, the final speed is given by

0=Va[l - (m/mg)""*]

where V is the relative speed of the exhaust fuel, &= |/k| = constant, m, is the initial mass
of the rocket plus fuel, and m is the final mass of the rocket.

Find the equation of motion for a rocket fired vertically upward, assuming g is constant.
Find the ratio of fuel to payload to achieve a final speed equal to the escape speed v, from
the Earth if the speed of the exhaust gas is kv,, where k is a given constant, and the fuel
burning rate is |71|. Compute the numerical value of the fuel—payload ratio for k = 3, and
|| equal to 1% of the mass of the fuel per second.

Alpha Centauri is the nearest star system, about 4 light years from Earth. Assume that an
ion rocket has been built to travel to Alpha Centauri. Suppose the exhaust velocity of the
ions is one-tenth the speed of light. Let the initial mass of the fuel be twice that of the pay-
load (ignore the mass of the rocket, itself). Also, assume that it takes about 100 hours to
exhaust all the fuel of the rocket. How long does it take the rocket to reach Alpha Centauri?
(The speeds are small enough that you can neglect the effects of special relativity.)

Consider the ion rocket described in Problem 7.29. Let’s compare it to a chemical rocket whose
exhaust velocity is 3 km/s. In the case of the jon rocket, 1 kg of fuel accelerates 1 kg of pay-
load to a final velocity vz What fuel mass is required to accelerate the same payload to the
same final velocity with the chemical rocket? (In each case, ignore the mass of the rocket.)

Computer Problems

C 7.1 Lettwo particles (m; =my=1kg) repel each other with equal and opposite forces given by

b2

Fy, = k;{"u =-Fy
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where b =1 m and k = 1 N. Assume that the initial positions of m, and m, are given by

(*1, y1)o = (=10, 0.5) m and (xg, ys)o = (0, —0.5) m. Let the initial velocity of m, be 10 m/s

in the +x direction and m, be at rest. Numerically integrate the equations of motion for these

two particles undergoing this two-dimensional “collision.”

(a) Plot their trajectories up to a point where their distance of separation is 10 m.

(b) Measure the scattering angle of the incident particle and the recoil angle of the scat-
tered particle. Is the sum of these two angles equal to 90°?

(¢) What is the vector sum of their final momenta? Is it equal to the initial momentum of
the incident particle?

Using a numerical optimization tool such as Mathematica’s FindMinimum function, find the
coordinates (x’, y”) of the Lagrange point L, in the restricted three-body problem. Do not
assume, as you probably did in Problem 7.13, that L, is located at one of the corners of an
equilateral triangle whose opposite base is formed by the two primaries. However, you
should start the search for the coordinates of L, by using a point near the position of the
suspected solution.

The total mass of a new experimental rocket, including payload, is 2 x 10° kg, and 90% of

its mass is fuel. It burns fuel at a constant rate of 18,000 kg/s and exhausts the spent gasses

at a speed of 3000 m/s. Assume that the rocket is launched vertically. Ignore the rotation
of the Earth.

(a) Ignore air resistance, and assume that g, the acceleration due to gravity, is constant.
Calculate the maximum altitude attained by the launched rocket.

(b) Repeat part (a), but include the effect of air resistance and the variable of g with alti-
tude. Assume that the rocket presents a resistive surface to air that is equivalent to that
of a sphere whose diameter is 0.5 m. Assume that the force of air resistance varies qua-
dratically with speed and is given by

F(v)=—cyv| 0|
and that ¢, scales with altitude y above Earth’s surface as
o) = ¢y (0) exp_"’/H

where ¢5(0) =0.22 D* as given in Chapter 2. H (=8 km) is the scale height of the atmos-
phere, and the variation of g with altitude is

9.8 , /s
(1+y/Rg)

as given in Computer Problem C 2.1.

gy =



only heavy, while the centre of inertia is defined by means of the inertia
alone, the forces to which the solid is subject being neglected. . . . Euler also
defines the moments of inertia—a concept which Huygens lacked and which
considerably simplifies the language—and calculates these moments for
Homogeneous bodies.”

—Rene Dugas, A History of Mechanics, Editions du Griffon, Neuchatel, Switzerland, 1955;
synopsis of Leonhard Euler’s comments in Theoria motus corporum solidorum seu
rigidorum, 1760

A rigid body may be regarded as a system of particles whose relative positions are fixed, or,
in other words, the distance between any two particles is constant. This definition of a rigid
body is idealized. In the first place, as pointed out in the definition of a particle, there are
no true particles in nature. Second, real extended bodies are not strictly rigid; they become
more or less deformed (stretched, compressed, or bent) when external forces are applied.
For the present, we shall ignore such deformations. In this chapter we take up the study of
rigid-body motion for the case in which the direction of the axis of rotation does not change.
The general case, which involves more extensive calculation, is treated in the next chapter.

8.1] Center of Mass of a Rigid Body

We have already defined the center of mass (Section 7.1) of a system of particles as the
point (e, Yom» Zom) Where

2 xm, 2 yimy X zm,
. : .

Xom = '2—’": Yom = DX Zom = '27 (8.1.1)
i 1 i

323
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For a rigid extended body, we can replace the summation by an integration over the
volume of the body, namely,

_ prdv _ prdv _ Lpzdv
S P P

where p is the density and dv is the element of volume.
If a rigid body is in the form of a thin shell, the equations for the center of mass
become

8.1.2)

Jpxds =prds . =Lpzds
SR PR

where ds is the element of area and p is the mass per unit area, the integration extend-
ing over the area of the body.
Similarly, if the body is in the form of a thin wire, we have

=J'lpxdl =J'lpydl . Jpz
- J'lpdl Yom Lpdl del

In this case, p is the mass per unit length and dl is the element of length.

For uniform homogeneous bodies, the density factors p are constant in each case and,
therefore, may be canceled out in each of the preceding equations.

If a body is composite, that is, if it consists of two or more parts whose centers of
mass are known, then it is clear, from the definition of the center of mass, that we can
write

(8.1.3)

(8.1.4)

_ Ty +xemy +o
my+my+-e

(8.1.5)

cm

with similar equations for y,,, and z,,,. Here (x,4,,2,) is the center of mass of the partm,,
and so on.

Symmetry Considerations

If a body possesses symmetry, it is possible to take advantage of that symmetry in
locating the center of mass. Thus, if the body has a plane of symmetry, that is, if each par-
ticle m, has a mirror image of itself m] relative to some plane, then the center of mass lies
in that plane. To prove this, let us suppose that the xy plane is a plane of symmetry. We
have then

Z(z m, + zm;)
Z(mi +m)) (8.1.6)

But m, = m] and z; = —z;. Hence, the terms in the numerator cancel in pairs, and so
Z.m = 0; that is, the center of mass lies in the xy plane.
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Figure 8.1.1 Coordinates for calculating
the center of mass of a hemisphere.

Similarly, if the body has a line of symmetry, it is easy to show that the center of mass
lies on that line. The proof is left as an exercise.

Solid Hemisphere

To find the center of mass of a solid homogeneous hemisphere of radius a, we know from
symmetry that the center of mass lies on the radius that is normal to the plane face. Choosing
coordinate axes as shown in Figure 8.1.1, we see that the center of mass lies on the z-axis.
To calculate z,,, we use a circular element of volume of thickness dz and radius = (a® - 2%)"2,
as shown. Thus,

dv =n(a® -2%)dz 8.1.7)

Therefore,
_ J:pnz(a2 -2Hdz _
o J:pn'(az—zz)dz -

oof e

z a (8.1.8)

Hemispherical Shell

For a hemispherical shell of radius a, we use the same axes as in Figure 8.1.1. Again, from
symmetry, the center of mass is located on the z-axis. For our element of surface ds, we
choose a circular strip of width dl = ad6. Hence,

ds = 2zrdl = 2m(a® - 22)"%ad6
0= sin-l(f) do=(a>-2*)"dz (8.1.9)
a
~ds=2radz

The location of the center of mass is accordingly given by

Jm p2razdz |
N =l (8.1.10)
J:pzn'adz

Zem =
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Figure 8.1.2 Coordinates for calculating
the center of mass of a wire bent into the
form of a semicircle.

Semicircle

To find the center of mass of a thin wire bent into the form of a semicircle of radius a, we
use axes as shown in Figure 8.1.2. We have

dl=adf (8.1.11)

and
z=asing (8.1.12)
Hence,
” »
_ Io p(a sin@®)a d6 _ 2

_ = (8.1.13)
Io padb

om

Semicircular Lamina

In the case of a uniform semicircular lamina, the center of mass is on the z-axis
(Figure 8.1.2). As an exercise, the student should verify that

_4a

z_ =— 8.1.14
™ 3r ( )

Solid Cone of Variable Density:
Numerical Integration

Sometimes we are confronted with the unfortunate prospect of having to find the center
of mass of a body whose density is not uniform. In such cases, we must resort to numer-
ical integration. Here we present a moderately complex case that we will solve numeri-
cally even though it can be solved analytically. We do this to illustrate how such a calculation
can be easily carried out using the tools available in Mathematica.

Consider a solid, “unit” cone bounded by the conical surface z* =x*+ and the plane
z =1 as shown in Figure 8.1.3, whose mass density function is given by

plx,y,2) = Jx° + ¢ (8.1.15)
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Figure 8.1.3 Solid cone whose
surface is ngen by the curve
= +y’andz =

The center of mass of this cone can be calculated by solving the integrals given in

Equation 8.1.2. The mass of the cone is given by

M= J_lj;;x—xj‘}m \/x2+y2 dzdy dx

(8.1.16)

Notice that the limits of integration over the variable y depend on x and that the limits of
integration over z depend on both x and y. Because this integral is symmetric about both

the x and y axes, it simplifies to

M =4JZJ(:/1_7L}I2—WE Jei +y? dzdydx

The first moments of the mass are given by the integrals

My, J_Jj:—xjmx\/x +y® dadydx
M= Hl_— Wy«/x +y® dedydr
J'JI_T IW z,/x2+y2 dz dy dx

The location of the center of mass is then

— Yz
Eom > Yom > ZBom) (M vy

(8.1.17)

(8.1.18a)

(8.1.18b)

(8.1.18¢)

(8.1.19)
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The first moments of the mass about the x and y axes must vanish because, again, the mass
distribution is symmetric about those axes. This is reflected in the fact that the integrals
in Equations 8.1.18a and b are odd functions and, therefore, vanish. Thus, the only
integrals we need evaluate are those in Equations 8.1.17 and 8.1.18c.

We performed these integrations numerically by invoking Mathematica’s NIntegrate
function. The call to this function for a three-dimensional integral is

M(M,,) = Nintegrate [Integrand, {x, Xymin, Xmarhs (Y, Ymin> Ymar)> 35 Zmins Zmax}]

where the arguments are appropriate for M or M,, and should be self-explanatory. The
output of the two necessary calls yield the values: M =0.523599 and M, = 0.418888. Thus,
the coordinates of the center of mass are

Coms Yoms Zem) = (0,0,0.800017) (8.1.20)

We leave it as an exercise for the ambitious student to solve this problem analytically.

8.2] Rotation of a Rigid Body about
a Fixed Axis: Moment of Inertia

The simplest type of rigid-body motion, other than pure translation, is that in which the
body is constrained to rotate about a fixed axis. Let us choose the z-axis of an appropriate
coordinate system as the axis of rotation. The path of a representative particle m; located
at the point (x;, y;, 2;) is then a circle of radius (x? + 4?)"2 = r; centered on the z-axis.
A representative cross section parallel to the xy plane is shown in Figure 8.2.1.

The speed v; of particle i is given by

o=ro=(z2+y?) 0 (82.1)
where o is the angular speed of rotation. From a study of Figure 8.2.1, we see that the
velocity has components as follows:

%, = -0, sing; = -0y,

§; = v, cos P, = W, 8.2.2)
2,=0

Figure 8.2.1 Cross section of a rigid body
rotating about the z-axis. (The z-axis is out of
the page.)
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where ¢, is defined as shown in Figure 8.2.1. Equations 8.2.2 can also be obtained by
extracting the components of the vector equation

vV, =X 8.2.3)

where o = ko.
Let us calculate the kinetic energy of rotation of the body. We have

T, = Z%m,vf = %(Zmirfjwz = %Iza)2 (8.24)
where
L=Ymrl=Y m(xl+y?) (8.2.5)

The quantity I,, defined by Equation 8.2.5, is called the moment of inertia about the
z-axis.

To show how the moment of inertia further enters the picture, let us next calculate
the angular momentum about the axis of rotation. Because the angular momentum of a
single particle is, by definition, r; X m,v;, the z-component is

m;(x;4; —y;%;) = mi(x? + yf)w = m,-r?w (8.2.6)

where we have made use of Equations 8.2.2. The total z-component of the angular
momentum, which we call L,, is then given by summing over all the particles, namely,

L =Ymrio=1o 8.2.7)

In Section 7.2 we found that the rate of change of angular momentum for any system is
equal to the total moment of the external forces. For a body constrained to rotate about
a fixed axis, taken here as the z-axis, then

2L, _d1,o)
foode dt
where N, is the total moment of all the applied forces about the axis of rotation (the

component of N along the z-axis). If the body is rigid, then I, is constant, and we can
write

(8.2.8)

N =1% (8.2.9)
dt
The analogy between the equations for translation and for rotation about a fixed axis is
shown in the following table:

Translation along x-axis Rotation about z-axis

Linear momentum p,=my, Angular momentum L,=Lw
Force F.= Tiw" \ Torque N, = If 0] \
Kinetic energy T=5mo Kinetic energy To=35 Lo
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Thus, the moment of inertia is analogous to mass; it is a measure of the rotational iner-
tia of a body relative to some fixed axis of rotation, just as mass is a measure of transla-
tional inertia of a body.

8.3] Calculation of the Moment of Inertia

In calculations of the moment of inertia £ m> for extended bodies, we can replace the
summation by an integration over the body, just as we did in calculation of the center of
mass. Thus, we may write for any axis

I=[r%dm (8.3.1)

where the element of mass dm is given by a density factor multiplied by an appropriate
differential (volume, area, or length), and r is the perpendicular distance from the element
of mass to the axis of rotation."
In the case of a composite body, from the definition of the moment of inertia, we may
write
I=Il+12+"' (832)
where I, I, and so on, are the moments of inertia of the various parts about the particular

axis chosen.
Let us calculate the moments of inertia for some important special cases.

Thin Rod

For a thin, uniform rod of length 2 and mass m, we have, for an axis perpendicular to the
rod at one end (Figure 8.3.1a),

I = j:xz pdx = 1 pa® = Tma® (8.3.3)

The last step follows from the fact that m = pa.
If the axis is taken at the center of the rod (Figure 8.3.1b), we have

al2

Hoop or Cylindrical Shell

In the case of a thin circular hoop or cylindrical shell, for the central, or symmetry, axis,
all particles lie at the same distance from the axis. Thus,

I, =ma® (8.3.5)

where a is the radius and m is the mass.

1n Chapter 9, when we discuss the rotational motion of three-dimensional bodies, the distance between the
mass element dm and the axis of rotation r is designed to remind us that the relevant distance is the one per-
pendicular to the axis of rotation.
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Figure 8.3.1 Coordinates for calculating the moment of inertia of a rod (a) about one end and
(b) about the center of the rod.

Figure 8.3.2 Coordinates for finding the
moment of inertia of a disc.

Circular Disc or Cylinder

To calculate the moment of inertia of a uniform circular disc of radius ¢ and mass m, we
use polar coordinates. The element of mass, a thin ring of radius r and thickness dr, is
given by

dm = p2zrdr (8.3.6)

where pis the mass per unit area. The moment of inertia about an axis through the center
of the disc normal to the plane faces (Figure 8.3.2) is obtained as follows:

4
= [%,2 - a _1_ 2
Im—J.Or p2fcrdr—27tp7——2-ma (8.3.7)
The last step results from the relation m = prd”.
Equation 8.3.7 also applies to a uniform right-circular cylinder of radius @ and mass
m, the axis being the central axis of the cylinder.
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Figure 8.3.3 Coordinates for finding the
moment of inertia of a sphere.

Sphere

Let us find the moment of inertia of a uniform solid sphere of radius & and mass m about
an axis (the z-axis) passing through the center. We divide the sphere into thin circular discs,
as shown in Figure 8.3.3. The moment of inertia of a representative disc of radius y, from
Equation 8.3.7, is %yzdm. Butdm = pfcy2 dz; hence,

L=[ lnpy*da= lap(a®-2*)dz = npa® (8.3.8)
The last step in Equation 8.3.8 should be filled in by the student. Because the mass m is
given by
m=37a’p (8.3.9)
we have

I =

z

ma® (8.3.10)

| o

for a solid uniform sphere. Clearly also, I, = I,=1I.

Spherical Shell

The moment of inertia of a thin, uniform, spherical shell can be found very simply by appli-
cation of Equation 8.3.8. If we differentiate with respect to a, namely,

dl, =3npa*da (8.3.11)

the result is the moment of inertia of a shell of thickness da and radius a. The mass of the
shell is 47ta’p da. Hence, we can write

I, = 2ma® (8.3.12)

for the moment of inertia of a thin shell of radius a and mass m. The student should verify
this result by direct integration.
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EXAMPLE 8.3.1

Shown in Figure 8.3.4 is a uniform chain of length / = 277R and mass m = M/2 that is
initially wrapped around a uniform, thin disc of radius R and mass M. One tiny piece of
chain initially hangs free, perpendicular to the horizontal axis. When the disc is released,
the chain falls and unwraps. The disc begins to rotate faster and faster about its fixed
z-axis, without friction. (a) Find the angular speed of the disc at the moment the chain
completely unwraps. (b) Solve for the case of a chain wrapped around a wheel whose
mass is the same as that of the disc but concentrated in a thin rim.

Solution:

(a) Figure 8.3.4 shows the disc and chain at the moment the chain unwrapped. The final
angular speed of the disc is @. Energy was conserved as the chain unwrapped.
Because the center of mass of the chain originally coincided with that of the disc,
it fell a distance I/2 = nR, and we have

I 1
mgo = s1o® + Zmo®
L_nn v=wR I=3MR?
2 2
Solving for @ gives
o’ = mg(l/2) __ mgmR
e
= ﬂ—g-
R
(b) The moment of inertia of a wheel is I = MR®. Substituting this into the preceding
equation yields
o’= fc2—g
3R

Even though the mass of the wheel is the same as that of the disc, its moment of
inertia is larger, because all its mass is concentrated along the rim. Thus, its angu-
lar acceleration and final angular velocity are less than that of the disc.

Chain "% cm
N
] 112 = 7R
Figure 8.3.4 Falling chain attached to disc, free to rotate about ¢
a fixed z-axis. X
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Perpendicular-Axis Theorem for a Plane Lamina

Consider a rigid body that is in the form of a plane lamina of any shape. Let us place the
lamina in the xy plane (Figure 8.3.5). The moment of inertia about the z-axis is given by

L =Y m(x}+y})= Y, ma’ + Y my} (8.3.13)

The sum X m, x? is just the moment of inertia 1, about the y-axis, because 2 is zero for all

particles. Similarly, %, m,-y,-2 is the moment of inertia I, about the x-axis. Equation 8.3.13
can, therefore, be written

L=I+I, (8.3.14)
This is the perpendicular-axis theorem. In words:

The moment of inertia of any plane lamina about an axis normal to the plane of the
lamina is equal to the sum of the moments of inertia about any two mutually perpendi-
cular axes passing through the given axis and lying in the plane of the lamina.

As an example of the use of this theorem, let us consider a thin circular disc in the
xy plane (Figure 8.3.6). From Equation 8.3.7 we have

I=ima®=1+I, (8.3.15)
In this case, however, we know from symmetry that I, = I,. We must, therefore, have

I,=1,=;mad’ (8.3.16)

Figure 8.3.5 The perpendicular-axis theorem for
alamina.

Figure 8.3.6 Circular disc.
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Figure 8.3.7 The parallel-axis theorem for any
rigid body.

for the moment of inertia about any axis in the plane of the disc passing through the center.
This result can also be obtained by direct integration.

Parallel-Axis Theorem for Any Rigid Body

Consider the equation for the moment of inertia about some axis, say the z-axis,
L =Y mx} +y}) (8.3.17)
H

Now we can express x; and y; in terms of the coordinates of the center of mass (*,.,., Yo, Zom)
and the coordinates relative to the center of mass (%;.;.%;) (Figure 8.3.7) as follows:

X =Xy + X Y =Yom + Y, (8.3.18)

i

We have, therefore, after substituting and collecting terms,

L= Zmi(f% + y%) + Zmi(xfm + yczm) + 2% 3 ME; + 2o Y MY, (8.3.19)
i i i i

The first sum on the right is just the moment of inertia about an axis parallel to the z-axis

and passing through the center of mass. We call it I,,. The second sum is equal to the mass

of the body multiplied by the square of the distance between the center of mass and the

z-axis. Let us call this distance [. That is, [ %= x2, +y2,

Now, from the definition of the center of mass,
Zmifi = Zmiyi =0 (8.3.20)

Hence, the last two sums on the right of Equation 8.3.19 vanish. The final result may be
written in the general form for any axis

I1=1,,+ml (8.3.21)

This is the parallel-axis theorem. It is applicable to any rigid body, solid as well as laminar.
The theorem states, in effect, that:

The moment of inertia of a rigid body about any axis is equal to the moment of inertia
about a parallel axis passing through the center of mass plus the product of the mass of
the body and the square of the distance between the two axes.
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We can use the parallel-axis theorem to calculate the moment of inertia of a uniform cir-
cular disc about an axis perpendicular to the plane of the disc and passing through an edge
(see Figure 8.3.8a). Using Equations 8.3.7 and 8.3.21, we get

I= %maz +ma? = %maz (8.3.22)

We can also use the parallel-axis theorem to calculate the moment of inertia of the disc
about an axis in the plane of the disc and tangent to an edge (see Figure 8.3.8b). Using
Equations 8.3.16 and 8.3.21, we get

I= %ma2 +ma® = ;ma2 (8.3.23)

As a second example, let us find the moment of inertia of a uniform circular cylinder
of length b and radius a about an axis through the center and perpendicular to the central
axis, namely I, or 1, in Figure 8.3.9. For our element of integration, we choose a disc of
thickness dz located a distance z from the xy plane. Then, from the previous result for a
thin disc (Equation 8.3.16), together with the parallel-axis theorem, we have

dl, = ;a°dm +2z*dm (8.3.24)
in which dm = pfca2 dz. Thus,

I = pnazfsz (%a2 +z° )dz = pﬂ:az(1 a’b+ lizbs) (8.3.25)

4
But the mass of the cylinder is m = pra’h, therefore,

I=1,=m(}a*+ ;D% (8.3.26)

Radius of Gyration

Note the similarity of Equation 8.2.5, the expression for the moment of inertia I of a rigid
body about the z-axis, to the expressions for center of mass developed in Section 8.1. If we
were to divide Equation 8.2.5 by the total mass of the rigid body, we would obtain the mass-
weighted average of the square of the positions of all the mass elements away from the z-axis.

Figure 8.3.8 Moment of
inertia of a uniform, thin disc [« a —
about axes (a) perpendicular to
the plane of the disc and
through an edge and (b} in the
plane of the disc and tangent to
an edge. (a) (b)
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Figure 8.3.9 Coordinates for
finding the moment of inertia of a
circular cylinder.

Thus, moment of inertia is, in essence, the average of the squares of the radial distances
away from the z-axis of all the mass elements making up the rigid body. You can understand
physically why the moment of inertia must depend on the square (or, at least, some even
power) of the distances away from the rotational axis; it could not be represented by a linear
average over all the mass elements (or any average of the odd power of distance). If such
were the case, then a body whose mass was symmetrically distributed about its rotational
axis, such as a bicycle wheel, would have zero moment of inertia because of a term-by-term
cancellation of the positive and negative weighted mass elements in the symmetrical
distribution. An application of the slightest torque would spin up a bicycle wheel into an
instantaneous frenzy, a condition that any bike racer knows is impossible.

We can formalize this discussion by defining a distance k, called the radius of gyration,
to be this average, that is,

k*=— k= |— (8.3.27)
m m
Knowing the radius of gyration of any rigid body is equivalent to knowing its moment of
inertia, but it better characterizes the nature of the averaging process on which the
concept of moment of inertia is based.
For example, we find for the radius of gyration of a thin rod about an axis passing
through one end (see Equation 8.3.3)

k= J@_"iz = % (8.3.28)
m

Moments of inertia for various objects can be tabulated simply by listing the squares of
their radii of gyration (Table 8.3.1).
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TABLE 8.3.1
Body Axis '
Thin rod, lenght a Normal to rod at its center ﬁ
1 2
Normal to rod at one end %
2
Thin rectangular lamina, Through the center, parallel to side b ;l—
sides @ and b
. a’+b?
Through the center, normal to the lamina 12
2
Thin circular disc, radius a Through the center, in the plane of the disc —:—
2
Through the center, normal to the disc %
2
Thin hoop (or ring), radius ¢ Through the center, in the plane of the hoop %
Through the center, normal to the plane a
of the hoop
Thin cylindrical shell, Central longitudinal axis @
radius @, length b
2
Uniform solid right circular Central longitudinal axis 4
cylinder, radius ¢, length b 2
2 72
Through the center, perpendicular to L
longitudinal axis 4 12
Thin spherical shell, radius a Any diameter éaz
Uniform solid sphere, Any diameter éaz
radius a
2, 72
Uniform solid rectangular Through the center, normal to face ab, i—f—z-b—

parallelepiped, sides a, b,
and ¢

parallel to edge ¢

8.4| The Physical Pendulum

A rigid body that is free to swing under its own weight about a fixed horizontal axis of
rotation is known as a physical pendulum, or compound pendulum. A physical pendulum
is shown in Figure 8.4.1. Here CM is the center of mass, and O is the point on the axis of

rotation that is in the vertical plane of the circular path of the center of mass.
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Figure 8.4.1 The physical pendulum. A

Denoting the angle between the line OCM and the vertical line OA by 6, the moment
of the gravitational force (acting at CM) about the axis of rotation is of magnitude

mgl sin 6
The fundamental equation of motion N = I & then takes the form —mg] sin =16

] m‘TJ sinf =0 84.1)

Equation 8.4.1 is identical in form to the equation of motion of a simple pendulum.
For small oscillations, as in the case of the simple pendulum, we can replace sin @ by 6:

6+ m‘fde =0 (8.4.2)
The solution, as we know from Chapter 3, can be written
6 = 6, cos (2m ft — 6) (84.3)
where 6, is the amplitude and & is a phase angle. The frequency of oscillation is
given by

_1 |mgl 8.4.4
fo=gi\ T 644

The period is, therefore, given by

1 ’ 1
TO = T =27 "n';é? (845)
0

(To avoid confusion, we have used the frequency f, instead of the angular frequency
to characterize the oscillation of the pendulum.) We can also express the period in terms
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of the radius of gyration k, namely,

k2
T, =9r 7 (8.4.6)

Thus, the period is the same as that of a simple pendulum of length k.
Consider as an example a thin uniform rod of length a swinging as a physical pendulum
about one end: k* = a%3, 1 = a/2. The period is then

2
T, =91 |28 —on |2 (8.4.7)
gal2 3g

which is the same as that of a simple pendulum of length %a.

Center of Oscillation

By use of the parallel-axis theorem, we can express the radius of gyration k in terms of
the radius of gyration about the center of mass k,, as follows:

I=1,+mil® (8.4.8)
or
mk® = mk?2, +ml* (8.4.92)
Canceling the m’s, we get
k2 =k +1° (8.4.9b)
Equation 8.4.6 can, therefore, be written as
T, = 21 %ﬁ (8.4.10)

Suppose that the axis of rotation of a physical pendulum is shifted to a different
position O’at a distance I’ from the center of mass, as shown in Figure 8.4.1. The period
of oscillation T about this new axis is given by

2 2
Ty = o [k *1 (8.4.11)
gl
The periods of oscillation about O and about O are equal, provided
K +12 k2 +17
= (8.4.12)
Equation 8.4.12 readily reduces to

=k (8.4.13)

The point O, related to O by Equation 8.4.13, is called the center of oscillation for the
point O. O is also the center of oscillation for O’. Thus, for a rod of length a swinging about
one end, we have kfm =d%12 and I = @/2. Hence, from Equation 8.4.13, I = 4/6, and so
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the rod has the same period when swinging about an axis located a distance a/6 from the
center as it does for an axis passing through one end.

The “Upside-Down Pendulum”: Elliptic Integrals

When the amplitude of oscillation of a pendulum is so large that the approximation
sin® = 0 is not valid, the formula for the period (Equation 8.4.5) is not accurate. In
Example 3.7.1 we obtained an improved formula for the period of a simple pendulum by
using a method of successive approximations. That result also applies to the physical
pendulum with [ replaced by I/ml, but it is still an approximation and is completely
erroneous when the amplitude approaches 180° (vertical position) (Figure 8.4.2).

To find the period for large amplitude, we start with the energy equation for the
physical pendulum

;16 +mgh=E (8.4.14)

where h is the vertical distance of the center of mass from the equilibrium position, that is,
h=1(1 - cos ). Let 6, denote the amplitude of the pendulum’s oscillation. Then § =0
when 0 = 6, so that E = mgl(1 - cos 6,). The energy equation can then be written

%19'2 +mgl(1 - cos 8) = mgl(1- cos 6,) (84.15)
Solving for 6 gives
do __[omgl N
== i[% (cos 68— cos 6, )} (8.4.16)

Thus, by taking the positive root, we can write

t=

(8.4.17)

I J'G de
2mgl % (cos 8 — cos 6, 2

Figure 8.4.2 The upside-down pendulum. A
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from which we can, in principle, find  as a function of 6. Also, we note that 6 increases
from 0 to 6, in just one quarter of a complete cycle. The period T can, therefore, be

expressed as
I 0 de
T=4 8.4.18
V 2mgl IO (cos 6 — cos 6,)" ( )

Unfortunately, the integrals in Equations 8.4.17 and 8.4.18 cannot be evaluated in terms
of elementary functions. They can, however, be expressed in terms of special functions
known as elliptic integrals. For this purpose it is convenient to introduce a new variable
of integration ¢, which is defined as follows:

sin(6/2) 1 . (2)

sing = m = Esm 2

—_a %
k—sm(2)

Thus, when 8 = 6,, we have sin ¢ =1 and so ¢ = /2. The result of making these
substitutions in Equations 8.4.17 and 8.4.18 yields

I ¢ d
t= /@ f ff—kzs:pw (8.4.202)

I a2 d
T=4 /@ jo m (8.4.20b)

The steps are left as an exercise and involve use of the identity cos 6 = 1 — 2 sin” (%)

Tabulated values of the integrals in the preceding expressions can be found in various
handbooks and mathematical tables. The first integral

(8.4.19)

2
where

¢ d¢

N R—Y 8.4.21)
IO (1 — k2 sin® ¢)U2 (k)

is called the incomplete elliptic integral of the first kind. In our problem, given a value of

the amplitude 6, we can find the relationship between 6 and ¢ through a series of steps

involving the definitions of k and ¢. We are more interested in finding the period of the

pendulum, which involves the second integral

72 d¢ _ ( E)
I, T =T ks (8.4.22)

*Note that k defined here is a parameter that characterizes elliptic integrals. It is not the k defined previously
as the radius of gyration.
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TABLE 8.4.1
Amplitude, k = sin ( 9 ) F ( X g) Period,
6, 2 > 2 T
0° 0 15708 = /2 T,
10° 0.0872 15738 1.0019 T,
45° 0.3827 16336 1.0400 T,
90° 0.7071 1.8541 1.1804 T,
135° 0.9234 2.4003 15281 T,
178° 0.99985 5.4349 3.5236 T,
179° 0.99996 5.2660 46002 T,
180° 1 oo o0

! For more extensive tables and other information on elliptic integrals, consult any treatise on elliptic functions,
such as (1) H. B. Dwight, Tables of Integrals and Other Mathematical Data, The Macmillan Co., New York, 1961;
and (2) M. Abramowitz and A. Stegun, Handbook of Mathematical Functions, Dover Publishing, New York, 1972.

known as the complete elliptic integral of the first kind. (It is also variously listed as K(k)
or F(k) in many tables.) In terms of it, the period is

T=4 /L F(k,ﬁ) (8.4.93)
mgl 2

Table 8.4.1 lists selected values of F(k, 7/2). Also listed is the period T as a factor multiplied
by the period for zero amplitude: T, = 27 (I/mg))"*.

Table 8.4.1 shows the trend as the amplitude approaches 180° at which value the
elliptic integral diverges and the period becomes infinitely large. This means that,
theoretically, a physical pendulum, such as a rigid rod, if placed exactly in the vertical
position with absolutely zero initial angular velocity, would remain in that same unstable
position indefinitely.

EXAMPLE 8.4.1

A physical pendulum, as shown in Figure 8.4.1, is hanging vertically at rest. It is struck
asudden blow such that its total energy after the blow is E = 2mgl, where m is the mass
of the pendulum and [ is the distance of its center of mass to the pivot point. (a) Calculate
the angle of displacement 6 away from the vertical as a function of time. (b) Does the
pendulum reach the “upside-down” configuration, 6 = ? If so, use your result from part
(a) to calculate how long it takes.

Solution:

(a) We begin by writing down the total energy of the pendulum as in Equation 8.4.15

5167 + mgl(1 - cos6) = 2mgl
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Solving for §*

. 2
6% = _____n;gl (1+cos8) = 4n;gl cos® %

We introduce the following substitution, y = sin 6/2, to eliminate integrals involving
trigonometric functions and obtain a moderately simple analytic solution.
As @varies from 0 to 7, y varies from 0 to 1. We now calculate y

g: %(cos%)é = %(1_y2)1129

where we have used the substitution cos 6/2 = (1- y? )2
We now solve for 6 in terms of y and ¥

ye 20 mgl )"
6= 1" = 2(7) 1-y*)"

We can now find a first-order differential equation describing the motion in terms of y

mel 2
(o

The solution is
y =tanh (mg%) t

(b) Ast — oo,y — 1, and 6 — 7 and the pendulum goes “upside-down”—eventually.
Compare this result with the last line in Table 8.4.1.

8.5| The Angular Momentum of a
Rigid Body in Laminar Motion

Laminar motion takes place when all the particles that make up a rigid body move parallel
to some fixed plane. In general, the rigid body undergoes both translational and rotational
acceleration. The rotation takes place about an axis whose direction, but not necessarily
its location, remains fixed in space. The rotation of a rigid body about a fixed axis is a special
case of laminar motion, such as the physical pendulum discussed in the previous section.
A cylinder rolling down an inclined plane is another example. We discuss motion of each
of these types in the sections that follow, but as a prelude to these analyses, we first
develop a theorem about the angular momentum of a rigid body in laminar motion.

We showed in Section 7.2 that the rate of change of the angular momentum of any
system of particles is equal to the net applied torque

dL

=N 8.5.1
7 (8.5.1)
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PSPPI O

Figure 8.5.1 Vector position of a particle
in a rigid body in laminar motion. o

or

g;;ri Xmyv,; = ;rz‘ X F, (85.2)

where all quantities are referred to an inertial coordinate system.

What happens, however, if we choose to describe the rotation of a rigid body
(which is a system of particles whose relative positions are fixed) about an axis that might
also be accelerating, such as that which takes place when a ball rolls down an inclined
plane? To take into account such a possibility, we again consider a system of particles,
as in Section 8.2, that is rotating about an axis whose direction is fixed in space.
However, here we allow for the possibility that the axis might be accelerating. We begin
by referring the position of a particle, m, to the origin, O, of an inertial frame of reference
(see Figure 8.5.1). Let the point O’ represent the origin of the axis in question, about which
we wish to refer the rotation of the system of particles. The vectors, r; and r;, denote the
position of the ith particle relative to the points O and O, respectively. We now calculate
the total torque N’ about the axis O’

N’ =3 r/xF, (8.5.3)
i
From Figure 8.5.1, we see that
r,=r,+r; (8.5.4)
and
vi = vo + V; (855)

In the inertial frame of reference we have

F, = g; (mv,) (8.5.6)
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Thus, Equation 8.5.4 becomes

N’ = Zri' XF = Zr{ X imi(vo +v;) (8.5.7a)
i i dt
d_
=-v, X Zmiri'+ Zr{ X = MV (8.5.7b)
i i
=-v, X Zmir{+ %Zr,’ X mv; (8.5.7¢)

The step from Equation 8.5.7a to 8.5.7b follows because v, is not being summed and,
therefore, may be extracted from the summation with impunity. The minus sign emerges
because of the reversal of the order of the cross product. Extraction of the time deriva-
tive from inside the summation in Equation 8.5.7b to its position outside the summation
in Equation 8.5.7c is permissible because it then generates a term, X,v; X m,v;, that is
the cross product of a vector with itself, which is zero.

The last term on the right in Equation 8.5.7¢ is the rate of change of the angular
momentum, L', about the O’ axis. Thus, we may rewrite this equation as

N’ =—if, X Y mx/+ 4y (8.5.8)
: dt
in which we have replaced v, with &,

The equation of torque (8.5.1), thus, cannot be applied directly in its standard form
to a system rotating about an axis that is undergoing acceleration. The correct equa-
tion (8.5.8) differs from Equation 8.5.1 by the presence of the extra term on the left.

However, this added term vanishes when any of three possible conditions are satis-
fied, as schematized in Figure 8.5.2a, b, and c:

1. The acceleration, ¥, of the axis of rotation, O’, vanishes (Figure 8.5.2a).

2. The point, O, is the center of mass of the system of particles that make up the rigid
body. Under this condition, the term, Z,m,r] =0 by definition (Figure 8.5.2b).

3. The O’ axis passes through the point of contact between the cylinder and the
plane. The vector, represented by the sum, X,m,r;, passes through the center of
mass. We can see this by noting that X,m,r; = Mr,, where M =ZX,m, is the total
mass and r},, is the vector position of the center of mass relative to O’. Therefore, if
the vector #, also passes through the center of mass, then their cross product will
vanish (Figure 8.5.2c)

We will see in the next section that this last condition proves useful when solving prob-
lems involving rigid bodies that are rolling, but not sliding!

Condition 2 above should be emphasized. The equation of torque for a rigid body
undergoing laminar motion can always be expressed in the form given by Equation 8.5.1,
if we take torques and calculate angular momentum about an axis that passes through the
center of mass. We write the equation here using appropriate notation to emphasize that
it must be applied by summing torques about an axis that passes through the center of
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@ ®) ©

Figure 8.5.2 (a) A physical pendulum swinging about a fixed axis O’. The acceleration of the
axis ¥, is zero. (b) A cylinder rolling down an inclined plane. An axis O" through its center of
mass is accelerating, but Equation 8.5.9 may be used to describe its rotational motion. (c) The
same cylinder as in (b) but the axis O’ through the point of contact between the cylinder and the
plane is accelerating, even though it is instantaneously at rest (no slipping). (The net tangential
acceleration of the axis is zero because a,,, = ba, where a is the angular acceleration of the
cylinder and b is its radius. The net acceleration of the axis is, therefore, its centripetal
acceleration, a, directed toward the center of mass.)

mass of the rigid body

N, ==L, =16 859
om = gy Liom = Lom® (85.9)

If in doubt, use this equation!

8.6| Examples of the Laminar Motion of a Rigid Body

To sum up, if a rigid body undergoes a laminar motion, the motion is most often specified

as a translation of its center of mass and a rotation about an axis that passes through the center

of mass and whose direction is fixed in space. Sometimes though, some other axis is a more

appropriate choice. Such situations are usually obvious, as in the case of the physical pen-

dulum, whose motion is a rotation about the fixed axis that passes through its pivot point.
The fundamental equation that governs the translation of a rigid body is

F=mk,, = mv,, =ma_, 8.6.1)

where F is the vector sum of all the external forces acting on the body, m is its mass, and
a,, is the acceleration of its center of mass.

The fundamental equation that governs the rotation of the body about an axis O’ that
satisfies one of the conditions 1 to 3 given in Section 8.5 is

d
No= —Ln =1 8.6.2
o] a o=l @ ( )

If an axis of rotation, other than that which passes through the center of mass, is chosen
to describe the rotational motion, care should be taken in considering whether condition
1 or 3 is satisfied. If not, then the more general form of the equation of torque given by
Equation 8.5.8 must be used instead.
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Figure 8.6.1 Body rolling down an
inclined plane.

Body Rolling Down an Inclined Plane

As an illustration of laminar motion, we study the motion of a round object (cylinder, ball,
and so on) rolling down an inclined plane. As shown in Figure 8.6.1, three forces are acting
on the body. These are (1) the downward force of gravity, (2) the normal reaction of the
plane Fy, and (3) the frictional force parallel to the plane Fp. Choosing axes as shown,
the component equations of the translation of the center of mass are

mi,, =mgsinf-F, (8.6.3)

mij,,, =—mg cos 0+ Fy (8:6.4)

where 0 is the inclination of the plane to the horizontal. Because the body remains in
contact with the plane, we have

Yom = constant (8.6.5a)
Hence,
Jom =0 (8.6.5b)
Therefore, from Equation 8.6.4,
Fy =mg cosf (8.6.6)

The only force that exerts a moment about the center of mass is the frictional force
F,. The magnitude of this moment is Fpa, where a is the radius of the body. Hence, the
rotational equation (Equation 8.6.2) becomes

1.0 =Fpa (8.6.7)

To discuss the problem further, we need to make some assumptions regarding the
contact between the plane and the body. We solve the equations of motion for two
cases.
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Motion with No Slipping

If the contact is very rough so that no slipping can occur, that is, if Fp < y,Fy, where g is
the coefficient of static friction, we have the following relations:

i =ab=aw (8.6.82)
i = ab=aid (8.6.8b)
where ¢ is the angle of rotation. Equation 8.6.7 can then be written
I, .
8 Eom = F, (8.6.9)
Substituting this value for F; into Equation 8.6.3 yields
" . L, .
mi,, =mgsin@—-F-X__ (8.6.10)
a
Solving for %,,,, we find
_ mgsin@  gsinf (8611)

Ton = m+Ila®) 1+ (k% /a?)

where k., is the radius of gyration about the center of mass. The body, therefore, rolls
down the plane with constant linear acceleration and with constant angular acceleration
by virtue of Equations 8.6.8a and b.

For example, the acceleration of a uniform cylinder (k2. = a*12)is

EON 2gsing (86.12)

5 .
=g sinf (8.6.13)

EXAMPLE 8.6.1

Calculate the center of mass acceleration of the cylinder rolling down the inclined plane
in Figure 8.6.1 for the case of no slipping. Choose an axis O’ that passes through the point
of contact as in Figure 8.5.2¢c.

Solution:

As previously explained, the choice of this axis satisfies condition 3 given in Section 8.5
and we can use Equation 8.6.2 directly. The torque acting about O is

No-=mgasinf
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The moment of inertia of the cylinder about this point (see Equation 8.3.22) is
I, = %ma2
Because there is no slipping, the relationship between the angular velocity of the cylin-
der about the axis O’ and the center of mass velocity is
tom = 09

(Note: this is the same relationship that connects the angular velocity of the cylin-
der with the tangential velocity of any point on its surface relative to the center
of mass.)

Therefore, the rotational equation of motion gives
iB"l,

mga sinf = %ma2(7)

from which it immediately follows that

w| o

g sin@

Xom =

Energy Considerations

The preceding results can also be obtained from energy considerations. In a uniform
gravitational field the potential energy V of a rigid body is given by the sum of the potential
energies of the individual particles, namely,

V=Y (mgh)=mgh,, (8.6.14)

where h,,, is the vertical distance of the center of mass from some (arbitrary) reference
plane. Now if the forces, other than gravity, acting on the body do no work, then the motion
is conservative, and we can write

T+V =T +mgh,, = E = constant (8.6.15)

where T is the kinetic energy.
In the case of the body rolling down the inclined plane (see Figure 8.6.1), the kinetic
energy of translation is %mxfm and that of rotation is % 1,,,®*, so the energy equation reads
1
2
But ® = %,,/a and h,,, = —x,, sin 6. Hence,

mi, +11 0" + meh,, = E (8.6.16)

.2

1. 1 x :
Smil, +Emkfma—”’2"—mgxm sin@ =E (8.6.17)
In the case of pure rolling motion, the frictional force does not appear in the energy
equation because no mechanical energy is converted into heat unless slipping occurs. Thus,
the total energy E is constant. Differentiating with respect to t and collecting terms yields

2

mi,, %, [1 + k“; j— mgt,, sin@ =0 (8.6.18)
a
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Canceling the common factor X (assuming, of course, that %, # 0) and solving for

X, we find the same result as that obtained previously using forces and moments
(Equation 8.6.11).

Occurrence of Slipping

Let us now consider the case in which the contact with the plane is not perfectly rough
but has a certain coefficient of sliding friction ;. If slipping occurs, then the magnitude
of the frictional force F is given by

Fp= W Fy = lymg cos@ (8.6.19)
The equation of translation (Equation 8.6.3) then becomes
m¥,, =mg sin@— y,mg cos@ (8.6.20)
and the rotational equation (Equation 8.6.7) is
1,0 =wmga cos@ (8.6.21)

From Equation 8.6.20 we see that again the center of mass undergoes constant
acceleration:

X, = g(sin@— u; cosB) (8.6.22)

and, at the same time, the angular acceleration is constant:

. Wmgacos® .gacosf
= I = k2

cm

(8.6.23)

Let us integrate these two equations with respect to ¢, assuming that the body starts
from rest, that is, att =0, %, = 0,¢ = 0. We obtain

X, = g(sin@ -y, cos 0)t (8.6.24)
w=¢= g(%ﬁ"se]t (8.6.25)

Consequently, the linear speed and the angular speed have a constant ratio, and we can
write

Ko = YOO (8.6.26)

where

(8.6.27)

A |

Hy

_sin@—p cos6 k2 (tan@
wa’cosOlk’  a®

Now a® cannot be greater than %, so ¥ cannot be less than unity. The limiting case,
that for which we have pure rolling, is given by %,,, = a®, that is,

r=1
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Solving for p; in Equation 8.6.27 with y = 1, we find that the critical value of the coefficient
of friction is given by

tan@

Bek = T k) (8.6.28)

(Actually this is the critical value for the coefficient of static friction p,.) If p, is greater
than that given in Equation 8.6.28, then the body rolls without slipping.

For example, if a ball is placed on a 45° plane, it will roll without slipping, provided , is
greater than tan 45°%/(1 + -52-) or %

EXAMPLE 8.6.2

A small, uniform cylinder of radius R rolls without slipping along the inside of a large,
fixed cylinder of radius r > R as shown in Figure 8.6.2. Show that the period of small
oscillations of the rolling cylinder is equivalent to that of a simple pendulum whose
length is 3(r — R)/2.

Solution:

A key to an easy solution hinges on the realization that the total energy of the rolling
cylinder is a constant of the motion. There is no relative motion between the two surfaces
because there is no slipping. In other words, O’ and O coincide when the small cylinder
is at the equilibrium position and the arc lengths O’P and OP are identical. The force
of friction F, therefore, does not remove the energy from the rolling cylinder, nor does
the normal force N do any work. It generates no torque because its line of action always
passes through the center of mass, and it does not affect the translational kinetic energy

Figure 8.6.2 Small
cylinder rolling without
slipping on the inside of
a large, fixed cylinder.
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because it is always directed perpendicular to the motion of the center of the mass. The
only force that does do work is the conservative force of gravity, mg. Thus, the energy
of the cylinder is conserved, and we can solve the problem by setting its time derivative
equal to zero. The total energy of the cylinder is

E=T+V=%Icmw2+%mufm +mgh

where h is the height of the cylinder above that at its equilibrium position, v, is the
speed of its center of mass, and I,,, is the moment of inertia about its center of mass
(see Figure 8.6.2).

From the figure, we see that for small oscillations

h=(r-R)(1—cosf) = 3 (r— R)6°
and because the cylinder rolls without slipping, we have

_Om (r—R)o-

R R

Inserting these relations for h and w into the energy equation gives
I, pg M s, M
E= 285 -R)?6? iy -R)?6? e -R)6*

On taking the derivative of the preceding equation and setting the result equal to zero,
we obtain

E= LR“;—(r —R)?60+m(r —R)*80 + mg(r —R)96 =0
and cancelling out common terms yields
I, .
?+m (r—R)0+mg0= 0

The moment of inertia of the cylinder about its center of mass is I, = mR%/2, and on
substituting it into the preceding equation yields the equation of motion of the cylinder
for small excursions about equilibrium

.. g _
e+——————(;)(r = 8=0

This equation of motion is the same as that of a simple pendulum of length 3(r— R)/2.
Thus, their periods are identical.

(The student might wish to solve this problem using the method of forces and
torques. The relevant forces acting on the rolling cylinder are shown in the insert in
Figure 8.6.2.)



354 CHAPTER 8 Mechanics of Rigid Bodies: Planar Motion

8.7| Impulse and Collisions Involving Rigid Bodies

In the previous chapter we considered the case of an impulsive force acting on a particle.
In this section we extend the notion of impulsive force to the case of laminar motion of
a rigid body. First, we know that the translation of the body, assuming constant mass, is
governed by the general equation F =m dv,,,/dt, so that if F is an impulsive type of force,
the change of linear momentum of the body is given by

[Fdt=P=mav,, (8.7.1)

Thus, the result of an impulse P is to produce a sudden change in the velocity of the center
of mass by an amount
Av,, = L (8.7.2)
m
Second, the rotational part of the motion of the body obeys the equation N = L=
Idw/dt, so the change in angular momentum is

[Ndt =180 (8.7.3)

The integral | N dt is called the rotational impulse. Now if the primary impulse P is
applied to the body in such a way that its line of action is a distance [ from the reference
axis about which the angular momentum is calculated, then N = FI, and we have

[Ndt =PI (8.7.4)

Consequently, the change in angular velocity produced by an impulse P acting on a rigid
body in laminar motion is given by

Ap=— 8.7.5)

For the general case of free laminar motion, the reference axis must be taken through the
center of mass, and the moment of inertia I = I,,. On the other hand, if the body is
constrained to rotate about a fixed axis, then the rotational equation alone suffices to
determine the motion, and I is the moment of inertia about the fixed axis.

In collisions involving rigid bodies, the forces and, therefore, the impulses that the
bodies exert on one another during the collision are always equal and opposite. Thus, the
principles of conservation of linear and angular momentum apply.

Center of Percussion: The “Baseball Bat Theorem”

To illustrate the concept of center of percussion, let us discuss the collision of a ball of
mass m, treated as a particle, with a rigid body (bat) of mass M. For simplicity we assume
that the body is initially at rest on a smooth horizontal surface and is free to move in
laminar-type motion. Let P denote the impulse delivered to the body by the ball. Then
the equations for translation are

P=Mv,, (8.7.6)
—P =mv, —mv, 8.7.7
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vo ‘ -
I

Figure 8.7.1 Baseball colliding with a bat.

where v, and v, are, respectively, the initial and final velocities of the ball and v, is the
velocity of the mass center of the body after the impact. The preceding two equations imply
conservation of linear momentum.

Because the body is initially at rest, the rotation about the center of mass, as a result
of the impact, is given by

Pl’
=
I

cm

8.7.8)

in which !’ is the distance O’C from the center of mass C to the line of action of P, as shown
in Figure 8.7.1. Let us now consider a point O located a distance [ from the center of mass
such that the line CO is the extension of O’C, as shown. The (scalar) velocity of O is
obtained by combining the translational and rotational parts, namely,

=£_Pl’l=P(i_ 1l
M I, M I,

Vo = Uy, — 0

) (8.7.9)
In particular, the velocity of O will be zero if the quantity in parentheses vanishes, that
is, if

I

= ﬁ =k2 (8.7.10)

where k,, is the radius of gyration of the body about its center of mass. In this case the
point O is the instantaneous center of rotation of the body just after impact. O’ is called
the center of percussion about O. The two points are related in the same way as the centers
of oscillation, defined previously in our analysis of the physical pendulum (Equation 8.4.13).
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Anyone who has played baseball knows that if the ball hits the bat in just the right
spot there is no “sting” on impact. This “right spot” is just the center of percussion about
the point at which the bat is held.

EXAMPLE 8.7.1

Shown in Figure 8.7.2 is a thin rod of length b and mass m suspended from an endpoint
on a frictionless pivot. The other end of the rod is struck a blow that delivers a horizontal
impulse P’ to the rod. Calculate the horizontal impulse P delivered to the pivot by the
suspended rod.

Solution:

First, we calculate the velocity of the center of mass after the blow by noting that the
net horizontal impulse delivered to the rod is equal to its change in momentum.

P -P=mo,,

Now we consider the resulting rotation of the rod about the pivot point (the choice of
this axis satisfies condition 1 in Section 8.5). The moment of inertia of the rod about an
axis passing through that point is given by Equation 8.3.3

I= %mb2
Now we calculate the angular velocity of the rod about the pivot using Equation 8.7.8
Pb=Iw

But the velocity of the center of mass and the angular velocity are related according to

b
Uom =§w

Thus, we can write

p-P=mlo= mé[Pb]=%P’
2 2| 1

Figure 8.7.2 Thin rod suspended from frictionless pivot. I o
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Therefore,

15
P:_EP

The impulse delivered by the pivot to the rod is in the same direction as the impulse
delivered by the horizontal blow, to the right in Figure 8.7.2. The impulse delivered by
the rod to the pivot is in the opposite direction, to the left in the figure.

Problems

8.1

8.2

83

8.4
8.5

8.6

8.7

8.8

8.9

8.10

8.11

Find the center of mass of each of the following:

(a) A thin wire bent into the form of a three-sided, block-shaped “Li” with each segment of
equal length b

(b) A quadrant of a uniform circular lamina of radius b

(c) The area bounded by parabola y =x*/b and the line y = b

(d) The volume bounded by paraboloid of revolution z = o+ yz)/b and the planez=b

(e) A solid uniform right circular cone of height b

The linear density of a thin rod is given by p = cx, where ¢ is a constant and x is the distance
measured from one end. If the rod is of length b, find the center of mass.

A solid uniform sphere of radius 4 has a spherical cavity of radius a/2 centered at a point /2
from the center of the sphere. Find the center of mass.

Find the moments of inertia of each of the objects in Problem 8.1 about their symmetry axes.

Find the moment of inertia of the sphere in Problem 8.3 about an axis passing through the
center of the sphere and the center of the cavity.

Show that the moment of inertia of a solid uniform octant of a sphere of radius a is ( %)ma2
about an axis along one of the straight edges. (Note: This is the same formula as that for a
solid sphere of the same radius.)

Show that the moments of inertia of a solid uniform rectangular parallelepiped, elliptic
cylinder, and ellipsoid are, respectively, (m/ 3)(@® + b%), m/4)(@® + b, and (m/5)(@® + b,
where m is the mass, and 2a and 2b are the principal diameters of the solid at right angles
to the axis of rotation, the axis being through the center in each case.

/2

Show that the period of a physical pendulum is equal to 27(d/g) ", where d is the distance
between the point of suspension O and the center of oscillation 0.

(a) An idealized simple pendulum consists of a particle of mass M suspended by a thin
massless rod of length a. Assume that an actual simple pendulum consists of a thin rod
of mass m attached to a spherical bob of mass M —m. If the radius of the spherical bob
is equal to b, and the length of the thin rod is equal to @ — b, calculate the ratio of the
period of the actual simple pendulum to the idealized simple one.

(b) Calculate a value for this ratioif m=10g, M=1kg, ¢ =127 m, and b =5 cm.

The period of a physical pendulum is 2 s. (Such a pendulum is called a “seconds” pendu-
lum.) The mass of the pendulum is M, and its center of mass is 1 m below the axis of oscil-
lation. A particle of mass m is attached to the bottom of the pendulum, 1.3 m below the axis,
in line with the center of gravity. It is then found that the pendulum “loses” time at the
rate of 20 s/day. Find the ratio of m to M.

A circular hoop of radius @ swings as a physical pendulum about a point on the circumfer-
ence. Find the period of oscillation for small amplitude if the axis of rotation is
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8.12

8.13

8.14

8.15

8.16

8.17

8.18

- 8.19

8.20

8.21
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(a) Normal to the plane of the hoop
(b) In the plane of the hoop

A uniform solid ball has a few turns of light string wound around it. If the end of the string
is held steady and the ball is allowed to fall under gravity, what is the acceleration of the
center of the ball? (Assume the string remains vertical.)

Two people are holding the ends of a uniform plank of length [ and mass m. Show that if
one person suddenly lets go, the load supported by the other person suddenly drops
from mg/2 to mg/4. Show also that the initial downward acceleration of the free end is 5g.

A umform solid ball contains a hollow spherical cavity at its center, the radius of the cavity
being : the radius of the ball. Show that the acceleration of the ball rolling down a rough
inclined plane is just = of that of a uniform solid ball with no cavity. (Note: This suggests a
method for nondestructive testing.)

Two weights of mass m, and m, are tied to the ends of a light inextensible cord. The cord
passes over a rough pulley of radius ¢ and moment of inertia I. Find the accelerations of
the weights, assuming m, > m, and ignoring friction in the axle of the pulley.

A uniform right-circular cylinder of radius @ is balanced on the top of a perfectly rough fixed
cylinder of radius b(b > ), the axes of the two cylinders being parallel. If the balance is slightly
disturbed, show that the rolling cyhnder leaves the fixed one when the line of centers makes
an angle with the vertical of cos™ ( 4.

A uniform ladder leans against a smooth vertical wall. If the floor is also smooth, and the ini-
tial angle between the floor and the ladder is 6, show that the ladder, in shdmg down will
lose contact with the wall when the angle between the floor and the ladder is sin™ ( sin ;).

At Cape Canaveral a Saturn V rocket stands in a vertical position ready for launch.
Unfortunately, before firing, a slight disturbance causes the rocket to fall over. Find the hor-
izontal and vertical components of the reaction on the launch pad as functions of the angle
Obetween the rocket and the verhcal at any instant. Show from this that the rocket will tend
to slide backward for 8 < cos™ ( 2y and forward for 6> cos™ ( 2). (Assume the rocket to be
a thin uniform rod.)

A ballis initially projected, without rotation, at a speed v, up a rough inclined plane of incli-
nation 6 and coefficient of sliding friction y;. Find the position of the ball as a function of
time, and determme the position of the ball when pure rolling begins. Assume that ; is
greater than 2 7 tan 6.

A billiard ball of radius a is initially spinning about a horizontal axis with angular speed @,
and with zero forward speed. If the coefficient of sliding friction between the ball and the
billiard table is 4, find the distance the ball travels before slipping ceases to occur.

Figure P8.21 Illustrates two discs of radii ¢ and b mounted inside a fixed, immovable cir-
cular track of radius ¢, such that ¢ = a + 2b. The central disc A is mounted to a drive axle at
point O. Disc B is sandwiched between disc A and track C and can roll without slipping when
disc A is driven by an externally applied torque through its drive axle. Initially, the system
is at rest such that the dashed lines denoting the spatial orientation of discs A and B line
up horizontally in the figure. A constant torque K is applied for a time ¢, through the drive
axle causing disc A to rotate, such that at time #, the dashed line denoting its spatial orien-
tation makes an angle ¢; with the horizontal. Disc B rolls between the track and disc A, and
its orientation is denoted by the dashed line making an angle f with the direction toward
O. Calculate the final angular speed of the two discs, @, and @;.
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8.23

8.24
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A thin uniform plank of length [ lies at rest on a horizontal sheet of ice. If the plank is given
akick at one end in a direction normal to the plank, show that the plank will begin to rotate
about a point located a distance I/6 from the center.

Show that the edge (cushion) of a billiard table should be at a height of 15 of the diameter
of the billiard ball in order that no reaction occurs between the table surface and the ball
when the ball strikes the cushion.

A ballistic pendulum is made of a long plank of length  and mass m. It is free to swing about
one end O and s initially at rest in a vertical position. A bullet of mass m’ is fired horizon-
tally into the pendulum at a distance I’ below O, the bullet coming to rest in the plank. If
the resulting amplitude of oscillation of the pendulum is 6, find the speed of the bullet.

Two uniform rods AB and BC of equal mass m and equal length [ are smoothly joined at B.
The system is initially at rest on a smooth horizontal surface, the points A, B, and C lying
in a straight line. If an impulse P is applied at A at right angles to the rod, find the initial
motion of the system. (Hint: Isolate the rods.)

Computer Problems

C 8.1 The table shown here displays the density of a 10-solar mass star versus radial distance from

its core. The densities are given as log,y p/p,, where p is the density at the distance  and
p. is the core density of the star. The distances are given as fractions of the star’s radius (r/Rs),
where R.is equal to 4 solar radii.

The mass of the sun is M = 1.989 x 10 kg, and its radius is R = 6.96 x 10° km.
(a) Using the data in the table, estimate the core density of the star by numerical integration.
(b) Find the distance Rg, such that the mass contained within R; is equal to 3Mo,.
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Distance (r/R.) Log,o (p/p.)

0. 0.
0.01130 —0.0007676
0.02373 —-0.0032979
0.03740 —0.0081105
0.05244 —0.0159332
0.06898 —0.0275835
0.08718 —0.0440001
0.10720 —-0.0666168
0.12921 —0.0966376
0.15343 —-0.136117
0.18008 —0.187302
0.20938 —0.253082
0.24162 —0.338876
0.27708 —0.461671
0.31609 —0.607536
0.35900 —0.780852
0.40620 —0.949463
0.45812 -1.20746
0.51523 -1.46811
0.57805 -1.77071
0.64715 —2.12543
0.72316 —2.55734
0.80678 —-3.11969
0.89876 —-3.95562
1.00000 —6.28531

(c) Estimate the moment of inertia of the 3M¢, portion of the star within R;.

(d) Assuming that the star rotates as a rigid body once every 25 days, estimate the rotational
angular momentum of the portion of the star within R;.

(e) Suppose that this star “explodes” as a supernova and that when this happens, its outer
M layer is blown off but its inner 3M, collapses to form a solid, uniformly dense, spher-
ical ball of radius 10 km. Calculate the density and period of rotation of this new, com-
pact stellar object.



*The body can no longer participate in the diurnal motion which actuates our
sphere. Indeed, although because of its short length, its axis appears to preserve
its original direction relatively to terrestrial objects, the use of a microscope is
sufficient to establish an apparent and continuous motion which follows the
motion of the celestial sphere exactly. . . . As the original direction of this axis is
disposed arbitrarily in all azimuths about the vertical, the observed deviations can
be, at will, given all the values contained between that of the total deviation and
that of this total deviation as reduced by the sine of the latitude. . . . In one fell
swoop, with a deviation in the desired direction, a new proof of the rotation of
the Earth is obtained; this with an instrument reduced to small dimensions, easily
transportable, and which mirrors the continuous motion of the Earth itself. . .. "

—J. B. L. Foucault, Comptes rendus de I’ Academie Sciences, Vol 35, 27-Sep-1852

In the motion of a rigid body constrained either to rotate about a fixed axis or to move
parallel to a fixed plane, the direction of the axis does not change. In the more general
cases of rigid-body motion, which we take up in this chapter, the direction of the axis may
vary. Compared with the previous chapter, the analysis here is considerably more involved.
In fact, even in the case of a freely rotating body on which no external forces whatever
are acting, the motion, as we shall see, is not simple.

9.1]| Rotation of a Rigid Body about an Arbitrary
Axis: Moments and Products of Inertia—Angular
Momentum and Kinetic Energy

We begin the study of the general motion of a rigid body with some mathematical pre-

liminaries. First, we calculate the moment of inertia about an axis whose direction is
arbitrary. The axis passes through a fixed point O, Figure 9.1.1a, taken as the origin of our

361
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Axis of
rotation

(@ (®)

Figure 9.1.1 (a) The velocity vector of a representative particle of a rotating rigid body. (b) o,
B, and yare the angles that the angular velocity vector @ (or the vector n) makes with the x, y,
and z axes, respectively.

coordinate system. We apply the fundamental definition
I=3 mrl; ©.L1)

where ry; is the perpendicular distance from the particle of mass m, to the axis of rota-
tion. The direction of the axis of rotation is defined by the unit vector n. Then
ry; =|r sin6,| = |r, x n| 9.12)
in which 6, is the angle between r; and n, and
r,=ix; +jy, + kz, (9.1.3)

is the position vector of the ith particle. Let the direction cosines of the axis be cos @, cos f,
and cos ¥ (see Figure 9.1.1b). Then

n=icosa+ jcosfB +kcosy (9.1.4)
and so

r.lz.i =|r, x nl2
2 9 s (9.1.5a)
= (y, cosy — 3z, cos B)° +(z, cos & —x, cosy)” +(x; cos B—y, cos o)

On rearranging terms, we can write
2 2, ,2) .2 2, .2} 2 2, 2} .2
ry= (y‘. + z,.)cos a+(z,. +x,.)cos B +(x,. + y,.)cos Y ©.15b)
- 24,3, cos ff cosy —2z,x, cosy cosa — 2x,Y, cosa cos 3
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The moment of inertia about our general axis of rotation is then given by the rather

lengthy expression
I= zmi(yf + z?)cosza + Zmi (zf + xf)coszﬁ
i i
+2mi(x,2. + yf)cosz'y—22 m,y,%; cos B cosy (9.1.6)
- 22 m; Z;x, COSY COSOl — 22 m,x,y; cos o cos B
As we shall see later, thelformula can be simp]iﬁe‘d. First, we immediately recognize the

sums involving the squares of the coordinates as the moments of inertia of the body about
the three coordinate axes. We use a slightly modified notation for them as follows:

Yy mi(yf + zf) =1, moment of inertia about the x-axis  (9.1.7a)

Z m,.(zf + xf) =1, moment of inertia about the y-axis (9.1.7b)

Z m,-(JC,-2 + y,z) =I, moment of inertia about the z-axis (9.1.7¢)
i

The sums involving the products of the coordinates are new to us. They are called
products of inertia. We designate these quantities as follows:

—Z mxy, =L, =1, xy product of inertia (9.1.8a)
_2 myz=1,=1, yz product of inertia (9.1.8b)
—Z mzx; =1, zx product of inertia (9.1.8¢)

Notice that our definition includes the minus sign. (In some textbooks the minus sign is
not included.) Products of 1nertla have the same physical dimensions as moments of iner-
tia, namely, mass X (length) and their values are determined by the mass distribution
and orientation of the body relative to the coordinate axes. In general, they appear because
the axis of rotation points along an arbitrary direction, whereas in the previous chapter
the axis of rotation pointed along one of the coordinate axes. For the moments and prod-
ucts of inertia to be constant quantities, it is generally necessary to employ a coordinate
system that is fixed to the body and rotates with it.

In actually computing the moments and products of inertia of an extended rigid
body, we replace the summations by integrations

. =& +y*)dm (9.1.92)
L, =—[xydm (9.1.9b)

with similar expressions for the other I's. We have already found the moments of inertia
for a number of cases in the previous chapter. It is important to remember that the values
of the moments and products of inertia depend on the choice of the coordinate system.
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Using the above notation, the general expression (Equation 9.1.6) for the moment
of inertia about an arbitrary axis becomes
I=1I,cos’o + L, cos’B + I, cos’y + 21, cos Bcosy

(9.1.10)
+2I, cos ¥ cos & + 2I,, cos & cos B

Although Equation 9.1.10 seems rather cumbersome for obtaining the moment of iner-
tia, it is nevertheless useful for certain applications. Furthermore, the calculation is
included here to show how the products of inertia enter into the general problem of
rigid-body dynamics.

At this point, we would like to express the moment of inertia of a rigid body in the
more compact notational form of tensors or equivalent matrices. Such a representation
conveys more than just economy and elegance. Expressions for certain kinematic variables
are more easily remembered, and they provide us with more powerful techniques for solv-
ing complicated problems in rotational motion of rigid bodies.

If we examine the expressions we've developed for the moment of inertia of a rigid
body about an arbitrary axis, they look like they could be written as the components I;;of
a symmetric, 3 X 3 matrix. Let us define the quantity I to be the moment of inertia tensor'
whose components in matrix form are the values given in Equations 9.1.7a-9.1.8c.

Ixx Ixy Ixz
_ 9.1.11
I=\1, I, I, ( )
. L1

zw tzy tm
L;=1; and the matrix is symmetric. Furthermore, because the vector n can be represented
in matrix notation by the column vector

coso
n =] cosp 9.1.12)

cosy

we can express the moment of inertia about an axis aligned with the vector n in matrix
notation as

I I I cosa

xx xy  xz
I=iiln=(cosax cosB cosy) Iyjr Iyy Iyz cos 8 (9.1.13)
sz Izy Izz Cos y

where ii means “n transpose.” The transpose of a matrix is obtained by simply “flipping
the matrix over about its diagonal,” that is, exchanging the row elements for the column
elements. In Equation 9.1.13 ii is a row vector whose elements are equal to those of the
column vector n. Equation 9.1.13 is identical to Equation 9.1.10. Take note of its nota-
tional compactness and elegance, however.

" The notation used for tensors can be confusing. Tensors will be written throughout this text in boldface type —
the same type used to denote a vector. The tensors defined in this chapter are tensors of the second rank. Vectors
are tensors of the first rank. Hopefully, the distinction between the two will be clear from the context.
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Angular Momentum Vector

In Chapter 7 we showed that the time rate of change of the angular momentum of a system
of particles is equal to the total moment of all the external forces acting on the system.
This rotational equation of motion is expressed by Equation 7.2.7

dL
A N (9.1.14)

The angular momentum of a system of particles about some coordinate origin is given by
Equation 7.2.8

L=Yrxmv, (9.1.15)

These equations also apply to a rigid body, which is nothing other than a system of parti-
cles whose relative positions are fixed. Before we can apply the rotational equation of
motion to a rigid body, however, we must be able to calculate its angular momentum about
an arbitrary axis.

First, we note that the rotational velocity of any constituent particle of the rigid body
is given by the cross product

vi=eXr, (9.1.16)

The total angular momentum of the rigid body is the sum of the angular momenta of each
particle about the coordinate origin

L=Z[m,-r,- Xvi]=Z[m,-r,~ X (@ Xr,)] (9.1.17)
This expression contains a ve;tor triple produ::t, which can be reduced to
[r; X (X 1,)] = rie;—r,(r, - ®) (9.1.18)
Hence, the angular momentum of the rigid body can be written as
L = Zmirfw —Zmir,.(r,. <) (9.1.19a)

We could easily evaluate the x, y, z components of the angular momentum vector using
this equation. In keeping with the philosophy initiated earlier, however, we cast this
equation into tensor form, defining a tensor in the process

g o)

(9.1.19b)
= [(2 m,.rf 1) - (2 m,rx, J] o)
i i
where the vector @ in the first term has been written as
l-w=w (9.1.20)

which may be viewed as the definition of the unit tensor

1=ii+jj+kk (9.1.21)
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You can confirm the identity in Equation 9.1.21 by carrying out the dot product operation
on the vector w, that is,
1w =(ii+jj+kk) o
=i(i.w)+j(j - w)+ kk-w) (9.1.22)
=i, + jo, + ko,

=W

Both the unit tensor and the second term in brackets in Equation 9.1.19b contain a
product of vectors that we have never seen before. This type of vector product
(for example, ab) is called a dyad product. It is a tensor defined by its dot product
operation on another vector ¢ in the same way that we defined the unit tensor in
Equations 9.1.21 and 9.1.22.

(ab) - c=a(b-¢) (9.1.23a)
This dot product yields a vector. The operation may be expressed in matrix form as
ab, ab, ab,]|(c,
(ab)-¢=|a,b, ab, ab,||c,
ab, ab, ab,)\c, (9.1.23b)
a,(bc, +be, +b,c,)
=|a,(b,c, +b,c, +b,c,) |=a(b-c)
a,(b.c, +b,c, +b,c,)

If we were to “dot” Equation 9.1.23a from the left with another vector d, the result would
be a simple scalar, that is,

d-(ab).-c=(d.a)b-c) (9.1.24)

We leave it as an exercise for the reader to obtain this result using matrices.
In three dimensions a tensor has nine components. The components may be gener-
ated in the following way:

T,=i-T-j (9.1.25)

You should be able to convince yourself that the components of the dyad product ab
contained in the matrix of Equation 9.1.23b can be generated by the operation given in
Equation 9.1.25.

Using these definitions, we can see that the term in brackets in Equation 9.1.19b

I= zm,.r,h - Zmir,-r, (9.1.26)

is the previously defined moment of inertia tensor whose components were given
in Equation 9.1.6. We can demonstrate this equivalence by calculating the components
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as follows:

iXi= i-{Z[mir?(iHji+kk)—mi"i"i]}'i

(9.1.272)
I, = Zmirf —m,.xz,. = Zmi(yf +z?)
s 1{2 (it +kk)_m"r"r‘]}'1 ©.127h)
L,= —Zmix,.y,., and so on
Thus, using tensor notation, the angular momentum vector can be written as
L=-1-w (9.1.28)

An important fact should now be apparent: The direction of the angular momentum
vector is not necessarily aligned along the axis of rotation; L and  are not necessarily
parallel. For example, let @ be directed along the x-axis (@, = @, &, = 0, @, = 0). In this
case the preceding expression reduces to
L=1lw
=i(@l,+o,l, +0l)+jel,+ol, +ol,.)

+k(o, L, +o,I, +0,1,)

(9.1.29)

=il + jol, +kol,

Thus, L may have components perpendicular to the x-axis (axis of rotation). Note that the
component of angular momentum along the axis of rotation is L, = @I,, in agreement
with the results of Chapter 8.

EXAMPLE 9.1.1

Find the moment of inertia of a uniform square lamina of side a and mass m about a

diagonal.

Solution:

Let us choose coordinate axes as shown in Figure 9.1.2 with the lamina lying in the xy
plane with a corner at the origin. Then, from the previous chapter, we have I, =1, = ma’/3
and I, =1, +1,,= 9ma*/3. Now z =0 for all points in the lamina; therefore, the xz and
yz products of inertia vanish: I, = I, = 0. The xy product of inertia is found by integrat-
ing as follows:

4

I, = 4
4

a ra a 2
w=lp =) [ mypdedy=—p[ T ydy=—p

where p is the mass per unit area; that is, p= m/a’. We, therefore, get

_ 1,9
Ixy— ima
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L
0 (o o

Figure 9.1.2 Square lamina. L

We now have the essential ingredients necessary to construct the moment of inertia tensor
of the square plate related to the xyz coordinate system indicated in Figure 9.1.2. It is

2 _, 2 1
meTE 0 3 75 0
2 2

- 2 1

I=|=me 22 0 |=ma’|-7 3 O
2

2
0 o 2me 0 02
3 3

To calculate the moment of inertia of the plate about its diagonal according to
Equation 9.1.13, we need the components of a unit vector n directed along the diag-
onal. The angles that this vector makes with the coordinate axes are ot = B = 45° and

7=90°. The direction cosines are then cos &t = cos B = % and cos Y= 0. Equation 9.1.13
then gives

1 1 1
;3 71 0(®
_ {1 1 1 1 2
I=aln=(% % o)} ! ofLpma
2
0 0 3 0
1
1242
_{1 1 1 2_ 1 )
_(73 % O)mma =pma
0

for the moment of inertia about a diagonal. This result could also be obtained by direct
integration. The student may wish to verify this as an exercise. See also Problem 9.2(c).
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EXAMPLE 9.1.2

Find the angular momentum about the origin of the square plate in Example 9.1.1 when
it is rotating with angular speed @ about (a) the x-axis and (b) the diagonal through the

origin.

Solution:

(a) For rotation about the x-axis we have

0,=0 w,=0 w,=0
The total angular momentum is L =I - @, or, in matrix notation,
1 _1 1
3 4 0} (o 2
T2 1 1 o2 | 1
L=Iw=ma i 3 0|0 =ma”w i
0 0 % 0 0

with the final result expressed in matrix form as a column vector.
(b) The components of @ about the diagonal are

)
W, =w, =0 cosdd® =— w, =0
x Y ﬁ z
Therefore,
1 _1 ® 1
3 71 O%: o[
_2l 1 1 o |_ 1
Lemai~ 3 05|75 |=
0 0 2fo 0

Notice that in case (a) the angular momentum vector L does not point in the
same direction as the angular velocity vector @ but points downward as shown in
Figure 9.1.2. In case (b), however, the two vectors point in the same direction as
shown in Figure 9.1.2.

The magnitude of the angular momentum vector for case (a) is given by
(L-L)"2 Using matrix notation, we obtain

1
3
L =1L=(md’} -1 0)|-1| =(ma®0)[}+ %
0
— 2 2 25 R _ 2 .5
(ma*0)” 7 sL=mad’w;
and for case (b)
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Rotational Kinetic Energy of a Rigid Body

We next calculate the kinetic energy of rotation of our general rigid body of Figure 9.1.1.
As in our calculation of the angular momentum, we use the fact that the velocity of a rep-
resentative particle is given by v,= @ X r;. The rotational kinetic energy is, therefore, given
by the summation

T =X imy,-v, =33 (@xr)-my, (9.1.30)
i i

Now in any triple scalar product we can exchange the dot and the cross: (A X B) - C =
A - (B X C). (See Section 1.7.) Hence,

T, = %Zw.(ri Xmyv,)= ;w-zi:(ri Xmv,) (9.1.31)

But, by definition, the sum ¥, (r; X m,v,) is the angular momentum L. Thus, we can write
Ty =30-L (9.1.32)

for the kinetic energy of rotation of a rigid body. We recall from Chapter 7 that the trans-
lational kinetic energy of any system is equal to the expression %ch - p, where p=mv,,,
is the linear momentum of the system and v,, is the velocity of the mass center. For a

rigid body the total kinetic energy is accordingly

T =T+ gy =30-L+3v,, P (9.1.33)

where L is the angular momentum about the center of mass.
Using the results of the previous section, we can express the rotational kinetic energy

of a rigid body in terms of the moment of the inertia tensor as
T,=3;01-@ (9.1.34)

101

or we can carry out the calculation explicitly in matrix notation

IL. I, I,\w

xy xz x
1. 1
Ty=30lo=30, o, o)1, I, I, |o,
L, L, I,)\o, (9.1.35)

_1 2 2 2
= E(Iﬂwx +1,0,+,0;+2L,0.0,+21 .00, + 21yzwywz)

EXAMPLE 9.1.3

Find the rotational kinetic energy of the square plate in Example 9.1.2.

Solution:

For the case (a) rotation about the x-axis, we have

T= malw®Q 0 0)|-

- 1
(u)Io:)—§

[= N XY
S Wi wi—
wipy © O
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For case (b), rotation about a diagonal, we have
1 1 1
i 71 0@
_1 2..2{1 1 1 1 1
T=imao’(} L o)-1 1ol
2
0 0 ;\O
1
1272
12 af1 1 1 |1, 2 2
=gma'e’(y & 0 gl |=gima’e
0

9.2| Principal Axes of a Rigid Body

A considerable simplification in the previously derived mathematical formulas for rigid-
body motion results if we employ a coordinate system such that the products of inertia
all vanish. It turns out that such a coordinate system does in fact exist for any rigid body
and for any point taken as the origin. The axes of this coordinate system are principal axes
for the body at the point O, the origin of the coordinate system in question. (Often we
choose O to be the center of mass.)

Explicitly, if the coordinate axes are principal axes of the body, then L, = I, = I,, =0.
In this case we employ the following notation:

IL.=1 o, =, i=e
I,=I, =0, j=e ©9.2.1)
I.=1 0, =03 k=e;

The three moments of inertia I, I, and I; are the principal moments of the rigid body
at the point O. In a coordinate system whose axes are aligned with the principal axes, the
moment of inertia tensor takes on a particularly simple, diagonal form

L 0 0
I=|0 I, 0 9.2.2)
0 0 I

3

Thus, the problem of finding the principal axes of a rigid body is equivalent to the math-
ematical problem of diagonalizing a 3 X 3 matrix. The moment of inertia tensor is always
expressible as a square, symmetric matrix, and any such matrix can always be diagonal-
ized. Thus, a set of principal axes exists for any rigid body at any point in space.

The moment of inertia, angular momentum, and rotational kinetic energy of a rigid
body about any arbitrary rotational axis all take on fairly simple forms in a coordinate
system whose axes are aligned with the principal axes of the rigid body. Let n be a unit
vector designating the direction of the axis of rotation of a rigid body, and let its com-
ponents relative to the principal axes be given by the direction cosines (cos @, cos 8, cosy).
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The moment of inertia about that axis is

L 0 O0)(cosc
I=dIn=(cosa cosfB cosy)|0 I, O [|cosf

9.2.3)
0 0 I;)\cosy

=1, cos’o+1, cos®B+1; cos®y

The angular velocity @ points in the same direction as n, and its components relative to

the principal axes are (@,, @,, @3). The total angular momentum L =1 - @, in this frame
of reference, can be written in matrix notation as

L 0 0)ay Lo,

L=Iw= 0 12 0 (D2 = 120)2

9.2.4)
0 0 I;j)\w, Ly,
= e, [,o, +e,1,0, +e;1l;05
And, finally, the kinetic energy of rotation T, is

L 0 0)a

Tu=3@lo=3(@, o, 0)0 I, 0|,
0 0 Lllw (9.2.5)

3\ @3

1 2 2 2
=1 (1L0} + 1,0} + 1,03)

Let us now investigate the question of finding the principal axes. First, if the body pos-
sesses some symmetry, then it is usually possible to choose a set of coordinate axes by
inspection such that one or more of the three products of inertia consists of two parts of
equal magnitude and opposite algebraic sign and, therefore, vanishes. For example, the
rectangular block and the symmetric laminar body (Ping-Pong paddle) have the princi-
pal axes at O as indicated in Figure 9.2.1.

\2
2
c i !
v
_______._.__.0 /______1
I
b /:L
3
|
|
(@) (b)

Figure 9.2.1 Principal axes for a (a) uniform rectangular block and (b) Ping-Pong paddle.
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EXAMPLE 9.2.1

(@) For the rectangular block shown in Figure 9.2.1a, the principal moments at the
center of mass O are those indicated in Table 8.3.1, namely,

I, =-’ﬁ(b2+c2)

I, =1-§(a +c%)

I, =1—2(a2+b2)

in which m is the mass of the block and 4, b, and ¢ are the edge lengths.

(b) To find the principal moments of the Ping-Pong paddle at the point O indicated
in Figure 9.2.1b, we assume for simplicity that the paddle is a circular lamina of
radius ¢ and mass m/2 attached to a thin rod for a handle of mass m/2 and length
2a. We borrow from the results of Section 8.3. The principal moments are each
calculated by adding the moments about the respective axes for the two parts,

namely,
I=Imd+1dm
I —0+ %ma2
2
2———(2) +-2a —;ma2
=§—(2a) + 2 a® :—;ma2

We note that I3 = I, + I, because the object is assumed to be laminar.

EXAMPLE 9.2.2

Find the moment of inertia about a diagonal of a uniform cube whose side length is a.

Solution:

The moment of inertia about any axis passing through the center of mass O of any uni-
form rectangular block is given by Equation 9.2.3. In particular, for a uniform cube
(@ =b =), the principal moments at O are all equal. Thus, from Equation 9.2.3, we
have

I1=1, cos>a+1I, cos® B+1I, cos®y = I,(cos® ot + cos® B+ cos’y) = I, = éma2
Because cos’ 0 + cos’  + cos’y = 1, this is the moment of inertia about any axis that passes
through the center of mass of the cube.
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Dynamic Balancing

Suppose that a body is rotating about one of its principal axes, say the 1-axis. Then @ = @,,
@, = @, = 0. The expression for the angular momentum (Equation 9.2.4) then reduces to
just one term, namely,

L=e ], o (9.2.6a)
or, equivalently
L=l (9.2.6b)

Thus, in this circumstance the angular momentum vector is in the same direction as the
angular velocity vector or axis of rotation. We have, therefore, the following important fact:
The angular momentum vector is either in the same direction as the axis of rotation, or is
not, depending on whether the axis of rotation is, or is not, a principal axis.

Suppose the Ping-Pong paddle of Example 9.2.1(b) is rotating with angular velocity
| @ | = @3 about its third principle axis (see Figure 9.2.1(b)). Its angular momentum L
is then given by Equation 9.2.6a, with index 3 replacing index 1

_ _ 179
L =e;l;0; =e;zma o,

The previous rule finds application in the case of a rotating device such as an automobile
wheel or fan blade. If the device is statically balanced, the center of mass lies on the axis
of rotation. To be dynamically balanced the axis of rotation must also be a principal axis
so that, as the body rotates, the angular momentum vector L will lie along the axis.
Otherwise, if the rotational axis is not a principal one, the angular momentum vector
varies in direction: It describes a cone as the body rotates (Figure 9.2.2). Then, because
dL/dt is equal to the applied torque, there must be a torque exerted on the body. The
direction of this torque is at right angles to the axis. The result is a reaction on the bearings.

Angular
momentum

© © PN op o
Figure 9.2.2 A rotating fan blade. o o — v :
The angular momentum vector L o___ o o
describes a cone about the axis of ' f
rotation if the blade is not dynamically Axis of

balanced. rotation
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Figure 9.2.3 Determination of two
principal axes (1 and 2) when the third one
() is known.

Thus, in the case of a dynamically unbalanced wheel or rotator, there may be violent vibra-
tion and wobbling, even if the wheel is statically balanced.

Determination of the Other
Two Principal Axes When One Is Known

In many instances a body possesses sufficient symmetry so that at least one principal axis
can be found by inspection; that is, the axis can be chosen so as to make two of the three
products of inertia vanish. If such is the case, then the other two principal axes can be deter-
mined as follows. Figure 9.2.3 is a front view of the fan blade in Figure 9.2.2. The z-axis is
a symmetry axis and coincides with the third principal axis of the fan blade. Thus, for such

cases, we have

I,=1,=0 I,=I,#0 9.2.7)

Y

The other two principal axes are each perpendicular to the z-axis. They must lie in the
xy plane. Suppose the body is rotating about one of these two, as yet unknown, princi-
pal axes. If so, the rotating object is dynamically balanced as illustrated by the fan blade
in Figure 9.2.3. The angular momentum vector L lies in the same direction as the angu-
lar velocity vector w, thus

wx
L=lo=1I|o, (9.2.8)
0

where I, is one of the two principal moments of inertia in question. Furthermore, in
matrix notation, the angular momentum L, in the xyz frame of reference, is given by

I, 1, 0} o,

xy
0 0 Lo
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(Remember, the products of inertia about the z-axis are zero.) Thus, equating components
of the angular momentum given by these two expressions gives

L. +L,0,=10, (9.2.10a)
Lo, +1,0,=10, (9.2.10b)

Let 6 denote the angle between the x-axis and the principal axis I, about which the body
is rotating (see Figure 9.2.3). Then @,/®, = tan 6, so, on dividing by ., we have

L,+L,tan6 =1 (9.2.11a)
L,+I,tan6 =1, tan6 (9.2.11b)

Elimination of I, between the two equations yields
(,, - L) tan 8 =L (tan” 6 - 1) 9.2.12)

from which 6 can be found. In thlS calculation it is helpful to employ the trigonometric
identity tan 26 = 2 tan 6/(1 — tan” ). This gives

21
tan20 = —~ (9.2.13)
I,-1,
In the interval 0° to 180° there are two values of 6, differing by 90°, that satisfy
Equation 9.2.13, and these give the directions of the two principal axes in the xy plane.
In the case I, =1,,, tan 26 = o so that the two values of 6 are 45° and 135°. (This is
the case for the square lamina of Example 9.1.1 when the origin is at a corner.) Also, if
L, = 0 the equation is satisfied by the two values 6 = 0° and 6 = 90°; that is, the x- and

y-axes are already principal axes.

EXAMPLE 9.2.4
Balancing a Crooked Wheel

Suppose an automobile wheel, through some defect or accident, has its axis of rotation
(axle) slightly bent relative to the symmetry axis of the wheel. The situation can be
remedied by use of counterbalance weights suitably located on the rim so as to make
the axle a principal axis for the total system: wheel plus weights. For simplicity we shall
treat the wheel as a thin uniform circular disc of radius a and mass m. Figure 9.2.4. We
choose Oxyz axes such that the disc lies in the yz plane, with the x-axis as the symme-
try axis of the disc. The axis of rotation (axle) is taken as the 1-axis inclined by an angle
O relative to the x-axis and lying in the xy plane, as shown. Two balancing weights, each
of mass m’, are attached to the wheel by means of light supports of length b. The weights
both lie in the xy plane, as indicated. The wheel is dynamically balanced if the 123 coor-
dinate axes are principal axes for the total system.

Now, from symmetry relative to the xy plane, we see that the z-axis is a principal axis
for the wheel plus weights: z is zero for the weights, and the xy plane divides the wheel
into two equal parts having opposite signs for the products zx and zy. Consequently, we
can use Equation 9.2.13 to find the relationship between 6 and the other parameters.

From the previous chapter we know that for the wheel alone the moments of iner-
tia about the x- and the y-axes are ; ma’, and } ma®, respectively. Thus, for the wheel




9.2 Principal Axes of a Rigid Body 377

Figure 9.2.4 Principal axes for a bent

wheel with balancing weights.

plus weights
I,= %ma2 +2m’a*
1, =;ma®+2m’b*

Now the xy product of inertia for the wheel alone is zero, and so we need consider only
the weights for finding I,,, for the system, namely,

L,= —z x;y;m] = ~[(=b)am’ + b(—a)m’] = 2abm’
Notice that this is a positive quantity for our choice of coordinate axes. Equation 9.2.13

then gives the inclination of the 1-axis:

2L, 4abm’

-1 2 e 2 2
w1y Fma” +2m'(a -b%)

tan 20 =
I

If, as is typical, 6 is very small, and m’ is small compared with m, then we can express
the preceding relation in approximate form by ignoring the second term in the denom-
inator and using the fact that tan u = u for small . The result is

bm’

am

0=8

As anumerical example, let 6 =1°=0.017 rad, a =18 cm, b= 5 cm, m = 10 kg. Solving
for m’, we find

m =04 - 0,01723_9211% =076
8b 8x5cm

for the required balance weights.

kg = 76 grams
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Determining Principal Axes by Diagonalizing
the Moment of Inertia Matrix

Suppose a rigid body has no axis of symmetry. Even so, the tensor that represents the
moment of inertia of such a body, is characterized by a real, symmetric 3 x 3 matrix that
can be diagonalized (see Equation 9.1.11). The resulting diagonal elements are the values
of the principal moments of inertia of the rigid body. The axes of the coordinate system,
in which this matrix is diagonal, are the principal axes of the body, because all products
of inertia have vanished. Thus, finding the principal axes and corresponding moments of
inertia of any rigid body, symmetric or not, is tantamount to diagonalizing its moment of
inertia matrix.

There are a number of ways to diagonalize a real, symmetric matrix.” We present
here a way that is quite standard. First, let’s suppose that we have found the coordinate
system in which all products of inertia vanish and the resulting moment of inertia tensor
is now represented by a diagonal matrix whose diagonal elements are the principal
moments of inertia. Let e; be the unit vectors that represent this coordinate system, that
is, they point along the direction along the three principal axes of the rigid body. If the
moment of inertia tensor is “dotted” with one of these unit vectors, the result is equiv-
alent to a simple multiplication of the unit vector by a scalar quantity

I c €= /’Lie,- (9.2.14)

The scalar quantities A, are just the principal moments of inertia about their respective
principal axes. The problem of finding the principal axes is one of finding those vectors
e, that satisfy the condition

(I-A1).e,=0 (9.2.15)

In general this condition is not satisfied for any arbitrary set of orthonormal unit vectors
e;. It is satisfied only by a set of unit vectors aligned with the principal axes of the rigid
body. Any arbitrary xyz coordinate system can always be rotated such that the coordinate
axes line up with the principal axes. The unit vectors specifying these coordinate axes then
satisfy the condition in Equation 9.2.15. This condition is equivalent to the vanishing of
the following determinant®

[I-2A1{=0 (9.2.16)
Explicitly, this equation reads
(I.-4) I, L,
L, Iy-H I, |=0 9217
L, L, (I.~A

?For example, see J. Mathews and R. L. Walker, Mathematical Methods of Physics, W. A. Benjamin, New York,
1970.

S Ibid.
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It is a cubic in A, namely,
“AB+AN +BA+C=0 (9.2.18)

inwhich A, B, and C are functions of the I's. The three roots, 4,, 4., and A, are the three
principal moments of inertia.

We now have the principal moments of inertia, but the task of specifying the com-
ponents of the unit vectors representing the principal axes in terms of our initial
coordinate system remains to be solved. Here we can make use of the fact that when
the rigid body rotates about one of its principal axes, the angular momentum vector
is in the same direction as the angular velocity vector. Let the angles of one of the
principal axes relative to the initial xyz coordinate system be a;, B;, and 7, and let
the body rotate about this axis. Therefore, a unit vector pointing in the direction of
this principal axis has components (cos &, cos B, cos ¥;). The angular momentum is
given by

L=I.0=Ao (9.2.19)

in which 4,, the first principal moment of the three (4,, 4,, and 4;), is obtained by solv-
ing Equation 9.2.18. In matrix form Equation 9.2.19 reads

L, 1, I, cos o, cos o,
I, I, I,|®|cospB, =4 cosp, (9.2.20)
a Ly I cos 7, cos 7,

We have extracted the common factor @ from each one of its components, thus, directly
exposing the desired principal axis unit vector. The resultant equation is equivalent to the
condition expressed by Equation 9.2.14, namely, that the dot product of the moment of
inertia tensor with a principal axis unit vector is tantamount to multiplying that vector by
the scalar quantity 4,, that is,

I. €= A«lel (9221)

This vector equation can be written in matrix form as

(Ixx - A’l) Ixy Ixz Cos O
I, (I, = 4y) I, cos B, |=0 (9.2.22)
I, L, (I, —A) )\ cos 7,

The direction cosines may be found by solving the above equations. The solutions are not
independent. They are subject to the constraint

cos’ @, +cos® B, +cos’y, =1 (9.2.23)

In other words the resultant vector e, specified by these components is a unit vector. The
other two vectors may be found by repeating the preceding process for the other two prin-
cipal moments A, and A;.



380 CHAPTER 9 Motion of Rigid Bodies in Three Dimensions

EXAMPLE 9.2.5

Find the principal moments of inertia of a square plate about a corner.

Solution:

We choose the same xyz system as initially chosen in Example 9.1.1. We have all the
moments of inertia relative to those axes. They are the same as in Example 9.1.1. The
vanishing of the determinant expressed by Equation 9.2.17 reads

(Note: We have extracted a common factor ma®, which will leave us with only
the desired numerical coefficients for each value of A We must then put the ma®
factor back in to get the final values for the principal moments.)

Evaluating the preceding determinantal equation gives

G- -2)=0

The second factor gives

Ay =2 (ma®)
The first factor gives
1 1
3= A=%;
A =z (ma®)

Ay =é(ma2)

EXAMPLE 9.2.6

Find the directions of the principal axes of a square plate about a corner.

Solution:
Equations 9.2.22 give
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We would guess that at least one of the principal axes (say, the third axis) is perpendi-
cular to the plane of the square plate, that is, y3=0°, and o3 = B3 = 90°. We would also
guess from looking at the preceding equation that the principal moment about this axis
would be A, = ; (ma®). Such choices would ensure that the third equation in the preced-
ing group would automatically vanish as would the first two, because both cos a3 and
cos B would be identically zero. The remaining axes can be determined by inserting the
other two principal moments into the preceding equations. Thus, if we set A, = é (ma),
we obtain the conditions that

coso; —cos B, =0 cosy;=0

which can be satisfied only by a; = B; = 45° and ¥, = 90°. Now, if we insert the final
principal moment A, = % (ma®) into the preceding equation, we obtain the conditions

cosdy+cosfy=0 cos Y, =0

that can be satisfied if a, = 135°, B, =45°, and ¥, = 90°. Thus, two of the principal axes
lie in the plane of the plate, one being the diagonal, the other perpendicular to the diag-
onal. The third is normal to the plate. The moment of inertia matrix in this coordinate
representation is, thus,

1900
12
_ 7 2
I={0 5 0 [ma
0 0 2

and the corresponding principal axes in the original coordinate system are given by the
vectors

1 -1 0

e =1l1 e,=L| 1 e, =0
155 2= 3 =

0 0 1

The principal axes can be obtained by a simple 45° rotation of the original coordinate
system in the counterclockwise direction about the z-axis.

9.3| Euler's Equations of Motion of a Rigid Body

We come now to what we may call the essential physics of the present chapter, namely,
the actual three-dimensional rotation of a rigid body under the action of external forces.
As we learned in Chapter 7, the fundamental equation governing the rotational part of
the motion of any system, referred to an inertial coordinate system, is

dL

N=—

dt

in which N is the net applied torque and L is the angular momentum. For a rigid body,

we have seen that L is most simply expressed if the coordinate axes are principal axes for
the body. Thus, in general, we must employ a coordinate system that is fixed in the body

9.3.1)
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and rotates with it. That is, the angular velocity of the body and the angular velocity of
the coordinate system are one and the same. (There is an exception: If two of the three
principal moments Iy, I,, and I, are equal to each other, then the coordinate axes need
not be fixed in the body to be principal axes. This case if considered later.) In any case,
our coordinate system is not an inertial one.

Referring to the theory of rotating coordinate systems developed in Chapter 5, we
know that the time rate of change of the angular momentum vector in a fixed (inertial)
system versus a rotating system is given by the formula (see Equations 5.2.9 and 5.2.10)

(&), 5, o
dt fired dt ), -

Thus, the equation of motion in the rotating system is

N = (%JM + wXL (9.3.3)

where
L=1I oL (9.3.4a)
oxXL=ox(-w) (9.3.4b)

The latter cross product in Equation 9.3.4b can be written as the determinant
€ € €
ox(-w)=| 0, o0, o (9.3.4c)
Loy, Lo, I,

where the components of @ are taken along the directions of the principal axes. Thus,
Equation 9.3.3 can be written in matrix form as

N, Loy, @y 03(I; 1)
N, |=| Loy, |+ 00,0, - 1,) 9.3.5)
N, 1,0, w,w,(I, - L)

These are known as Euler’s equations for the motion of a rigid body in components along
the principal axes of the body.

Body Constrained to Rotate About a Fixed Axis

As a first application of Euler’s equations, we take up the special case of a rigid body that
is constrained to rotate about a fixed axis with constant angular velocity. Then

0, =0, =; =0 (9.3.6)
and Euler’s equations reduce to
N, = 0,0,(1; - 1,)

N, = oy0,(1, - 13) 9.3.7)
N; =w0,(1, - 1)
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These give the components of the torque that must be exerted on the body by the con-
straining support.

In particular, suppose that the axis of rotation is a principal axis, say the 1-axis. Then
@, = 03=0, ® = ;. In this case all three components of the torque vanish:

N,=N,=N,;=0 (9.3.8)

That is, there is no torque at all. This agrees with our discussion concerning dynamic bal-
ancing in the previous section.

9.4| Free Rotation of a Rigid Body:
Geometric Description of the Motion

Let us consider the case of a rigid body that is free to rotate in any direction about a cer-
tain point O. No torques act on the body. This is the case of free rotation and is exempli-
fied, for example, by a body supported on a smooth pivot at its center of mass. Another
example is that of a rigid body moving freely under no forces or falling freely in a uni-
form gravitational field so that there are no torques. The point O in this case is the center
of mass.

With zero torque the angular momentum of the body, as seen from the outside, must
remain constant in direction and magnitude according to the general principle of con-
servation of angular momentum. With respect to rotating axes fixed in the body, however,
the direction of the angular momentum vector may change, although its magnitude must
remain constant. This fact can be expressed by the equation

L L = constant (9.4.1a)
In terms of components referred to the principal axes of the body, Equation 9.4.1a reads
Lo} + 0} +12 w5 = L* = constant (9.4.1b)

As the body rotates, the components of @ may vary, but they must always satisfy
Equation 9.4.1b.

A second relation is obtained by considering the kinetic energy of rotation. Again,
because there is zero torque, the total rotational kinetic energy must remain constant. This
may be expressed as

w-L =2T, , = constant (9.4.2a)
or, equivalently in terms of components,
Lo? + 1,0} + I,0% = 2T, = constant (9.4.2b)

We now see that the components of @ must simultaneously satisfy two different
equations expressing the constancy of kinetic energy and of magnitude of angular
momentum. (These two equations can also be obtained by use of Euler’s equations. See
Problem 9.7.) These are the equations of two ellipsoids whose principal axes coincide with
the principal axes of the body. The first ellipsoid (Equation 9.4.1b) has principal diameters
in the ratios I;* : I;! : I;". The second ellipsoid (Equation 9.4.2b) has principal diameters
in the ratios I, : I;% : I;"2. It is known as the Poinsot ellipsoid. As the body rotates, the
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3
Constant T

Constant L

Figure 9.4.1 Intersecting

ellipsoids of constant L and T

for a rigid body undergoing

torque-free rotation. (Only one

octant is shown for clarity.) 1

extremity of the angular velocity vector, thus, describes a curve that is the intersection of
the two ellipsoids. This is illustrated in Figure 9.4.1.

From the equations of the intersecting ellipsoids, when the initial axis of rotation coin-
cides with one of the principal axes of the body, then the curve of intersection diminishes
to a point. In other words, the two ellipsoids just touch at a principal diameter, and the
body rotates steadily about this axis. This is true, however, only if the initial rotation is about
the axis of either the largest or the smallest moment of inertia. If it is about the interme-
diate axis, say the 2-axis where I3 > I, > I, then the intersection of the two ellipsoids is
not a point, but a curve that goes entirely around both, as illustrated in Figure 9.4.2. In
this case the rotation is unstable, because the axis of rotation precesses all around the body.
See Problem 9.19. (If the initial axis of rotation is almost, but not exactly, along one of the
two stable axes, then the angular velocity vector describes a tight cone about the corre-
sponding axis.) These facts can easily be illustrated by tossing an oblong block, a book, or
a Ping-Pong paddle into the air.

9.5| Free Rotation of a Rigid Body with an Axis
of Symmetry: Analytical Treatment

Although the geometric description of the motion of a rigid body given in the preceding
section is helpful in visualizing free rotation under no torques, the method does not
immediately give numerical values. We now proceed to augment that description with an
analytical approach based on the direct integration of Euler’s equations.

We shall solve Euler’s equations for the special case in which the body possesses an
axis of symmetry, so that two of the three principal moments of inertia are equal. An exam-
ple of such an object is shown in Figure 9.5.1. Usually, one can see it being thrown around
playfully by otherwise grown men every autumn weekend in large stadiums all around
the country. The long, central axis of the object is its axis of symmetry. The object is a pro-
late spheroid, more commonly known as a football.
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(b)

Unstable

Precession of ®

©)

Figure 9.4.2 Ellipsoids of constant L and constant T for a rigid body rotating freely about the
axis of the (a) least, (b) greatest, and (c) intermediate moment of inertia.
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Figure 9.5.1 A prolate spheroid—whose
long central axis is its axis of symmetry—more
commonly known as a football.

Let us choose the 3-axis as the axis of symmetry. We introduce the following notation:

=14 moment of inertia about the symmetry axis

I=I,=1I, moment about the axes normal to the symmetry axis

For the case of zero torque, Euler’s equations (9.3.5) then read

Iy +w,0,(I,-1)=0 (9.5.1a)
Ioy +wy0,(I-1,)=0 (9.5.1b)
Is")s =0 (9.5.10)

From the last equation it follows that
5= constant (9.5.2)

Let us now define a constant Q as
I -1

Q=0 (9.5.3)

Equations 9.5.1a and b may be written
@, +Qw, =0 (9.5.4a)
@, —Qw, =0 (9.5.4b)

To separate the variables in Equations 9.5.4 a and b, we differentiate the first with respect
to ¢ and obtain

@, +Qad, =0 (9.5.5)
Solving for @, in Equation 9.5.4b and inserting the result into Equation 9.5.5, we find

i+ Q%0 =0 (9.5.6)
This is the equation for simple harmonic motion. A solution is

@, =@, cos 2t (9.5.7a)

in which @y is a constant of integration. To find @,, we differentiate Equation 9.5.7a with
respect to ¢ and insert the result into Equation 9.5.4a. We can then solve for @, to obtain

0, = @, sinQt (9.5.7b)
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Figure 9.5.2 Angular velocity vector and
its components for the free precession of a 4

body with an axis of symmetry.

Thus, @, and @, vary harmonically in time with angular frequency Q, and their phases
differ by 7/2. It follows that the projection of w on the 1, 2 plane describes a circle of
radius @, at the angular frequency Q (see Figure 9.5.2).

We can summarize the preceding results as follows: In the free rotation of a rigid body
with an axis of symmetry, the angular velocity vector describes a conical motion (precesses)
about the symmetry axis. An observer, therefore, in the frame of reference attached to the
rotating body, would see wtrace out a cone around the symmetry axis of the body (called
the body cone). (See Figure 9.6.4.) The angular frequency of this precession is the constant
Q defined by Equation 9.5.3. Let « denote the angle between the symmetry axis (3-axis)
and the axis of rotation (direction of @) as shown in Figure 9.5.2. Then w; = @ cos ¢,
and so

Q= (173 —1)(0 cosQ (9.5.8)

giving the rate of precession of the angular velocity vector about the axis of symmetry.
(Some specific examples are discussed at the end of this section.)

We can now see the connection between the preceding analysis of the torque-free
rotation of a rigid body and the geometric description of the previous section. The cir-
cular path of radius @, traced out by the extremity of the angular velocity vector is just
the intersection of the two ellipsoids of Figure 9.4.1.

*Free Rotation of a Rigid Body with Three
Different Principal Moments: Numerical Solution

In the previous section we discussed the free rotation of a rigid body that had a single axis
of symmetry such that two axes perpendicular to it were principle axes whose moments
of inertia were identical. In the case here, we shall relax this condition and discuss the
free rotation of a rigid body with three unequal principal moments of inertia I; < I < I.
The rigid body we consider is an ellipsoid of uniform mass distribution whose surface is
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Figure 9.5.3 Ellipsoid with
unequal semimajor axes

a > b > ¢ and uniform mass
distribution.

given by the equation

2 z2
+55=1 (9.5.9)

s
b2

+

alx
[ ]
o

where a > b > ¢ are the semimajor axes of the ellipsoid (Figure 9.5.3). We solve Euler’s
equations (9.3.5) for this body numerically using Mathematica, and we see that even
though the resulting motion is a little more complicated than that of the body with the
axis of symmetry, many of the same general results are obtained.

First, we solve for the principal moments of inertia given by Equations 9.1.7a, b, and ¢
converted suitably to integral form as in Equation 9.1.9a. Thus

2 2,12 2, 2_ 242,112
L=L=8p[ [ [T Gy dedyde 95.00)
with analogous expressions for the other two principal moments I; and I,. The factor of
8 in Equation 9.5.10 arises because we have invoked symmetry to eliminate half of the
integration about each of the three principal axes. Furthermore, there is no loss of gen-
erality if we set 8p = 1, because it cancels out anyway when used in Euler’s Equations,
which are homogeneous in the absence of external torques.

We used Mathematica’s NIntegrate function (see Section 8.1) to evaluate the mass
and three principal moments of inertia (remember, 8p = 1) for an ellipsoid whose semi-
majoraxesarea=3,b =2, andc=1. Theresults are: M =7, I, =&, [, =27, and I;=8.168.

Euler’s equations for free rotation of this ellipsoid then become

A 0,0, = @,
Ay300; = g (9.5.11)
A300,0, = @)y

Where Al = (12 - 13)/11 = —0.6, A2 = (13 - Il)/12 = 08, and A3 = (11 - 12)/13 =-0.385. We
solved these three, first-order, coupled differential equations numerically with a call
to Mathematica’s NDSolve (see Section 7.4, The Trojan Asteroids). The relevant call is
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Figure 9.5.4 Free rotation of
ellipsoid of Figure 9.5.3 plotted
in phase space.

NDSolve [{Equations, Initial Conditions), (@, @g, @}, {£,minstmax)]

We set the initial conditions to [@;(0), 5(0), @5(0)] = (1, 1, 1)s™. The time inter-
val [0 - £,,,] was set to 3.37, or about equal to one period of the resulting motion,
which is shown in the phase space plot of Figure 9.5 4.

Note the similarity of the plot to Figure 9.5.2, which illustrates the precessional
motion of an ellipsoid whose 3-axis is an axis of symmetry. In that case ®, and @, pre-
cess around @3, which remains constant. Here the 3-axis is the principal axis about
which the moment of inertia is the largest, and the angular velocity about that axis,
although not constant, remains closer to constant than do @; and @,. The motion is
one in which @; and @, precess around @;, which itself wobbles slightly.

The analysis of Section 9.4 applies here as well. Both the kmetlc energy T and
the magnitude of the angular momentum, expressed as L - L = L% are constants of
the motion. As explained in Section 9.4, each of these values constrains the angular
velocity vector to terminate on two ellipsoidal surfaces (see Equations 9.4.1b and
9.4.2b) given by the equations

w? w2 w2
L2 4 3 -] (95.12)
@T/1)  (2T/,)  (2T/I,)
2 2 2
Oy Ds 9.5.13)

+—2 4 =
(L) (LI,)?  (L/1,)?

The values of the kinetic energy and the magnitude of the angular momentum are
determined by the initial COIIdlthIlS for @), @y, and w, given earlier. The resultant ellip-
soids of constant T and L.? are shown in Figures 9.5.5a and b. Figure 9.5.5¢c shows the
constant T'and L ellipsoids plotted together and their resultant intersection. The angu-
lar velocity vector is constramed to lie along this line to satisfy simultaneously the con-
ditions that T and L* remain constant during the motion. Close examination of the
intersection reveals that it is identical to the solution of Euler’s equations plotted in
Figure 9.5.4, as must be the case.
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9.6| Description of the Rotation of a Rigid Body
Relative to a Fixed Coordinate System:
The Eulerian Angles

In the foregoing analysis of the free rotation of a rigid body, its precessional motion was
described relative to a set of principal axes fixed in the body and rotating with it. To
describe the motion relative to an observer outside the body, we must specify how the
orientation of the body in space relative to a fixed coordinate system changes in time. There
is no unique way to do this, but a commonly chosen scheme uses three angles ¢, 6, and
¥ torelate the direction of the three principal axes of the rigid body relative to those fixed
in space. The scheme was first published by Leonhard Euler (1707-1783) in 1776 and is
depicted in Figure 9.6.1. The coordinate system, labeled 0123, is defined by the three
principal axes fixed to the rigid body and rotates with it. The coordinate system fixed in
space is labeled Oxyz. A third, rotating system, Ox"y’2’, providing a connection between
the principal axes attached to the body and the axes fixed in space, is also shown and is
defined as follows: The z’-axis coincides with the 3-axis of the body—its symmetry axis.
The «"-axis is defined by the intersection of the body’s 1-2 plane with the fixed xy plane;
this axis is called the line of nodes. The angle between the x- and x’-axes is denoted by ¢,
and the angle between the z- and z’- (or 3-) axes is denoted by 6. The rotation of the body
about its 3-axis is represented by the angle ybetween the 1-axis and the x"-axis. The three
angles ¢, 6, and y completely define the orientation of the body in space and are called
the Eulerian angles.

The angular velocity @ of the body is the vector sum of three angular velocities relat-
ing to the rates of change of the three Eulerian angles. We can see this by considering
the infinitesimal change in the angular orientation of the body that occurs as it rotates in
an infinitesimal amount of time. Assume that at time ¢ = 0, the orientation of the body
system (the 0123 coordinate system) coincides with the fixed Oxyz system. Some time
dt later, the rigid body will have rotated through some infinitesimal angle @ dt = dp.

Figure 9.6.1 Diagram showing the
relation of the Eulerian angles to the
fixed and the rotating coordinate axes. x' (line of nodes)
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23 rd’
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x1

. \ Line of nodes
7]

(a) ©)
Figure 9.6.2 Generation of any arbitrary infinitesimal rotation of a rigid body as the vector
sum of infinitesimal rotations through the free Eulerian angles, (a) d¢b, (b) d@, and (c) dip.

We have written the infinitesimal angle of rotation as a vector. The angular velocity @ of
a rotating rigid body is a rotation through an infinitesimal angle in an infinitesimal amount
of time and is a vector quantity.* A rotation through an infinitesimal angle is, therefore,
also a vector that points in the same direction as its corresponding angular velocity vector.
This direction is given by the conventional right-hand rule. The rotation through the
angle dB can be “decomposed” into three successive infinitesimal rotations through the
angles d¢p, d0, and dis, respectively. First, starting at ¢ = 0, rotate the O123-axes counter-
clockwise about the fixed z-axis through the angle d¢. This rotation is shown in Figure 9.6.2a.
It brings the 1-axis into coincidence with the x"-axis shown in Figure 9.6.2b. The direction
of dép is along the fixed z-axis—the direction a right-hand screw would advance as a
result of the counterclockwise turning, Next rotate the O123-axes counterclockwise about
the x’-axis through an angle d@. This rotation is shown in Figure 9.6.2b. It brings the
3-axis into coincidence with the z’-axis. The direction of d@ is along the x"-axis. Finally,
rotate the O123-axes counterclockwise about the z”-axis through the angle dis. This rota-
tion is shown in Figure 9.6.2c and its direction is along the z’-axis. The resulting orienta-
tion of the 0123 “body” coordinate system relative to the Oxyz “fixed” coordinate system
is what is shown in Figure 9.6.1, the only difference being that in this case the angles are
infinitesimals. Clearly, this orientation is the result of the actual rotation of the body
through an angle df with angular velocity @, where

dB=wdt =dd +d0 +dys
ro=¢+0+i

Most problems involving a rotating rigid body prove to be more tractable when the equa-

tions of motion are written in terms of either the 0123 or Oxy’z’ rotating frames of ref-
erence. The rotational motion of the body in either of these two coordinate systems,

however, can be related directly to a spatially fixed frame if we express the equations of

(9.6.1)

“Actually, it is a pseudo-vector. Vectors change sign under the parity operation. Pseudo-vectors do not. This
difference in their behavior need not concern us here.
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Figure 9.6.3 Vector diagram indicating the relationship
among the angular velocities ¢, 0, ¥, and w and ’.

motion in terms of the Eulerian angles and their time derivatives. As a first step toward
generating the equations of motion for a rotating body (we ignore its translational motion),
we need to find the three components of the angular velocity @ in each of these coordi-
nate systems in terms of these variables. On examining Figures 9.6.1 and 9.6.2, we see
that w consists of a rotation about the 3-axis with angular velocity ¥ superimposed on
the rotation of the primed system whose angular velocity we will call @’ (Figure 9.6.3).
It should be clear that &’ is the vector sum of ¢ and @ and is given by

o'=¢+0 (9.6.2)

LA S 4

We can now find the components of @’ in the Ox’y’z” system. First, we write down
the relevant components of ¢, @, and ¢

¢x' =0 éx' =é l['/x/ =0
9, = sinf 9, =0 ¥, =0 (9.6.3)
¢z/=¢0089 ¢z =0 l['/z/= ‘
Thus
w;, = ¢x' =
@), =@, =@sind (9.6.4)
w;, = ¢z' = ¢ COSe

Now @ differs from @’ only in the rate of rotation ¢ about the z’-axis. The components
of @ in the primed system are, therefore,

o, =0
o, =@ sinf (9.6.5)
0, =¢cos@+y
Next, we express the components of (b 0, and s in the 0123 system
¢1=¢y, siny = ¢sin@siny 6, =0, cosy =0cosy ¥, =0
¢ = ¢y, cosy = @sinfcosy 8, = -0, siny = -siny ¥, =0 (9.6.6)
¢ = ¢ cosf 0;=0 Vs =y



394 CHAPTER 9 Motion of Rigid Bodies in Three Dimensions

and then use them to obtain the components of @ in the 0123 system

@, = ¢sinOsiny +Ocosy
®, = ¢sin@cosy —Osiny (9.6.7)
®; = cosf+

(We do not need to use Equations 9.6.7 at present but will refer to them later.)

Now in the present case in which there is zero torque acting on the body, the angu-
lar momentum vector L is constant in magnitude and direction in the fixed system Oxyz.
Let us choose the z-axis to be the direction of L. This is known as the invariable line. From
Figure 9.6.1 we see that the components of L in the primed system are

Lxr = 0
L, = Lsin (9.6.8)
L, =Lcos@

We again restrict ourselves to the case of a body with an axis of symmetry, the 3-axis.
Because the x” and y"-axes lie in the 1, 2 plane, and the z"-axis coincides with the 3-axis,
then the primed axes are also principal axes. In fact, the principal moments are the same:
L=L=l,=I,=Tandl,=L,=1,

Now consider the first of Equations 9.6.5 and 9.6.8 giving the x” component of the
angular velocity and angular momentum of the body, namely zero. From these we see that
6 =0. Hence, 0is constant, and @, having no «"-component, must lie in the 4’2" plane as
shown. Let adenote the angle between the angular velocity vector @ and the z"-axis. Then,
in addition to Equations 9.6.5 and 9.6.8, we also have the following:

O, =0 sina @, =0 cos o (9.6.9a)
L,=losna L, =1 cosa (9.6.9b)
Therefore
L, I
—l: =tanf = —I-S—tana (9.6.10)

giving the relation between the angles 6 and o

According to the above result, @is less than or greater than @, depending on whether
Iis less than I, or greater than I, respectively. In other words, the angular momentum
vector lies between the symmetry axis and the axis of rotation in the case of a flattened
body (I < I,), whereas in the case of an elongated body (I > I,), the axis of rotation lies
between the axis of symmetry and the angular momentum vector. The two cases are
illustrated in Figure 9.6.4. In either case, as the body rotates, an observer in the fixed
coordinate system would see the axis of symmetry (z"-axis or 3-axis) trace out a cone as
it precesses about the constant angular momentum vector L. At the same time the
observer would see the axis of rotation (@ vector) precess about L with the same frequency.
The surface traced out by @ about L is called the space cone, as indicated. The preces-
sional motion of e and the body symmetry axis can be visualized by the body cone rolling
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Space cone

(@ (b)

Figure 9.6.4 Free rotation of a (a) disc and (b) a rod. The space cones and body cones are
shown dotted.

along the space cone (Figure 9.6.4). The central axis of the body cone is the symmetry axis
of the body, and the line where the two cones touch defines the direction of w.
Referring to Figure 9.6.1, we see that the angular speed of rotation of the 2’ plane
about the z-axis is equal to the time rate of change of the angle ¢. Thus, ¢ is the angu-
lar rate of precession of the symmetry axis and of the axis of rotation about the invari-
able line (L vector) as viewed from outside the body. This precession appears as a
“wobble” such as that seen in an imperfectly thrown football or discus. From the second
of Equations 9.6.5 and the first of Equations 9.6.9a, we have ¢ sin6 = @ sin & or
sina

p=0 0 (9.6.11)

for the rate of precession. Equation 9.6.11 can be put into a somewhat more useful form
by using the relation between azand 6 given by Equation 9.6.10. After a little algebra, we

obtain
12 2
o= a)[l + ['ﬁ - 1) cosza] (9.6.12)

for the wobble rate in terms of the angular speed @ of the body about its axis of rotation
and the inclination @ of the axis of rotation to the symmetry axis of the body.

To summarize our analysis of the free rotation of a rigid body with an axis of sym-
metry, there are three basic angular rates: the magnitude @ of the angular velocity, the
precession of angular rate Q of the axis of rotation (direction of @) about the symmetry
axis of the body, and the precession (wobble) of angular rate ¢ of the symmetry axis about

the invariable line (constant angular momentum vector).
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EXAMPLE 9.6.1

Precession of a Frisbee

As an example of the above theory we consider the case of a thin disc, or any symmet-
ric and fairly “flat” object, such as a china plate or a Frisbee. The perpendicular-axis
theorem for principal axes is I, + Iy = I, and, for a symmetric body I, =1I,, so that 21, = I,.
In our present notation this is 21 = I, so the ratio

L_,
I

to a good approximation. If our object is thrown into the air in such a way that the angu-
lar velocity e is inclined to the symmetry axis by an angle @, then Equation 9.5.8 gives

Q=wcos o

for the rate of precession of the rotational axis about the symmetry axis.
For the precession of the symmetry axis about the invariable line, the wobble as seen
from the outside, Equation 9.6.12 yields

¢ = o(1+ 3 cos’a)"
In particular, if eis quite small so that cos &is very nearly unity, then we have approximately

Q=@
¢ =20

Thus, the wobble rate is very nearly twice the angular speed of rotation.

EXAMPLE 9.6.2

Free Precession of the Earth

In the motion of the Earth, it is known that the axis of rotation is very slightly inclined
with respect to the geographic pole defining the axis of symmetry. The angle e is about
0.2 sec of arc (shown exaggerated in Figure 9.6.5). It is also known that the ratio of the
moments of inertia I, /I is about 1.00327 as determined from Earth’s oblateness. From
Equation 9.5.8 we have, therefore,

Q=0.00327w
Then, because @ = 2x/day, the period of the precession is calculated to be
or_ 1
Q 0.00327

The observed period of precession of Earth’s axis of rotation about the pole is about
440 days. The disagreement between the observed and calculated values is attributed
to the fact that Earth is not perfectly rigid, nor is it in the shape of a perfectly symmetric
oblate spheroid; it is shaped more like a slightly lumpy pear.

days = 305 days
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Axis of rotation

Figure 9.6.5 Showing
the symmetry axis and the
rotational axis of the Earth.
(The angle o is greatly
exaggerated.)

With regard to the precession of Earth’s symmetry axis as viewed from space,
Equation 9.6.12 gives

¢ =1.00327w
The associated period of Earth’s wobble is, thus,

2w _2m 1
¢ o 1.00327

=0.997 day

This precession is superimposed on the much longer precession of 26,000 years of
Earth’s rotational axis about an axis perpendicular to its orbital plane. This latter pre-
cession is caused by the torques exerted on the oblate Earth by the Sun and Moon. The
fact that its period is so much longer than that of the free precession justifies ignoring
the external torques in calculating the period of the free precession.

9.7| Motion of a Top

In this section we study the motion of a symmetric rigid body that is free to turn about a fixed
point and on which there is exerted a torque, instead of no torque, as in the case of free pre-
cession. The case is exemplified by a symmetric top, that is, a rigid body with I, = I # I.

The notation for our coordinate axes is shown in Figure 9.7.1a. For clarity, only the
z’-, y'-, and z-axes are shown in Figure 9.7.1b, the x"-axis being normal to the paper. The
origin O is the fixed point about which the top turns.
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x” (line of nodes)
(a) (b)

Figure 9.7.1 A symmetric top.

The torque about O resulting from the weight is of magnitude mgl sin 6, [ being the
distance from O to the center of mass CM. This torque is about the x"-axis, so that

N, =mglsin0
N, =0 9.7.1)
N, =0

The components of the angular velocity of the top w are given by Equations 9.6.5. Hence,
the angular momentum of the top has the following components in the primed system:

Lx’ = Ix’x’ wx' = 10
L,=1,.0,=1I¢sinb (9.7.2)
L,=1,0,=I(pcosb+y)=1S

Here we use the same notation for the moments of inertia as in the previous section, and
in the last equation (9.7.2) we abbreviated the quantity @,. = ¢ cos@ + ¥ by the letter S,
called the spin, which is simply the angular velocity about the top’s axis of symmetry.

The fundamental equation of motion in the primed system (see Equation 5.2.10 or
9.3.3) is

dt

in which the components of N, L, and @” are given by Equations 9.7.1, 9.7.2, and 9.6.4,
respectively. Consequently, the component equations of motion are found to be the following:

mgl sin@ = 16 +1.5¢ sin6 — 1§ cosO sinO (9.7.4a)

N= (d—L) +w XL (9.7.3)
rot

0= 1%@3 sin) — 1.8 +16¢ cos6 (9.7.4b)
0=1§ (9.7.4¢)
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The last equation (9.7.4c) shows that S, the spin of the top about its symmetry axis,
remains constant. Also, of course, the component of the angular momentum along that
axis is constant

L, =I.S = constant (9.7.5)
The second equation is then equivalent to
0= 0%(143 sin0 + IS cos 6) (9.7.6)
so that
1 sin*0 + 1,8 cos = L, = constant 9.7.7)

This last constant is the component of the angular momentum along the fixed z-axis (see
Problem 9.23). It is easy to see that the two angular momenta L, and L, must be con-
stant. The gravitational torque is always directed along the x"-axis, or the line of nodes.
Because both the body symmetry axis (the z’-axis) and the spatially fixed z-axis are per-
pendicular to the line of nodes, there can be no component of torque along either of
them.

Steady Precession

At this point we discuss a simple special case of the motion of a top, namely that of steady
precession in a horizontal plane. This is the common “demonstration” case in which the
spin axis remains horizontal and precesses at a constant rate around a vertical line, the
z-axis in our notation. Then we have 0 =90° = constant, § = § =0. Equation 9.7.4a then
reduces to the simple relation

mgl =1S¢ 9.7.8)

Now it is easy to see that the quantity mgl is just the (scalar) torque about the x"-axis.
Furthermore, the horizontal (vector) component of the angular momentum has a mag-
nitude of IS, and it describes a circle in the horizontal plane. Consequently, the extrem-
ity of the L vector has a velocity (time rate of change) of magnitude I, S¢ and a direction
that is parallel to the x"-axis. Thus, Equation 9.7.8 is simply a statement of the general rela-
tion N = dL/d¢ for the special case in point (see Figure 9.7.2).

The more general case of steady precession in which the angle @ is constant but has
a value other than 90° is still handled by use of Equation 9.7.4a, which gives, on setting
6 = 0 and canceling the common factor sin 6,

mgl = I8¢ —S¢* cos (9.7.9)

This is a quadratic equation in the unknown ¢. Solving it yields two roots

 1,S£(I’S® — 4mgll cos6)
o= 21 cos @

(9.7.10)

Thus, for a given value of 6, two rates of steady precession of the top are possible: a fast
precession (plus sign) and a slow precession (minus sign). Which of the two occurs depends
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! -

Figure 9.7.2 Bicycle wheel spinning with spin angular velocity S and spin angular momentum
L about an axis pivoted at its end and executing steady precession in a horizontal plane.

on the initial conditions. Usually, it is the slower one that takes place in the motion of a
simple top. In either case, the quantity in parentheses must be zero or positive for a phys-
ically possible solution, that is,

128% > 4mgll cosO (9.7.11)
s mg

Sleeping Top

Anyone who has played with a top knows that if the top is set spinning sufficiently fast
and is started in a vertical position, the axis of the top remains steady in the upright posi-
tion, a condition called sleeping. This corresponds to a constant value of zero for 8in the
above equations. Because ¢ must be real, we conclude that the criterion for stability of

the sleeping top is given by
128% > dmgll (9.7.12)

If the top slows down through friction so that the condition no longer holds, then it
begins to fall and eventually topples over.

EXAMPLE 9.7.1

A toy gyroscope has a mass of 100 g and is made in the form of a uniform disc of radius
a =2 cm fastened to a light spindle, the center of the disc being 2 cm from the pivot. If
the gyroscope is set spinning at a rate of 20 revolutions per second, find the period for
steady horizontal precession.

Solution:

Using cgs units we have I, = %ma2 = % X 100 g x (2 cm)’= 200 g cm®. For the spin we

must convert revolutions per second to radians per second, that s, S = 20 X 27 rad /s.
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Equation 9.7.8 then gives the precession rate

¢_ﬁg_g_1oo g X 980 cms™” X 2 om o
IS 200 gem® x40 x 3.142 s

in radians per second. The associated period is then

2m _2x3.142 _

¢ =g 1 081 s

EXAMPLE 9.7.2

Find the minimum spin of the gyroscope in Example 9.7.1 so that it can sleep in the ver-
tical position.

Solution:

We need, in addition to the values in the previous example, the moment of inertia I about
the x’-ory’ -axes. By the parallel-ams theorem we have I =L, =1, = ima +ml’ =
i 3100 gx(2 cm)’ +100 g x (2 cm)® =500 g cm’. From Equation 9.7.12, we can then write

s> I—(mglI)1/2 = 25(200 X980 X 2x 500)"* s =140 s

or, in revolutions per second, the minimum spin is

140
s=40_o993
o P

9.8| The Energy Equation and Nutation

Usually buried away in some dark labyrinth deep within the bowels of most university
physics departments lies a veritable treasure of relatively old, cast-off experimental equip-
ment no longer in active use. Squirreled away over the years, it is occasionally resur-
rected for duty as lecture demonstration apparatus after suitable modification. Some of
it, though, is relatively new and was actually purchased intentionally for the expressed use
of lecture demonstration. One of the more delightful devices of this type is the air gyro-
scope. It is periodically brought out and used by professors teaching classes on mechan-
ics to illustrate precessional motion (Figure 9.8.1). Air gyros have the virtue of being
almost friction-free devices so that all the nuances of rotational motion can be observed
before they die away due to frictional effects. The rotating part of the air gyro is a machined
spherical ball with a thin cylindrical rod attached to it that sticks out radially away from
the center of the sphere. This rod marks the body axis of symmetry. The sphere rests inside
a polished, machined, inverted, hemispherical surface, whose radius of curvature is
matched to fit the spherical portion of the gyro. A thin hole is drilled up into the hemi-
spherical surface so that air can be blown into it, creating an almost frictionless cushion
on which the spherical ball rests. Normally, the gyro is made to spin about its body sym-
metry axis, and the axis is then released in a variety of ways to initialize the motion.
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Figure 9.8.1 The air gyro.

In one of the more classic demonstrations with the air gyro, the professor makes it
into a top by placing a small disc with a hole through its central axis about the thin cylin-
drical rod attached to the gyro, positioning it just below the tip of the rod, as shown in
Figure 9.8.1. Then, to set the stage for the striking effects soon to follow, the instructor
simply tilts the axis of the top somewhat away from the vertical and releases it from rest.
Because the top is unbalanced by the weight of the disc mounted on the thin rod mark-
ing the axis, it topples over and strikes the surface of the table on which the air gyro rests—
behavior that is completely expected by the on-looking students. Gravity creates a torque
on the unbalanced top and it topples over. But now, the canny professor repeats the exper-
iment, only this time initializing the motion of the top by again tilting it to some angle 6,
but this time spinning it up about its symmetry axis before “dropping” it. Indeed, as
before, the top starts to topple over, but it also begins to precess and its symmetry axis,
to the great astonishment of the now-captivated student audience, does not fall all the way
down to the surface. It seems to strike an impenetrable barrier at some angle 8, and, mirac-
ulously, it bounces back up, slowing down along the way, and finally halting momentarily
at the same angle of tilt 8; at which it started. Then it falls, starts to precess again, and
repeats this “up and down bobbing” motion over and over. The professor initialized this
remarkable motion simply by holding its body symmetry axis steady at the angle of tilt 6,
spinning the top and then releasing the axis. The bobbing motion, in which the symmetry
axis oscillates up and down between the two angular limits, 6; and 8y, is called nutation.
As we shall see in the ensuing analysis, it is only one of several nutational modes that can
be established, depending on how the motion is initialized.
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In analyzing the motion of the top, we assume that there are no frictional forces; hence,
the total energy E = T, + V of the top remains constant

E=}(102% + 1% +1,02)+ mgl cos6 = constant ©9.8.1)
or, in terms of the Eulerian angles,
E=3(16" +1§” sin® 0+ 1,S%) + mgl cos @ (9.8.2)
From Equation 9.7.7, we can solve for ¢

. L —I1Scos@ L,—L,cos@
=29 =2z 9.8.3
¢ Isin%0 Isin%0 ( )

and substituting this expression into Equation 9.8.2, we obtain an expression for E
(L, — L, cos8)®

E=118>+116"+
e 2 21 sin*@

+mgl cos@ 9.84)
in terms of 8 and constants of the motion. Because the first term on the right-hand side
of this equation, 1,5%2 (the “spin energy”) is a constant of the motion, we can subtract it
from the total energy of the top and define another constant

E'=E-;LS* (9.8.5)

which essentially is the residual total energy of the top in the motion along the 6-coordinate.
We now rewrite Equation 9.8.4 as

E' =10 +V(6) (9.8.6)
where we have defined the effective potentia15 of the top V(6) to be

(L, — L, cos @)

V(6) =
©) 21 sin0

+mgl cos @ 9.8.7)
This definition of the effective potential allows us to focus exclusively on the motion of
the top along the @-coordinate only by means of a relation that looks like a one-dimensional
total energy equation; that is, E' =T + V. The definition of V(0) here is analogous to the
definition of U(r) presented in Section 6.11, where we focused on the radial component
of the orbital motion of an object subject to a central force field (such as planets in orbit
about the Sun). In that particular instance, we saw that the effective potential constrained
the object to lie within two radial limits (r; < r < ry) called the turning points of the orbit.
The same thing happens in this case for the motion along the 6 coordinate. The moving
object cannot pass into a region where its effective potential would exceed its total energy
E’. Figure 9.8.2 depicts this situation. It shows the effective potential V(6) plotted between
0 and 7, the minimum and maximum possible values of 6, along with the constant value
E’. The actual value of E’ determines the lower and upper bounds for the motion of the
top along the @ coordinate; clearly, @ cannot fall outside the two limits, or “turning points,”
0, and 6,.

5 This quantity is really a potential energy, not a potential. Nonetheless, the terminology is standard and we hope
that it doesn’t cause too much consternation for those who strive for semantic rigor.



404 CHAPTER 9 Motion of Rigid Bodies in Three Dimensions

W) 4

Figure 9.8.2 Energy plot. 0 6 6,

Examining the figure shows us that the top reaches either of the turning points in its
motion when V(8) = E’. We could find these values by solving for € in Equation 9.8.6

02 = %[E' -V(0)] (9.8.8)

and setting it equal to zero. This problem can be made a little more tractable by substi-
tuting u = cos € into Equation 9.8.8 and solving for 4

t=—-0sin0 (9.8.92)
. 1
0= T (9.8.9b)
a? = %(1 -u’)E - mglu) - Ilz(Lz - Lz,u)2 (9.8.9¢)
or
a® = f(u) (9.8.10)

The two turning points 6; and 6, correspond to the roots of the equation f(u) = 0. Note
that f () is a cubic polynomial; hence, it has three roots. One, though, is nonphysical.
In principle, we could solve for u (hence, 8) as a function of time by integration

t=| ,—du 9.8.11
o 9.8.11)

We need not do this, however, if we merely want to investigate the general properties
of the motion. In the region between the two turning points, in which motion is phys-
ically possible, f (1) must be positive. Furthermore, because 6 must lie between the
absolute limits 0 and 7, u is limited to values between ~1 and +1. A plot of f(u) is shown
in Figure 9.8.3a for the case in which there are two roots 1, and u, between 0 and +1,
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Figure 9.8.3 Effective potential
diagram for the spinning top. ©

a typical situation (the surface of the table on which the air gyro rests corresponds to
0=n/2 or u = 0). f(u) is positive between those two roots and the region in between
is where the motion takes place. The values of 8 corresponding to those two roots are
0, and 6,, the two turning points where 6 reverses direction. The symmetry axis of
the top oscillates back and forth between these two values of 8 as the top precesses
about the vertical. The overall motion is called nutational precession.

The nutational precession can take on any of the three modes indicated in Figures 9.8.4a,
b, and c. The paths shown there represent the projection of the body symmetry axis onto
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Figure 9.8.4 Nutational motion of the spinning top. (a) ¢ never changes sign;
(b) ¢ changes sign; (¢) ¢ =0 at 8= 6, during a precessional period.

a sphere attached to the Oxyz coordinate system fixed in space. The mode that actu-
ally occurs depends on whether or not the angular speed ¢ (given by Equation 9.8.3)
changes sign as Ovaries between its two limits during the motion. This, in turn, depends
on the values of the angular momentum about the z-axis L, and the spin angular
momentum L. (= I,S). If ¢ does not change sign, the precession never reverses direc-
tion as the symmetry axis oscillates between the two angular limits 6, and 6,. This is
the mode depicted in Figure 9.8.4a. If ¢ does change sign during the precessional nuta-
tion, it must have opposite signs at 6, and 6, (see Equation 9.8.3). In this case, the mode
depicted by Figure 9.8.4b is obtained.

The third mode shown in Figure 9.8.4c is the common one previously described in
which our canny professor initialized the motion by tilting the axis of the top, spinning it
about this axis, and releasing it from rest. This had the effect of initializing the constants
of motion L, and L, such that

Lz
7. =cos 6, (9.8.12)

2

and

$log=0 6lp-,=0 (9.8.13)

The professor might then proceed to demonstrate the other two modes of precessional
nutation simply by giving the tip of the body symmetry axis either a mild forward shove
such that ¢|,_,, > 0 (see Figure 9.8.4a) or a mild backward shove such that ¢|y_,, < 0 (see
Figure 9.8.4b).

There are two other possibilities for the motion of the top. If we have a double root
as indicated by the plot of f(u) in Figure 9.8.3b, that is, if u; = u,, then there is no nuta-
tion, and the top precesses steadily. Our indubitable professor can demonstrate this mode
by spinning the top quite rapidly and then slowly nudging the symmetry axis forward
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such that the angular velocity ¢ = 0 and then releasing it delicately with 0 =0 (see
Problem 9.24). The final possibility is that of the sleeping top, discussed in the previ-
ous section. It corresponds to the plot in Figure 9.8.3¢ in which f(u) has only the single
physical root of 4, = 1. Our intrepid professor can demonstrate this mode by aligning
the axis of the top vertically, spinning it fast enough that the stability criterion set forth
in Equation 9.7.12 is satisfied and then releasing it; if the professor fails to spin it fast
enough, it will prove to be unstable and will topple over.

9.9| The Gyrocompass

Let us consider the motion of a top that is mounted on a gimball support that constrains
the spin axis to remain horizontal, but the axis is otherwise free to turn in any direction.
The situation is diagrammed in Figure 9.9.1, which is taken from Figure 9.7.1 except that
now 6=90° and the unprimed axes are labeled to correspond to directions on the Earth’s

o,

Axis of
gyroscope

Figure 9.9.1 The gyrocompass. ®
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surface as shown. The top is centrally mounted unlike the unbalanced tops just described,
so that no gravitational torque acts upon it. In this case, the spinning top, although not
completely torque-free, behaves somewhat like a gyroscope, which is a completely torque-
free top.

We know from Chapter 5 that Earth’s angular velocity, here denoted by @,, has com-
ponents @, cos A (north) and @, sin A (vertical), where 4 is the latitude. In the primed
coordinate system we can then write

o, =i'w, cosA cosp+ j @, sinA+k’w, cosA sing 9.9.1)

Now the primed system is turning about the vertical with angular rate ¢ so the angular
velocity of the primed system is

o =w,+j9=i'w, cosA cosp+ j(+w, sind)+k’®, cosAsing (9.9.2)

Similarly, the gyrocompass itself is turning about the z’-axis at a rate § superimposed on
the components in Equation 9.9.2 so that its angular velocity, referred to the primed
system, is

w=0'+k'yy=i'w, cosA cosp + j'(§ + ®, sinA) +k’( + ®, cosAsing) (9.9.3)

The principal moments of inertia of the gyrocompass are, as before, I = I, = I, I; = I;
hence, the angular momentum can be expressed as

L=ilw, cosA cos¢+ j1( +w, sin A) + kIS 9.9.4)
where, in the last term, the total spin S is
S=y+®, cos Asin ¢ 9.9.5)

Now, because the gyrocompass is free to turn about both the vertical (y’-axis) and the
spin or z"-axis, the applied torque required to keep the axis horizontal must be about the
«’-axis: N =i’N. The equation of motion

N= (%JM + @' xL (9.9.6)

thus, has components referred to the primed system as follows:

N = I%(we cosA cos@)+ (@ X L),. (9.9.7a)
0= I-(%(d) +, sin A) + (" X L)y, (9.9.7b)
=1, d—f +(@' X L), (9.9.7¢)

From the expressions for @’ and L, we find that (@” X L), = 0, so Equation 9.9.7c
becomes dS/dt = 0; thus, S is constant. Furthermore, we find that Equation 9.9.7b
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becomes
0 =I1¢+Iw? cos®A cosd sing — I,S®, cos A cos ¢ (9.9.8)

It is convenient at this point to express the angle ¢ in terms of its complement ¥ = 90°- ¢,
so cos ¢ = sin ¥ and ¢ =—}. Furthermore, we can ignore the term involving @2 in
Equation 9.9.8 because S >> @, in the present case. Consequently, Equation 9.9.8 reduces to

ISw, cosA) .
+ 1 siny =0 9.9.9)

This is similar to the differential equation for a pendulum. The variable y oscillates about
the value y = 0, and the presence of any damping causes the axis of the gyrocompass to
“seek” and eventually settle down to a north—south direction. For small amplitude, the
period of the oscillation is

I V2
T, =2 ————— (9.9.10)
0 (Iswes cos l]

Because the ratio I/I is very nearly 2 for any flat-type symmetric object, the period of
oscillation is essentially independent of the mass and dimensions of the gyrocompass.
Furthermore, because @, is very small, the spin § must be fairly large to have a reason-
ably small period. For example, let the gyrocompass spin at 60 Hz so that S =272x 60 rad /s.
Then, for a flat-type gyrocompass, we find for a latitude of 45° N

( 24 x 60 X 60 )”2 (12x60)“2
¥4 s = S

Ty =2
2x 27 X60x 27w X 0.707 0.707

§=319 s

or about ; min. In the preceding calculation we have used the fact that
@, = 27t/(24 X 60 X 60) rad /s

so that the factors 27 all cancel.

9.10| Why Lance Doesn’t Fall Over (Mostly)

In 2003, Lance Armstrong became only the second man in history to win the Tour de
France five consecutive times. Armstrong’s fifth win did not come easily. Usually, the
winner of the Tour has been determined many stages before the last, when the riders enter
Paris and make several circuits around the Champs-Elysees, the victor no longer chal-
lenged and cruising easily, well-protected by his team members in the pelaton. In 2003,
Lance’s victory was not secure until the finish of the 19th stage of the 20-stage race, a 49-
km individual time trial. It was a rainy day. The road was wet and slippery, and the course
was quite technical. Armstrong’s chief rival, Jan Ullrich, was in second place overall, only
a minute and several seconds behind Armstrong. Ullrich, a strong time trialist himself,
had handed Armstrong a rare defeat in stage 12 by more than a minute, an earlier 47-km
time trial. As he poised himself for the start of stage 19, he more than likely felt that he
might assume the overall lead with another strong showing. Unfortunately, two-thirds
of the way through the course, Ullrich, negotiating a curve too fast given the wet con-
ditions, saw any chance of victory hopelessly dashed as his rear wheel skidded out from
under him and he fell and slid along the wet road, crashing into hay bales along the side.
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Armstrong, wearing the yellow jersey of the overall race leader, had the advantage of start-
ing his trial three minutes after Ullrich. At the time he received word by radio of Ullrich’s
fall, he was neck and neck, time-wise, with the speedy German and more than likely
would have remained well in front for the overall lead, even if Ullrich had not fallen. Given
Ullrich’s fall, however, Armstrong was able to slow down a bit from that point on, taking
extreme caution to negotiate the slippery turns that remained. He cruised into the finish
line in third place for the stage and one minute and sixteen seconds in front of Ullrich for
the overall lead, his fifth consecutive victory for the Tour de France now assured. Ullrich,
clearly shaken but recovering somewhat from his disastrous fall, finished fourth for the
stage and second for the Tour.

In this section, we do not take it upon ourselves to anlyze the stability of cyclist and
bicycle on a slippery road, clearly an exceedingly complicated issue. Instead, we take on
the simpler problem of analyzing the stability of a disk bicycle wheel, of the sort typically
used as the rear wheel of a time-trial bike, rolling along by itself on a perfectly rough
horizontal road.

The motion of the wheel can be resolved into two parts: (1) translation of its center
of mass and (2) rotation about its center of mass. The general equations describing the
motion of the wheel were given by the force Equation 8.6.1 and the torque Equation 8.6.2.
The external forces acting on the wheel are mg acting on its center of mass and Fp acting
on it at its point of contact with the road (see Figure 9.10.1). The force equation, there-
fore, is

dv
Fp, +mg=m—= 9.10.1
prmg=m—y, ( )
The torque equation is
dL
XFp=— 9.10.2
Top X ¥p = ( )

Figure 9.10.1 Coordinates for analyzing the
motion of a rolling wheel.
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where rop is the vector position of the point of contact relative to the center of mass.
Solving for Fp in Equation 9.10.1 and substituting the result into Equation 9.10.2 yields

L X(mdv—c’"—m ]—d—l‘ 9.10.3
op X| m=zm —mg | == 9.10.3

If @ is the angular velocity of the wheel, then the velocity of the mass center is given by
Ven S WX Tpo =@ X (—Tpp) (9.104)

If a is the radius of the wheel and 0is the inclination of its axis to the vertical as shown
in Figure 9.10.1, then in the primed coordinate system, we have

Top =-ja (9.10.5)
g =—g(j’ sin6 +k’ cosh) (9.10.6)

Substituting the preceding relations into Equation 9.10.3 gives
-aj’ X [m‘%(w Xaj)+mg(j sin@+k’ cose)] = % (9.10.7)

Furthermore, the primed coordinate system rotates with angular velocity @’ (remember—
the i’ direction always lies in a horizontal plane and the j” and k’ vectors always lie in a ver-
tical plane. See the discussion in Section 9.6). Thus, we have

d d
udpiy o ’ X
dt (dt] t+to ©.10.8)

Substituting this operator relation into Equation 9.10.7 gives

-ma’j x [(d—"’] Xj+e X(@X j’)]
dt ),

L (9.10.9)
-mgalj’ X (j sinf +k’ cosG)]=(—j;] +o’' XL
rot

We do not attempt to solve the preceding general equation of motion. Rather, we wish
to discuss a special case, namely, that for which the wheel stays very nearly vertical and
the direction of the rolling motion is constant or nearly constant: steady rolling. This
means that 6 remains close to 90° so that the complement y = 90° — 6 and the angle ¢
both remain small. Under these assumptions sin ¥ = y and sin ¢ = ¢, approximately, and
the general expressions for the components of @’, @, and L as given by Equations 9.6 .4,
9.6.5, and 9.7.2 simplify to give

o =-iy+j¢ (9.10.102)
w=-i'y+ J’¢ +Kk’S (9.10.10b)
L=-iTy+jI$+KLS (9.10.10c)

Inserting these into Equation 9.10.9 and performing the indicated operations and
dropping higher-order terms in the small quantities y and ¢, the following result is
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obtained:
ma® i’y —-k’S —i’S9) — mgai’y = i'(Ij + T,S9)
x 9= meai . i ' . (9.10.11)
+§(I6 + 1Sg)+k'LS
Equating the three components gives
ma®(§ —S@)—mgay = -1} +1,5¢ (9.10.12a)
0=I1¢+1S% (9.10.12b)
0=25(1, + ma®) (9.10.12c)

Equation 9.10.12¢ shows that $ =0 so S is constant. Equation 9.10.12b can then be
integrated to yield I ¢ + I,Sy = 0 provided we assume that ¥ = ¢ = 0 for the initial con-
dition. Then ¢ = —I,Sy/I, which, inserted into Equation 9.10.12a, gives the following
separated differential equation for y:

I(I+ma®)j +[I,(I, + ma®)S% — Imgal x = 0 (9.10.13)

The assumed stable rolling then takes place if the quantity in brackets is positive. Thus,
the stability criterion is

% Imga

m (9.10.14)

EXAMPLE 9.10.1

How fast must a disc bicycle wheel roll to not topple over (assume that the wheel is a
uniform thin, circular lamina and that its radius is ¢ = 0.35 m)?

Solution:

The moments of inertia of a thin, uniform circular disk are I, =2I = %maz. The crite-
rion for stable rolling is given by Equation 9.10.14

S2 > mga = &
2 (% ma® +ma® ) 3a
Because the rolling speed is v = v,,, = a8, the criterion for stable rolling becomes

ol > 8
3

Putting in numbers, we get

[9.80 ms ™2
>
3

=1.07m/s =3.85 km/hr

% 0.35 mJ”Z

So, if Lance rides fast in a relatively upright position on a dry road, he probably won't

topple over unless an overly zealous spectator snares his handlebars with the straps of
his ditty bag!
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Problems

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

A thin uniform rectangular plate (lamina) is of mass m and dimensions 2a by a. Choose a

coordinate system Oxyz such that the plate lies in the xy plane with origin at a corner, the

long dimension being along the x-axis. Find the following:

(a) The moments and products of inertia

(b) The moment of inertia about the diagonal through the origin

(¢) The angular momentum about the origin if the plate is spinning with angular rate @about
the diagonal through the origin

(d) The kinetic energy in part (c)

A rigid body consists of three thin uniform rods, each of mass m and length 24, held mutu-

ally perpendicular at their midpoints. Choose a coordinate system with axes along the rods.

(a) Find the angular momentum and kinetic energy of the body if it rotates with angular
velocity e about an axis passing through the origin and the point (1, 1, 1).

(b) Show that the moment of inertia is the same for any axis passing through the origin.

(c) Show that the moment of inertia of a uniform square lamina is that given in Example 9.1.1
for any axis passing through the center of the lamina and lying in the plane of the lamina.

Find a set of principal axes for the lamina of Problem 9.1 in which the origin is
(a) Atacorner
(b) At the center of the lamina

A uniform block of mass m and dimensions a by 2z by 3a spins about a long diagonal with

angular velocity @. Using a coordinate system with origin at the center of the block,

(a) Find the kinetic energy.

(b) Find the angle between the angular velocity vector and the angular momentum vector
about the origin.

A thin uniform rod of length ! and mass m is constrained to rotate with constant angular

velocity @ about an axis passing through the center O of the rod and making an angle arwith

the rod.

(a) Show that the angular momentum L about O is perpendicular to the rod and is of mag-
nitude (m*w/12) sin a.

(b) Show that the torque vector N is perpendicular to the rod and to L and is of magnitude
(ml?6/12) sin ¢ cos c.

Find the magnitude of the torque that must be exerted on the block in Problem 9.4 if the
angular velocity @ is constant in magnitude and direction.

A rigid body of arbitrary shape rotates freely under zero torque. By means of Euler’s
equations show that both the rotational kinetic energy and the magnitude of the angular
momentum are constant, as stated in Section 9.4. (Hing: For N =0, multiply Euler’s equations
(Equation 9.3.5) by ,, ®,, and @, respectively, and add the three equations. The result indi-
cates the constancy of kinetic energy. Next, multiply by I, 01, I, @4, and I @3, respectively,
and add. The result shows that L? is constant.)

Alamina of arbitrary shape rotates freely under zero torque. Use Euler’s equations to show
that the sum @’ + @? is constant if the 1, 2 plane is the plane of the lamina. This means
that the projection of @ on the plane of the lamina is constant in magnitude, although the
component ®@; normal to the plane is not necessarily constant. (Hint: Use the perpendicu-
lar-axis theorem.) What kind of lamina gives @ 3 = constant as well?

A square plate of side ¢ and mass m is thrown into the air so that it rotates freely under zero
torque. The rotational period 277w is 1 s. If the axis of rotation makes an angle of 45° with
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9.10

9.11

9.12
9.13
9.14

9.15

9.16

9.17
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the symmetry axis of the plate, find the period of the precession of the axis of rotation about
the symmetry axis and the period of wobble of the symmetry axis about the invariable line
for two cases:

(a) A thin plate

(b) A thick plate of thickness a/4

A rigid body having an axis of symmetry rotates freely about a fixed point under no
torques. If o is the angle between the axis of symmetry and the instantaneous axis of rota-
tion, show that the angle between the axis of rotation and the invariable line (the L
vector) is

tan"[ (I, - Dtan a}

I+ Itan’a

where I, (the moment of inertia about the symmetry axis) is greater than I (the moment of
inertia about an axis normal to the symmetry axis).

Because the greatest value of the ratio I./I = 2 (symmetrical lamina), show from the result
of Problem 9.10 that the angle between @ and L cannot exceed tan* ( J—) or about 19.5°
and that the corresponding value of ais tan™' V2, or about 54.7°.

Find the angle between w and L for the two cases in Problem 9.9.
Find the same angle between @ and L for Earth.

A space platform in the form of a thin circular disc of radius ¢ and mass m (flying saucer)
is initially rotating steadily with angular velocity @ about its symmetry axis. A meteorite
strikes the platform at the edge, imparting an impulse P to the platform. The direction of
P is parallel to the axis of the platform, and the magnitude of P is equal to maw/4. Find the
resulting values of the precessional rate Q, the wobble rate ¢, and the angle arbetween the
symmetry axis and the new axis of rotation.

A Frisbee is thrown into the air in such a way that it has a definite wobble. If air friction
exerts a frictional torque —ce on the rotation of the Frisbee, show that the component of
@ in the direction of the symmetry axis decreases exponentially with time. Show also that
the angle a between the symmetry asis and the angular velocity vector @ decreases with
time if I, is larger than I, which is the case for a flat-type object. Thus, the degree of wobble
steadily diminishes if there is air friction.

A simple top consists of a heavy circular disc of mass m and radius @ mounted at the center

of a thin rod of mass m/2 and length a. If the top is set spinning at a given rate S, and with

the axis at an angle of 45° with the vertical, there are two possible values of the precession

rate ¢ such that the top precesses steadily at a constant value of 6 = 45°,

(a) Find the two numerical values of ¢ when S =900 rpm and a = 10 cm.

(b) How fast must the top spin to sleep in the vertical position? Express the results in rev-
olutions per minute.

A pencil is set spinning in an upright position. How fast must the spin be for the pencil
to remain in the upright position? Assume that the pencil is a uniform cylinder of length
a and diameter b. Find the value of the spin in revolutions per second for a = 20 cm and
b=1cm.

How fast must a penny (radius a = 0.95 cm) roll to remain upright?

A rigid body rotates freely under zero torque. By differentiating the first of Euler’s equa-
tions with respect to ¢, and eliminating &, and ®; by means of the second and third of
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Euler’s equations, show that the following result is obtained:
o, +Kw =0
in which the function K; is given by

K. = -2 U —1)d, - 1) P U —1)d; - 1)
' : L, ? L,

Two similar pairs of equations are obtained by cyclic permutations: 1 - 2,2 53,3 > 1.
In the preceding expression for K; both quantities in brackets are positive constants if I; <
I, < I, orif I > Iy > I . Discuss the question of the growth of @, (stability) if initially @, is
very small and (a) @, =0 and o, is large: initial rotation is very nearly about the 3-axis, and
(b) @3 =0 and o, is large: initial rotation is nearly about the 2-axis. (Note: This is an ana-
lytical method of deducing the stability criteria illustrated in Figure 9.4.2.)

A rigid body consists of six particles, each of mass m, fixed to the ends of three light rods

of length 24, 2b, and 2¢, respectively, the rods being held mutually perpendicular to one

another at their midpoints.

(a) Show that a set of coordinate axes defined by the rods are principal axes, and write down
the inertia tensor for the system in these axes.

(b) Use matrix algebra to find the angular momentum and the kinetic energy of the system
when it is rotating with angular velocity e about an axis passing through the origin and
the point (g, b, c).

Work Problems 9.1 and 9.4 using matrix methods.

A uniform rectangular block of dimensions 2a by 2b by 2¢ and mass m spins about a long
diagonal. Find the inertia tensor for a coordinate system with origin at the center of the block
and with axes normal to the faces. Find also the angular momentum and the kinetic energy.
Find also the inertia tensor for axes with origin at one corner.

Show that the z-component of angular momentum L, of the simple top discussed in Section
9.7 is given by Equation 9.7.7.

If the top discussed in Sections 9.7 and 9.8 is set spinning very rapidly (¥ > 0) its rate of pre-
cession will slow (¢ =~0) and the angular difference 6, — 6, between the limits of its nutational
motion will be small. Assuming this condition, show that the top can be made to precess
without nutation if its motion is started with 8],_p, =0 and ¢ |y = mgl/L,,, where L, =LS.

Formaldehyde molecules (CH;O) have been detected in outer space by the radio waves they

emit when they change rotational states. Assume that the molecule is a rigid body, shaped

like a regular tetrahedron whose faces make equilateral triangles. The masses of the oxygen,
carbon, and hydrogen atoms are 16, 12, and 1 AMU, respectively.

(a) Show that a coordinate system whose 3-axis passes through the oxygen atom and its pro-
jection onto the face formed by the carbon and two hydrogen atoms, 1-axis passes
through that point and the carbon atom, and 2-axis is parallel to the line connecting the
two hydrogen atoms are principal axes of the molecule, as shown in Figure P9.25.

(b) Write down the inertia tensor for the molecule about these axes.

(c) Assume that the molecule rotates with angular velocity given by

W =€+ 0,e+ W;€;
Show that motion is stable if the molecule rotates mostly about either the 3-axis or the 2-

axis (i.e., if ®, and @, are small compared with @, or if @, and @; are small compared with
®,) but not stable if it rotates mostly about the 1-axis.
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Figure P9.25

Computer Problems

C9.1

C9.2

Consider the spinning top discussed in Examples 9.7.1 and 9.7.2. Suppose that it is set spin-

ning at 35 rev/s and initially its spin axis is held fixed at an angle 8, = 60°. The axis is then

released and the top starts to topple over. As it falls, its axis starts to precess as well as to

nutate between two limiting polar angles 6, and 6,.

(a) Calculate the two limits 6; and 6,.

(b) Estimate the period of nutation analytically. (Hint: Make approximations, where nec-
essary, in the expression given in the text for & and then integrate.)

(¢) Estimate the average period of precession analytically. (Hint: Make approximations in the
expression for ¢ given in the text.)

(d) Find cos 8(¢) and ¢(¢) by numerically integrating the appropriate equations of motion
over a time interval somewhat greater than one nutational period.

(e) Letting the function x(¢)=cos 8, — cos 8(t), where 6, is the smaller of the two angular limits
of the nutational motion, plot x (£) versus ¢(¢) over the same time interval as in part (d).
From this plot, calculate both the nutational period and the average precessional period.
Compare the results obtained from the plot with those from parts (a), (b), and (c).

(a) Reproduce the numerical calculation of the free rotation of the ellipsoid with three
unequal principal moments of inertia given in Section 9.5. In particular, verify the
values of the moments of inertia and the phase space plot given in that section.

(b) Calculate the phase space trajectory of that same ellipsoid by solving for the intersec-
tion of the constant T and L? ellipsoids.

(¢) Find appropriate initial conditions for [,(0), ®(0), @3(0)] that lead to precessional
motion about an axis other than the 3-axis—if possible. (Hint: The angular velocities
about the 3-axis and either the 1- or 2-axis, but not both, should pass through zero
during one period of the motion.)
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rovides al the
- ; o unite, and
present from one point of view, the different prmaples WhICh have, so far,
been found to assist in the solution of problems in mechanics; by showing
their mutual dependence and making a judgement of their validity and
scope possible. . . . No diagrams will be found in this work. The methods that
| explain in it require neither constructions nor geometrical or mechanical
arguments, but only the algebraic operations inherent to a regular and
uniform process. Those who love Analysis will, with joy, see mechanics
become a new branch of it and will be grateful to me for having extended its
field.”

—Joseph Louis de Lagrange, Avertissement for Mechanique Analytique, 1788

Another way of looking at mechanics, other than from the Newtonian perspective, was
developed in continental Europe somewhat contemporaneously with the efforts of
Newton. This work was championed by Wilhelm von Leibniz (1646-1716) (with whom
Newton was deeply embroiled in a bitter quarrel regarding who should get credit for the
development of calculus). Leibniz’s approach was based on mathematical operations
with the scalar quantities of energy, as opposed to the vector quantities of force and
acceleration. The development was to take more than a century to complete and would
occupy the talents of many of the world’s greatest minds. Following Leibniz, progress
with the new mechanics was made chiefly by Johann Bernoulli (1667-1748). In 1717, he
established the principle of “virtual work” to describe the equilibrium of static systems.
This principle was extended by Jean LeRond D’Alembert (1717-1783) to include the
motion of dynamical systems. The development culminated with the work of Joseph Louis
de Lagrange (1736-1813), who used the virtual work principle and its D’Alembertian
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extension as a foundation for the derivation of the dynamical equations of motion that, in
his honor, now bear his name.

Initially we do not take Lagrange’s approach in developing his equations of motion.
Instead, we take another approach, originally pursued with the goal of solving problems
that run the entire gamut of physics, not merely those limited to the domain of classical
mechanics. This approach stems from the deep philosophical belief that the physical uni-
verse operates according to laws of nature that are based on a principle of economy. They
should be simple and elegant in form. This belief has gripped many of the most brilliant
physicists and mathematicians throughout history, among them, Euler, Gauss, Einstein,
Bernoulli, and Rayleigh to name a few. The basic idea is that “mother nature,” given
choices, always dictates that objects making up the physical universe follow paths through
space and time based on extrema principles. For example, moving bodies “seek out” tra-
jectories that are geodesics, namely, the shortest distance between two points on a given
geometrical surface; a ray of light follows a path that minimizes (or, interestingly enough,
maximizes) its transit time; and ensembles of particles assume equilibrium configurations
that minimize their energy.

That such a hypothesis conveys some deep meaning about the workings of nature may
or may not be true . This is an issue that provides fodder for philosophers and theologians
alike. From the physicists point of view, the proof, so to speak, is in the pudding. Elegant
and beautiful though our laws of nature may be, we must insist ultimately on their exper-
imental verification. The laws that we select to depict the reality of nature must stand up
to scientific scrutiny. Failure to live up to the standards of this requirement relegated many
an elegant hypothesis to the junk heap.

The hypothesis of global economy, however, which we introduce here, has withstood
the assaults of all experimental battering rams (indeed, it leads to Newton’s laws of
motion). First announced in 1834 by the brilliant Irish mathematician Sir William Rowan
Hamilton (1805-1865), it has proved to have such a far-reaching effect on the devel-
opment of modern theoretical physics that most physicists have elevated the hypoth-
esis to an even more fundamental status than that of Newton’s laws. Thus, we have
decided to use it as the fundamental postulate of mechanics in beginning the subject of
this chapter.

In the sections that follow we

o Use this postulate, known as Hamilton’s variational principle, to show that in the
specific case of a body falling in a uniform gravitational field, it is equivalent to
Newton's second law of motion.

¢ Use Hamilton’s variational principle to derive Lagrange’s equations of motion for
a conservative system and demonstrate their use in several examples.

o Show how Lagrange’s equations of motion need to be modified when generalized
forces of constraint are a consideration.

o Present D’Alembert’s principle and use it to derive Lagrange’s equations for any
physical system that involves any generalized force, including nonconservative ones,

!For a discussion of the principle of virtual work, see, for example, N. G. Chataeu, Theoretical Mechanics,
Springer-Verlag, Berlin, 1989. For the development of the Lagrange equations from D’Alembert’s principle,
see, for example, (1) H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA, 1965; (2) F. A. Scheck,
Mechanics—From Newtons Laws to Deterministic Chaos, Springer-Verlag, Berlin, 1990.
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thereby completing a demonstration of the equivalence between the Newtonian and
Lagrangian formulations of mechanics.

e Introduce the Hamiltonian formulation of mechanics and demonstrate its use in
several examples.

10.1| Hamilton’s Variational Principle: An Example

Hamilton’ variational principle states that the integral
to
J= J'tl Ldt
taken along a path of the possible motion of a physical system is an extremum when eval-
uated along the path of motion that is the one actually taken. L =T — V is the Lagrangian
of the system, or the difference between its kinetic and potential energy. In other words,
out of the myriad ways in which a system could change its configuration during a time

interval £, — ¢,, the actual motion that does occur is the one that either maximizes or min-
imizes the preceding integral. This statement can be expressed mathematically as

6]=6J:2L dt=0 (10.1.1)

in which 6 is an operation that represents a variation of any particular system parameter
by an infinitesimal amount away from that value taken by the parameter when the inte-
gral in Equation 10.1.1 is an extremum. For example, the § that occurs explicitly in
Equation 10.1.1 represents a variation in the entire integral about its extremum value. Such
a variation is obtained by varying the coordinates and velocities of a dynamical system away
from the values actually taken as the system evolves in time from ¢, to t,, under the con-
straint that the variation in all parameters is zero at the endpoints of the motion at t; and
t,. That is, the variation of the system parameters between ¢; and ¢, is completely arbi-
trary under the provisos that the motion must be completed during that time interval and
that all system parameters must assume their unvaried values at the beginning and end
of the motion.

Let us apply Hamilton’s variational principle to the case of a particle dropped from
rest in a uniform gravitational field. We will see that the integral in Equation 10.1.1 is an
extremum when the path taken by the object is the one for which the particle obeys
Newton’s second law. Let the height of the particle above ground at any time ¢ be denoted
by y and its speed by 4. Then dy and 6% represent small, virtual displacements of y and §
away from the true position and speed of the particle at any time ¢ during its actual
motion. (Figure 10.1.1). The potential energy of the particle is mgy, and its kinetic energy
is my*/2. The Lagrangian is L = my*/2 — mgy. The variation in the integral of the
Lagrangian is given by

£ & | mi? ¢ el
6j=5["Ldt =5’ [Ty—mgy]dt = [ my 8y-mgy)dt  (1012)

The variation in the speed can be transformed into a coordinate variation by noting that

8¢ = % Sy (10.1.3a)
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(@) (b)

Figure 10.1.1 (a) Variation of the coordinate of a particle from its true path taken in free-fall.
(b) Variation in the speed of a particle from the true value taken during free-fall.

Integrating the first term in Equation 10.1.2 by parts gives

b
£,
~J mijdydt  (1013b)

1

2 Loa. [t . d .
J;l my 8y dt = J;l mya&/ dt =my oy

The integrated term on the right-hand side is identically zero because the parameters of
the admissible paths of motion do not vary at the endpoints of the motion. Hence, we
obtain

8]=6["Ldt=|"(-mij-mg)dy dt=0 (10.1.4)
f tl

Because 8y represents a completely arbitrary variation of the parameter y away from
its true value throughout the motion of the particle (except at the endpoints where the
variation is constrained to be zero), the only way in which Equation 10.1.4 can be zero
under such conditions is for the term in parentheses to be identically zero at all times.
Thus,

-mg-mij=0 (10.1.5)

which, as advertised, is Newton’s second law of motion for a particle falling in a uniform
gravitational field.

The solution to this equation of motion is y(t) = —%gt2 (assuming that the object
is dropped from rest at y, = 0). We now show that any solution that varies from this
one yields an integral | = [L dt that is not an extremum. We can represent any possi-
ble variation in y away from the true solution by expressing it parametrically as y(, t)
such that

y(o,t) = y(0,t) + an(t) (10.1.6)

When the parameter ¢ =0, then y = (0, t) = y(¢), the true solution. 7(¢) is any function
of time whose first derivative is continuous on the interval [t,,#,] and whose values, n(t,)
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and 7)(¢,), vanish, thus ensuring that y(c, t) attains its true value at those times regardless
of the value of a. Because our choice of 7(t) is arbitrary, consistent only with the constraints
expressed in Equation 10.1.6, the quantity or7)(t) generates any variation 8y () taken away
from the true dynamical path that we wish. An example of a possible variation away from
the true dynamical path was depicted in Figure 10.1.1.

The integral ] is now a function of the parameter o

to .
J@)= jt Liy(o,t), glot); £ dt 10.1.7)

We now proceed to calculate this integral for the case of the falling body. The expression
for 4 in terms of the parameter ais

y(o,t) = (0, 1)+ om)(2) (10.1.8)
where §(0,t) = — gt. The kinetic and potential energies of the falling body are

T——my = [—gt+a17(t)]2 (10.1.9a)

E

V =mgy = mg[-1 gt + om(®)] (10.1.9b)
The integral J(0) is, thus,

J= (——gy] dt

- f:z m {g2t2 — ag[tn(e) + () + 4 azﬁz(t)} dt

The integral of the term linear in ¢, in the center square brackets in Equation 10.1.10, is

(10.1.10)

J}"tene) + nende = ence)

Gt

o to _
t -J o de+ [nwde=0 oy
2

The first term in Equation 10.1.11 vanishes because 7(¢;) and 1(z;) = 0. Thus, the term
linear in ¢ completely vanishes, and we obtain

J@)=Ltg¥(-£)+1a? j"‘ff(t) dt (10.1.12)

The last term in Equation 10.1.12 is quadratic in the parameter @, and because the
integral of 7 %(t) must be positive for any 7](¢), J(c) exhibits the behavior pictured in
Figure 10.1.2. The value of the integral is a minimum when

of (@)

=0 N
30 (10.1.13)

a=0

which occurs at o= 0.

Even though this result was based on a specific example, it is true for any integral |
of a function of the function y (and its first derivative) that has the parametric form given
by Equation 10.1.6. The resulting (o) does not depend on a to first order, and its par-
tial derivative vanishes at & = 0, making the integral an extremum only when y is equal
to the solution obtained from Newton’s second law of motion.



422 CHAPTER 10 Lagrangian Mechanics

J(o)

Figure 10.1.2 J(&)=a+ba’isa
minimum at o= 0. o ——

EXAMPLE 10.1.1

Assume that a particle travels along a sinusoidal path from a point x =0 to x =x, during
a time interval At in a force-field free region of space. Use Hamilton’s principle to show
that the amplitude of the assumed sinusoidal path is zero, implying that the path the par-
ticle takes is really a straight line between the two points.

Solution:

Shown in Figure 10.1.3 are several possible paths that follow a sine curve between 0 and
x) along with the presumed correct straight line path.

The motion that a particle actually carries out in a force-field-free region of space
is given by the expression x = v,t. Any other possible motion is constrained to be com-
pleted during the time interval

At =x,/v,
Thus, we can vary the possible varied sinusoidal paths according to

x =0, and y = xnsinno, tix,

Figure 10.1.3 Possible
paths for a particle in a
force-field region.
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where 7 is a parameter that can be varied to change the amplitude of the sinusoidal path
of the particle. This variation insures that no matter which path the particle takes, it ends
up at x, in the time A¢. The Lagrangian for the varied path is

2
L=T-V= lm[v2+[nnv"] cos> ”v"t]—V

X
9] 9]

where V is the potential energy of the particle, which is constant because the motion is
in a force-field-free region of space. Thus, we have

2.2
v X monNnw X
x + 71 . 4 1
2 4x, v

J= J:l/”" Ldi="

x

We vary the path by varying 17 so that

*mo
8= 2 lndn=0
J [ o, ]nn

Because 61 is not zero, 71 must be zero to satisfy Hamilton’s principle, suggesting that
the path represented by the equation x = v,¢ represents the actual path of the particle.

Obviously, to demonstrate this conclusively, we would have to show that the same result
is obtained for all possible variations of the path—a task we do not undertake here.

10.2| Generalized Coordinates

Coordinates are used to define the position in space of an ensemble of particles. In gen-
eral we can select any set of coordinates to describe the motion of a physical system.
Certain choices, however, prove to be more economical than others because of the exis-
tence of geometrical constraints that restrict the allowable configuration of any system.

For example, consider the motion of the pendulum in Figure 10.2.1. It is constrained
to move in the xy plane along an arc of radius r. We could choose to describe the config-
uration of the pendulum by means of its position vector

r=xi+yj+zk (10.2.1)

Figure 10.2.1 Pendulum swinging in the
xy plane.
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Clearly, such a choice is tantamount to lunacy because it ignores the two conditions of
constraint to which the pendulum must adhere, namely

z2=0 rP—(x*+y*)=0 (10.2.2)

Only one scalar coordinate is really needed to specify the position of the pendulum. At
first sight either x or y might work, but to resolve a possible left—right ambiguity, we would
probably choose x to define the position uniquely. We would then assume that the implied
value of y is always negative. Given the x-value of the pendulum, y and z would then be
determined completely by the conditions of constraint. This choice would still prove awk-
ward for describing the configuration of the pendulum.

A better choice would be the arc length displacement s (= 8) or, equivalently, the angu-
lar displacement 0 of the pendulum away from the vertical. Either of these choices is better,
because only a single number is needed to tell us the whereabouts of the pendulum. The
important point here is that the pendulum really has only one degree of freedom that is, it
can move only one way and that way is along an arc of radius . There exists only a single,
independent coordinate necessary to depict its configuration uniquely. Generalized coor-
dinates are any collection of independent coordinates g; (not connected by any equations
of constraint) that just suffice to specify uniquely the configuration of a system of particles.
The required number of generalized coordinates is equal to the system’s number of degrees
of freedom. If fewer than this number is chosen to describe the system’s configuration, the
result is indeterminate; if a greater number is chosen, then some of the coordinates must
be determinable from the others by conditions of constraint.

For example, a single particle able to move freely in three-dimensional space
exhibits three degrees of freedom and requires three coordinates to specify its config-
uration. There exist no equations of constraint connecting the coordinates of a single
free particle. Two free particles would require six coordinates to specify the configu-
ration completely, but two particles connected by a rigid straight line like a dumbbell
(see Figure 10.2.2) would require only five coordinates. Let us see why. The position
of particle 1 could be specified by the coordinates (x;,y;,2;), whereas the position of
particle 2 could be specified by the coordinates (x, Y5, z2) as in the free particle case.
An equation of constraint exists, however, that connects the coordinates

d? ~[(x; ~25) + (g, — )" + (2, —2,)%]1=0 (10.2.3)

namely, the distance between the two particles is fixed and equal to d.

Figure 10.2.2 Generalized coordinates for
two particles connected by an infinitesimally
thin, rigid rod. x
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Suppose, in specifying the position of the system, we picked the above six coordinates,
one by one. We would not have complete freedom of choice in the selection process,
because the choice of the sixth coordinate would be forced on us after the first five had
been made. It would make more sense to choose initially only five independent coordi-
nates, say (X,Y,Z, 0,¢), unconnected by any equations of constraint, where (X,Y,Z) are
the coordinates of the center of mass and (6, ¢) are the zenith and azimuthal angles, which
describe the orientation of the dumbbell relative to the vertical (8= 0° when particle 1
is directly above particle 2, and ¢ = 0° when the projection of the line from particle 2 to
particle 1 onto the xy plane points parallel to the x-axis).

As a final example, consider the situation of a particle constrained to move along the
surface of a sphere. Again, the coordinates (x,y,z) do not constitute an independent set.
They are connected by the constraint

RP-(x*+y*+2%)=0 (10.2.4)

where R is the radius of the sphere. The particle has only two degrees of freedom avail-
able for its motion, and two independent coordinates are needed to specify completely
its position on the sphere.

These coordinates could be taken as latitude and longitude, which denote positions
on the spherical surface relative to an equator and a prime meridian as for Earth
(see Figure 10.2.3), or we could choose the polar and azimuthal angles 6 and ¢ as in the
dumbbell example.

In general, if N particles are free to move in three-dimensional space but their 3N
coordinates are connected by m conditions of constraint, then there exist n =3N —m inde-
pendent generalized coordinates sufficient to describe uniquely the position of the N par-
ticles and n independent degrees of freedom available for the motion, provided the
constraints are of the type described in the preceding examples. Such constraints are called
holonomic. They must be expressible as equations of the form

fi@yah=0  i=12,....N  j=12 ....m (10.2.5)

=V
Latitude A N e
Longitude l

Figure 10.2.3 Coordinate of a
point on Earth marked by latitude
and longitude.
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These equations are equalities, they are integrable in form, and they may or may not be
explicitly time-dependent.

Constraints that cannot be expressed as equations of equality or that are nonintegrable
in form are called nonholonomic, and the equations representing such constraints cannot
be used to eliminate from consideration any dependent coordinates describing the con-
figuration of the system. As an example of such a constraint, consider a particle con-
strained to remain outside the surface of a sphere. (Humans on Earth capable of going
to the moon but incapable of going more than a few miles underground represent a rea-
sonable approximation to this situation.) This condition of constraint is given by the
inequality

(P +y*+2*)-R*20 (10.2.6)

Clearly, this equation cannot be used to reduce below three the required number of inde-
pendent coordinates of the particle when it lies outside the sphere. Inside the sphere is
another matter. In this case the single constraint reduces the degrees of freedom to zero.
Because it is difficult to handle such situations using Lagrangian mechanics, we ignore
them in this text.

Perhaps the classic example of a nonholonomic constraint in which the representative
equation is nonintegrable appears in the case of a ball rolling along a rough, level surface
without slipping. The “rolling” condition connects the coordinates. A change in the ori-
entation of the ball cannot occur without an accompanying change in its position on
the plane. The equation of constraint, however, represents a condition on velocities, not
coordinates. The ball's point of contact with the surface is instantaneously at rest. The
desired constraint on coordinates can be generated only by integrating the equation rep-
resenting the velocity constraint. This cannot be done unless the ball’s trajectory is known.
Unfortunately, this is the very problem we wish to solve. Hence, the constraint equation
is nonintegrable and, as mentioned previously, cannot be used to eliminate dependent coor-
dinates from the problem. In contrast to the nonholonomic constraint represented by
inequality conditions on the coordinates, however, this type of nonholonomic constraint
can be handled tractably by the Lagrangian technique via the use of the method of Lagrange
multipliers.” Again, we ignore such situations here.

10.3| Calculating Kinetic and Potential Energies in
Terms of Generalized Coordinates: An Example

The Lagrangian L = T — V must be expressed as a function of the generalized coordi-
nates and time derivatives (generalized velocities) appropriate for a given physical situ-
ation. (Sometimes, the Lagrangian may also be an explicit function of time, although we
are not concerned with such cases here.) We need to find out how to generate such an
expression before deriving Lagrange’s equations of motion from Hamilton’s variational
principle. It is not obvious a priori just how to do this. Almost always, the kinetic energy
of an ensemble of particles can be written as a quadratic form in the velocities of the
particles related to a Cartesian coordinate system.

®For example, see pages 38—44 of H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA, 1965.
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Figure 10.3.1 Simple pendulum attached to a movable
support.

Because Cartesian coordinates are orthogonal, there are no cross-coupled terms in
such an expression. This is usually not true, however, when the kinetic energy is expressed
in terms of the generalized coordinates; that is, the coordinates chosen may lead to cross-
coupled velocity terms of the form ¢/¢;4;. There is no equivalent generalization regard-
ing the expression for the potential energy of a system. In some cases, the expression
contains cross terms even when expressed in Cartesian coordinates. Usually, however, the
potential energy is expressible as some function of just one of the generalized coordinates,
and it is easy to see just how it depends on that coordinate. One usually exploits this fea-
ture in choosing the generalized coordinates for any particular situation. Unfortunately,
such choices almost invariably lead to cross terms in the expression for the kinetic energy
of the system.

As a specific example, let us take the fairly nasty case, depicted in Figure 10.3.1, of
a pendulum of mass m attached to a support of mass M that is free to move in a single
dimension along a frictionless, horizontal surface. First, let us see just how many gener-
alized coordinates are needed to specify the system configuration uniquely. Each mass
needs three Cartesian coordinates, but there are four holonomic constraints

Z=0 - x=0 (10.3.1)
z2=0 [(x=X)Y +y"]-r" =0
The first two constraints ensure that the motion of the mass M lies along the x-axis.
The second two constraints ensure that the pendulum swings in the xy plane along an
arc of radius r, relative to its movable support. There are two degrees of freedom for
the motion and two generalized coordinates necessary to describe the configuration
of this system. We have chosen those coordinates to be X, which denotes the horizontal
position mass of M, and 6, the angular displacement of the pendulum away from the
vertical.
The potential and kinetic energies of this system can be expressed in terms of
Cartesian coordinates and velocities as

T =3 MX® + - m(* +§%) (10.3.2a)
V=mgy (10.3.2b)

Obtaining the potential energy in terms of generalized coordinates requires a transfor-
mation of coordinates

x=X+rsinf y=-rcos0 X=X (10.3.3a)
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while obtaining the kinetic energy as a function of generalized velocities can be effected
by differentiating Equation 10.3.3a.

i=X+r0 cosf §=r0sind X=X (10.3.3b)
Substituting these transformations into Equations 10.3.2a and b yields

T= %4-)'(2 +%[(X +10c0s0)? +(r6 sin0)*]

(10.3.4a)
= _1‘2{)'(2 +%[X2 +(1f0')2 +2Xr0 cos 0]
V = —mgrcos@ (10.3.4b)

Several features of Equations 10.3.4a and b illustrate our comments:

1. The kinetic energy is expressible as a quadratic form in the generalized velocities,
including a cross term.

2. The potential energy is dependent on a single, generalized coordinate, in this case,
the cosine of an angle.

Although it might have been easy to see how to write the potential energy directly in
terms of a single, generalized coordinate, it might take some thought to write the kinetic
energy directly in terms of the generalized velocities. It is worth doing, however, so let
us give it a try.

The velocity of mass M relative to our fixed inertial frame of reference is

V, =iX (10.3.5)

The velocity of mass m can be expressed as the velocity of mass M plus the velocity of
mass m relative to that of mass M, that is,

Vo = Ve + Vo) (10.3.6a)
where
Vntre) = eyr6 (10.3.6b)

and e, is a unit vector tangent to the arc along which the pendulum swings. Hence, the
velocity of m can now be written in component form directly as a function of the gener-
alized coordinates X and 6

i=X+1r0 cos0 y= r sind (10.3.7)

Plugging these expressions for the Cartesian velocities of the two masses into Equation
10.3.2a yields the kinetic energy in terms of the generalized coordinates as expressed in
Equation 10.3.4a.

An even more direct way to generate the correct expression for the kinetic energy
can be obtained by noting that

T =MV -Vy+imv, v, (10.3.8)
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where

v, =iX v, =iX+e,rd (10.3.92)

ViV, = X2 V-V, = X2 +r20% +2Xr0 cosd (10.3.9b)

To obtain a correct expression for the kinetic energy of any given system, one rarely goes

wrong by following the first outlined procedure (Equations 10.3.2a—10.3.4b), namely,

write the kinetic energy in terms of velocities relative to Cartesian coordinates, find

the transformation relating Cartesian to generalized coordinates, and then differenti-

ate. In many cases, however, it is easier to use the last demonstrated procedure

(Equations 10.3.8-10.3.9b), particularly if one is able to visualize just what form the gen-

eralized velocities take in terms of the unit vectors corresponding to the selected gen-
eralized coordinates.

When problems involve only holonomic constraints, there always exist transforma-
tion equations that relate the Cartesian coordinates of an ensemble of particles to their
generalized coordinates, and, thus, the required generalized velocities can be obtained
by differentiation. For example, in the case of a single particle, we have:

Three degrees of freedom —unconstrained motion in space

x = %(41.92-93)
Yy =4(91.92.93) (10.3.10)
2= 2(41,932,93)

Two degrees of freedom —motion constrained to a surface

x =x(q1.9,)
Yy =4(q1.92) (10.3.11)
z2=2(q1.92)

One degree of freedom—motion constrained to a line

x = x(q)
y=1y(q) (10.3.12)
z2=2(q)

And, as we did in Equations 10.3.3a and b, we can obtain the velocity transformations by
simply differentiating the coordinate transformations:

. o Ox
xza;{qi

i=1

_Nv9y , (10.3.13)
i=350a

y 9%
i=1 aq:

Z=

where n is the number of degrees of freedom.
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10.4| Lagrange’s Equations of Motion
for Conservative Systems

We are now ready to derive Lagrange’s equations from Hamilton’s variational princi-
ple. First, we should point out that all our examples thus far have consisted only of con-
servative systems whose motion is either unconstrained or, at worst, subject only to
time-independent holonomic constraints. We continue to confine our analysis to such
systems. The interested reader who wishes to endure the agony of dealing with either
nonconservative systems or systems suffering nonholonomic constraints is urged to
seek out the > many excellent presentations contained in other, more advanced, texts on
this subject.’

Hamilton’s principle is expressed by Equation 10.1.1 We proceed from that point
by carrying out the same variational procedure as we did in Section 10.1 for the specific
case of an object freely falling in a gravitational field. Only this time we carry out the
process for any general conservative system. We begin by assuming that the Lagrangian
is a known function of the generalized coordinates g; and velocities ¢, .The variation in
its time integral is

5] = 6_[ Ldt_J' 6Ldt—r22(————6q, gq.aq,deo (10.4.1)

The g, are functions of time; they change as the system “evolves” from t; tot,. Therefore, the

variation 8g, is equal to the difference between two slightly differing functions of time . The
8¢, can then be expressed as

d

sq. =2

%=1

This result can be substituted into the last term of Equation 10.4.1, which can then be

integrated by parts to obtain

8q, (10.4.2)

ty

aL

tg aL d
J, 2 5.0

(6 q,)dt = Z

to d( oL
‘Ll;a(a—qj&h dt (1043

The integrated term in brackets vanishes because the variation 8g; = 0 at the endpoints
t; and t,. Thus, we obtain

to oL d
5j Ldt_j ;{__E(aq Haq dt=0 (10.4.4)

Each generalized coordinate g; is independent of the others, as is each variation 8g;.
Moreover, the actual value of each variation 8g; is completely arbitrary. In other words,
we can vary each coordinate in any way we so choose as long as we make sure that its vari-
ation vanishes at the endpoints of the path. Consequently, the only way that we can ensure
that the preceding integral vanishes, given all the infinite varieties of possible values for
the dg;5s, is to demand that each bracketed term in the integrand of Equation 10.4.4

3See Footnote 1.
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vanish separately; that is,

oL d| oL

—_——=1]=0 i=12,...,n 10.4.5

3, dt (aq,. J ( ) (1049
These are the desired Lagrangian equations of motion for a conservative system subject
to, at worst, only holonomic constraints.

10.5| Some Applications of Lagrange’s Equations

Here we illustrate the great utility of Lagrange’s equations of motion by using them to
obtain the differential equations of motion for several different systems. The general
problem-solving strategy proceeds as follows:

1. Select a suitable set of generalized coordinates that uniquely specifies the system con-
figuration.

2. Find the equations of transformation relating the dependent Cartesian coordinates
to the independent generalized coordinates.

3. Find the kinetic energy as a function of the generalized coordinates and velocities.
If possible, use the prescription T = mv . v/2, with v expressed in terms of unit vec-
tors appropriate to the selected generalized coordinates. If necessary, express the
kinetic energy in terms of Cartesian coordinates, then differentiate the coordinate
transformations and plug the resulting velocity transformations into the kinetic energy
expression.

4. Find the potential energy as a function of the generalized coordinates using, if nec-
essary, the coordinate transformations.

EXAMPLE 10.5.1

The Harmonic Oscillator

Consider the case of a one-dimensional harmonic oscillator. Let x be the displacement
coordinate. Step 2 is not explicitly necessary. The single Cartesian coordinate x is obvi-
ously the single generalized coordinate. The Lagrangian is

L(x,£)=T -V = ymi® - Jkx®

We have ignored the other two coordinates y and z, because they are both constrained
to be zero. Now carry out the Lagrange operations of Equation 10.4.5

9L % a—L=—kx
aw A

d(oL) OL . _
E(s;]—s;—mx+kx—0

This is the equation of motion of the undamped harmonic oscillator discussed in
Chapter 3.
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EXAMPLE 10.5.2

Single Particle in a Central Force Field

The problem here is to use the Lagrange equations to generate the differential equa-
tions of motion for a particle constrained to move in a plane subject to a central force.
The single constraint is given by z = 0, so we need two generalized coordinates. We
choose plane polar coordinates: g, =7, g, = 6. The transformation equations and result-
ant velocities are

x=r cosf y=r sinf
%=1 cos@—r sinb § =1 sinf+r6 cosf
Thus, the Lagrangian is

T = m(i +§%) = 3m(? +r%6%) V=V(r)

L=>m(* +r*6%) - V(r)
We could have obtained the kinetic energy term more directly by expressing the veloc-
ity vector in terms of radial and tangential unit vectors

v=e.rr+ eoré
and, thus, the square of the particle’s velocity is

v-v=r2 + r29?

which is just what we obtained using the coordinate transformations.
The relevant partial derivatives needed to implement the Lagrangian equations
are

g—i=mf* g—i=mr92—g—‘:=mr92 + f(r)
The equations of motion are, thus,
49L_dL 4oL _odL_,
dt or or dt 06 00
mi =mr@® + f(r) dit(mrzé) =0

For future reference we might note that because the time derivative of the quantity mr*@
is zero, it is a constant of the motion. This quantity is the angular momentum of the par-
ticle. We can easily see that its constancy arises naturally in the Lagrangian formalism
because the 6 coordinate is missing from the Lagrangian function.
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EXAMPLE 10.5.3

Atwood’s Machine

Atwood’s machine consists of two weights of mass m; and m, connected by an ideal mass-
less, inextensible string of length [ that passes over a frictionless pulley of radius @ and
moment of inertia I (Figure 10.5.1). The system has only one degree of freedom—one
mass moves either up or down while the other is constrained to move in the opposite
sense, always separated from the first by the length of string. The pulley rotates appro-
priately. There exist five holonomic constraints. Four prevent motion in either the y or
z direction, whereas the fifth expresses the previously mentioned constraint

(x; +ma+x,)-1=0
where x; and x, are the vertical positions of each mass relative to the center of the

pulley. The Lagrangian is

T=

Do =

2,1 .2,1.%
+1 +11=
myE” +gmait” + 3175
V =-mgx—m,g(l — na —x)
1),
L=%(ml+m2+a—2)x2+(m1—m2)gx+m2g(l—7m)

where x is the single generalized coordinate of the system. The Lagrange equations of
motion are
daL_aL
dt ox  ox
1.
(ml +my +a—2)x =(m; —my)g

= (m; —m,)g
[my +m, + 1/a*]

giving the final acceleration of the system. If m; > m,, then m, falls with constant accel-
eration while m, rises with the very same acceleration. The converse is true if mg >m,.
If m, = my, each mass remains at rest (or moves at constant velocity). The effect of the
moment of inertia of the pulley is to reduce the acceleration of the system. The reader
probably recalls this result from analysis presented in more elementary physics classes.

Figure 10.5.1 An Atwood machine.
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EXAMPLE 10.5.4

The Double Atwood Machine

Consider the system shown in Figure 10.5.2. We have replaced one of the weights in
the simple Atwood’s machine by a second, simple Atwood’s machine. There are two degrees
of freedom for the motion of this system. Loosely speaking, they are the freedom of
mass 1 (and the attached movable pulley) to move up and down about the fixed
pulley and the freedom of mass 2 (and the attached mass 3) to move up and down
about the movable pulley. No other motion is permissible. Thus, there must be 10 holo-
nomic constraints. Eight of those constraints limit the motion of all three masses plus
the movable pulley to only a single dimension. Two holonomic constraints connect
the x coordinates

(x, +x)-1=0 (2x) + x5 +25)—(2A+1)=0

where x; and x,, are the vertical positions of the masses and movable pulley relative to
the center of the fixed pulley. (The student should verify these equations of constraint.)
The implication of these constraints regarding the reduction to the two selected gener-
alized coordinates x and ¢’ is indicated in Figure 10.5.2. In this case we have assumed
that each pulley is massless. We can, therefore, ignore the effects of moments of inertia.
We have also assumed that the radii of the pulleys are essentially zero (or small com-
pared with [ and ', the lengths of the constraining string). This assumption allowed us
to simplify the preceding equation of the constraint by ignoring the length of string that
goes around each pulley. We can now write down the kinetic and potential energies for
this system as well as its resultant Lagrangian

T=2mi® +5my(-i+1)" + g my (- - 1)
V=-mgr—mygll—x+x")~mygl —x+1'~x")
L=3mi® +zmy(—i+1")° + zmy (i + 1)

+(m, —mgy —mg)gx + (my, —my)gx’ + constant

Figure 10.5.2 A compound Atwood machine.
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The equations of motion are, thus,

doL_dL  daL_aL
dt 9% ox dt 9%’ 9ox’

myE +my (X — %) + my (X +£") = (m) —my —my)g

My (=% +X")+my (X +%") = (my —my)g

The accelerations can be obtained from an algebraic solution of the preceding equations.

EXAMPLE 10.5.5

Euler’s Equations for the Free Rotation of a Rigid Body

In this example, we use Lagrange’s method to derive Euler’s equations for the motion
of a rigid body. We consider the case of torque-free rotation. No potential energy is
involved, so the Lagrangian is equal to the kinetic energy

L=T=1(Lo} +1,0; +L,0;)

where the s are referred to principal axes of the body. In Equation 9.6.7 we expressed
the @'s in terms of the Eulerian angles 6, ¢, and y as follows:

), =0cosy +¢@sinfsiny
®, =~0siny +¢sinf cosy
@, =y + ¢ cosO

Regarding the Eulerian angles as the generalized coordinates, the equations of motion
are

da_a
dt 06 90
da_a
dt 9¢ ¢
da_a
dt oy Jy
Now, by the chain rule,
AL _ L doy
oy dw; oy O °
O
d oL
5o = L0
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Again, using the chain rule, we have

oL Jdw 0w
35— =hLo '5;",1“ 2@y 5?2

oy
= [,@,(—0 siny + ¢ sinB cosy) + I,@,(—H cosy — ¢ sinf siny)
= 10,0, - 1,0,0,

+1

Consequently, the Lagrangian equation of motion in the coordinate y reduces to
Lo, = o0,(, - 1)

which, as we showed in Section 9.3, is the third of Euler’s equations for the rotation of
a rigid body under zero torque. The other two of Euler’s equations can be obtained by
cyclic permutation of the subscripts: 1 = 2,2 — 3, 3 — 1. This is valid because we have
not designated any particular principal axis as being preferred.

EXAMPLE 10.5.6

Particle Sliding on a Movable Inclined Plane

Consider the case of a particle of mass m free to slide along a smooth inclined plane of
mass M. The inclined plane is not fixed but is free to slide along a smooth horizontal
surface, as shown in Figure 10.5.3. There are only two degrees of freedom, because each
object is constrained to move along a single dimension. We can most easily specify
the position of the inclined plane by choosing its generalized coordinate to be x, the
displacement of the plane relative to some fixed reference point. We can then complete
the specification of the system’s configuration by choosing x’, the displacement
down the plane relative to the top of the plane, to be the generalized coordinate of
the particle.

Figure 10.5.3 A block sliding down a movable wedge or inclined plane.
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We can calculate the kinetic energy of each mass in terms of the dot product of its
respective velocity vector, with each velocity vector specified in terms of unit vectors
directed along the relevant generalized coordinate.

V =ik v =ik +eyn

The unit vector ey is directed down the plane at an elevation angle G relative to the hor-
izontal (see Figure 10.5.3).
Thus, the kinetic energy is
1 Lar.
Ty = gMV-V = Mi?
T = L VeV =

—

m(ix +eyx’)- (it + e x”)
m(x® + 1'% + 21" cosB)

T=T,+T,

The potential energy of the system depends only on the vertical position of the particle
of mass m. We can choose it to be zero when the particle is at the top of the plane.

V = —mgx’sin6
Therefore, the Lagrangian of the system is
L= Mi® +m(i® +1"* + 21" cosB) + mgx'sin @

and the equations of motion are

ia_L=8_L=0 d oL _ oL
dt ox Ox dt ox’  ox’
%[m(a‘c+§c’cos€)+M§c]=0 (—‘li;(a'c’+§ccose)=gsin9

(Note: The time derivative of the first term is zero. The first term in brackets
is, therefore, a constant of the motion. This situation occurs because the
Lagrangian is independent of the coordinate x, similar to the situation that
occurred in Example 10.5.2. Close examination of this term reveals that it is the
total linear momentum of the system in the x direction.)

The term [m(% + &’ cos @) + M%] being a constant of the motion also reflects the fact
that from the Newtonian viewpoint there is no net force on the system in the x direction.
Notice how naturally this result seemingly falls out of the Lagrangian formalism. We have
more to say about this in the following section.

We carry out the preceding time derivatives, obtaining

m(E +% cos@)+Mi=0 i’ +%cos@ = gsin@
Solving for % and %’ we find

i = —gsin@ cosf = gsin@
(m +M)m —cos® 0 1-mcos® 0/(m + M)
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This particular example illustrates nicely the ease with which complicated problems fall
apart when attacked with the Lagrangian formalism. One could certainly solve the prob-
lem using Newtonian methods, but such an attempt would require a great deal more
thought and physical insight than demanded in the Lagrangian “turn the crank” method
shown here.

10.6] Generalized Momenta:
Ignorable Coordinates

A key feature of Examples 10.5.2 and 10.5.5 was the emergence of a momentum, con-
served along the direction of a generalized coordinate not explicitly contained in the
Lagrangian of the system. We would like to explore this situation in a little more detail.
Perhaps the simplest example that illustrates such a condition is a free particle moving in
a straight line, say, along the x-axis. Its kinetic energy is

T =Lmsz? (10.6.1)
2
where m is the mass of the particle and i is its velocity. The Lagrangian for this

system assumes the particularly simple form L = T. The Lagrangian equation of
motion is, thus,

doL_doT _,
dt 9x  dt 9%

.~ mx = constant

d, .
2 M9 =0 (10.6.2)

As occurred in Examples 10.5.2 and 10.5.5, when the Lagrangian is independent of a coor-
dinate, a solution to the equation of motion leads to the constancy of a quantity that can
be identified with the momentum of the system referred to that missing coordinate. In
this case we see that the constant quantity is exactly equal to the product mz, the
“Newtonian” linear momentum p, of the free particle. Hence, we make the formal def-
inition that

_OL _

Py % mx (10.6.3)

is the momentum of the particle. In the case of a system described by the generalized coor-
dinates g1, ¢s, - . ., G, - - - , Gy, the quantities p; defined by

oL

are called the generalized momenta conjugate to the generalized coordinate ;. Lagrange’s
equations for a conservative system can then be written as

oL

P = 'a-(z (10.6.5)
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It is now readily apparent that if the Lagrangian does not explicitly contain the coordi-
nate gy, then

b, = oL _

==

9y

. pr = constant (10.6.7)

0 (10.6.6)

The missing coordinate is ignorable, and its conjugate momentum is a constant of the motion.

Pendulum Attached to a Movable Support

Let us now continue the analysis of a pendulum attached to a movable support as out-
lined in Section 10.3 (see Figure 10.3.1). We have already calculated the kinetic and
potential energies for this system in terms of the generalized coordinates X, the position
of the movable support, and the angle 6 that the pendulum makes with the vertical.
They are given by Equation 10.3.4a. and b. The Lagrangian for this system is

L= %(M +m)X> + ém(r20'2 +2Xr6 cos6) + mgr cosf
The equations of motion are

:ia—Lza—Lzo ) =ia_L=a_L
Px=Tox " ox Po =206 o0

%[(M +m)X +mré cosf] =0
d o . '
A [m(r*6 + Xr cosB)] = ~m(Xr6 + gr) sinb

é+—}—(- cos6 +2 sin6 =0
r r
(Note: The Lagrangian is independent of the generalized coordinate X. Itis an
ignorable coordinate. Its conjugate momentum is the first term in brackets in the
preceding equation: the total linear momentum of the system in the X direction.
This momentum is a constant of the motion. It must be a conserved quantity, since
the potential energy of the system is independent of this coordinate (that is why
the Lagrangian is missing that coordinate) and, therefore, no net external forces
are acting in this direction.)

Sometimes the differential equations of motion look complicated. One might wonder
whether or not the differential equations are infested with errors. Such could be the sit-
uation on consideration of the second equation of motion derived earlier. As a check of
the validity of such equations demand that the system adhere to certain limiting condi-
tions, and then look closely at just what the derived equation of motion implies, given
the imposed conditions. For instance, suppose that in the preceding problem, we
“nail down” the movable support; that is, we fix it firmly to the track along which it was
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previously allowed to move without friction. We, thus, reduce the example to that of a
simple pendulum, and the equation of motion had better reflect this fact. We see that it
does. The central term containing the acceleration X goes to zero, because we have
eliminated any X-direction motion of the mass M. The resultant equation of motion
becomes

é+§sin9=0
r

that of a simple pendulum.

So far, so good. Still, we might continue to be bothered about the X term. The pre-
vious condition led to its elimination from the equation of motion. That is not a good
way to see whether its presence makes any sense. Let us play another trick similar to
the one used earlier, but this time with the angular acceleration and velocity terms 6
and 4. Can we imagine a scenario in which they might be zero? What kind of motion
would the system exhibit, given such a restriction? If those two terms are zero, the
equation of motion reduces to a solution for 8in terms of the horizontal acceleration X
and g

tan@ = i

g

In other words, if we uniformly accelerate the support toward the right, the solution in
the preceding equation describes a pendulum that hangs “motionless” at an angle 6 to
the “left” of the vertical relative to its support; that is, the system becomes a simple “linear
accelerometer.” Indeed, this is a possible scenario for the motion of this system. Such
an analysis was presented in Chapter 5 and is also presented in several beginning primers
on basic physics.* You see, it all makes sense.

EXAMPLE 10.6.2

The Spherical Pendulum, or Bar of Soap in a Bowl

A classic problem in mechanics is that of a particle constrained to stay on a smooth
spherical surface under gravity, such as a small mass sliding around inside a smooth
spherical bowl. The case is also illustrated by a simple pendulum that is free to swing
in any direction, Figure 10.6.1. This is the so-called spherical pendulum, mentioned
in Section 5.6

There are two degrees of freedom, and we use generalized coordinates 8 and ¢, as
shown. These are actually equivalent to spherical coordinates with = = constant, in which
Lis the length of the pendulum cord. The two components of the velocity are v,=16 and

*For example, see Example 6.8 in Serway and Jewett, Physics for Scientists and Engineers, 6th ed, Brooks/ Cole
Thomson—Learning, Belmont, CA, 2004.
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[}
>
]
m
y
[N *mg

Figure 10.6.1 The spherical pendulum. x

vy = l¢ sin6. The height of the bob, measured from the xy plane, is I —1 cos 6, so the
Lagrangian function is

L= %ml2(é2 +¢%sin® ) - mgl(1 - cosB)
The coordinate ¢ is ignorable, so we have immediately

Py = % = ml2¢ sin@ = constant

This is the angular momentum about the vertical, or z-axis. We are left with just the equa-
tion in 6:

daL_aL
dt 96 96

which reads
ml*8 = ml* ¢* sin@ cos§—mgl sin@

Let us introduce the constant S, defined by

S=¢sin2g=-"¢ (10.6.8)
ml

(This is the angular momentum divided by mI*) The differential equation of motion for
6 then becomes

cosf _
sin® @

é+% sinf— S2 0 (10.6.9)
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It is instructive to consider some special cases at this point. First, if the angle ¢ is con-
stant, then ¢ =0, and so S =0. Consequently, Equation 10.6.9 reduces to

é +-§- sin6 =0
which, of course, is just the differential equation of the simple pendulum. The motion
takes place in the plane ¢ = ¢, = constant.
The second special case is that of the conical pendulum. Here the bob describes a
horizontal circle, so 6 = , = constant. In this case 8 =0and 6 =0, so Equation 10.6.9
reduces to

or
§2 = % sin*8, secf, (10.6.10)
Inserting the value of S given by Equation 10.6.8 into Equation 10.6.10 yields
65 =& secty (10.6.11)

as the condition for conical motion of the pendulum.

Let us now consider the case in which the motion is almost conical; that is, the value
of @ remains close to the value 6. If we insert the expression for S* given in Equation
10.6.10 into Equation 10.6.9, the result is

. 4
- gf sin” 6, cos@
0+2|sinf-——=>——|=0
l (sm cos@, sin®@
It is convenient at this point to introduce the new variable £ defined as
§=6-6,

The expression in parentheses, which we call f(§), may be expanded as a power series
in & according to the standard formula

f©&=fO0)+f/(OE+ f”(O)%Z! P

We find, after performing the indicated operations, that f(0) = 0 and f'(0) = 3 cos 6, +
sec 6. Because we are concerned with the case of small values of &, we shall ignore higher
powers of £ than the first, and so we can write

E+%(3cos00 +secy)E=0
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Thus, £ oscillates harmonically about & = 0, or equivalently, 6 oscillates harmonically
about the value 6, with a period

T,=2r !
g(3cosf, +sec,)

Now the value of ¢ does not vary greatly from the value given by the purely conical
motion @y, so ¢ increases steadily during the oscillation of 8 about 6,. During one com-
plete oscillation of 6, the value of the azimuth angle ¢ increases by the amount

¢ = 9T
From the values of ¢, and T} given in the preceding equation, we find
¢, = 2n(3cos>6, +1)™2

Now the quantity in parentheses is less than 4, for nonzero 6, so ¢, is greater than
7 (180°). The excess A¢is shown in Figure 10.6.2, which is a plot of the projection of the
path of the pendulum bob on the xy plane. As the pendulum swings, it precesses in the
direction of increasing ¢, as indicated.

Finally, for the general case we can go back to the differential equation of motion
(Equation 10.6.9) and integrate once with respect to 6 by using the fact that
6 =046/do = £ d6%/d6.The result is

2

12 _ 8
192 =B oos6—
27 =7 %Y 2sine

in which C is the constant of integration and

+C=-U0)+C

2

2sin%0

U(o)=—% cos6 +

is the effective potential. Actually, the mtegrated equation of motion is just the energy
equation in which the total energy E = C ml®. For a given initial condition, the motion

= I

Figure 10.6.2 Projection on the
xy plane of the path of motion of
the spherical pendulum.
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Figure 10.6.3 Illustrating the limits of the
motion of the spherical pendulum.

U

4
C
Figure 10.6.4 Graph of the '
effective potential for the
spherical pendulum.

of the pendulum is such that the bob oscillates between two horizontal circles. These
circles define the turning points of the 8-motion for which 6 =0 or U(6) = C. This is
illustrated in Figures 10.6.3 and 10.6.4.

10.7| Forces of Constraint: Lagrange Multipliers

Notice that even though the physical system discussed in several of our previous exam-
ples has been subject to holonomic constraints, nowhere in our calculations have we had
to consider specifically the forces that result from those constraints. This is one of the great
virtues of the Lagrangian method: direct inclusion of such forces of constraint in a solu-
tion for the motion of the constrained body is superfluous and, therefore, ignored. Suppose
for some reason or another, however, we wish to know the values of those forces. For exam-
ple, an engineer might wish to know the value of the normal force exerted by a curved
bridge on a heavily weighted truck traveling over it— or Tarzan might wish to know the
tension in a vine when swinging across a crocodile-infested river. Clearly, in such instances,
ignorance is not necessarily bliss.
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We can explicitly include the forces of constraint in the Lagrangian formulation
if we so choose. In essence, this can be accomplished by not immediately invoking any
equation(s) of constraint to reduce the number of degrees of freedom in a problem.
Thus right from the outset we keep all the generalized coordinates in which the kinetic
and potential energies of the system in question are expressed. This leads to more
Lagrange equations for the problem, one for each additional generalized coordinate not
eliminated by an equation of constraint. But because the coordinates are not inde-
pendent, the resulting Lagrange equations as previously derived cannot be independ-
ent either. They can, however, be made independent through the technique of Lagrange
multipliers.

For the sake of simplicity, we consider a system described by only two generalized
coordinates g, and g, that are connected by a single equation of constraint

fquq20=0 (10.7.1)
We start with the Hamilton variational principle as given in Equation 10.4.4
ty to oL d| oL
§['Ldt=] Z{— - —( %, ]] 8q,dt = (10.7.2)

Only now, the ¢, are not independent; a variation in g, leads to a variation in g, consis-
tent with the constraint given by Equation 10.7.1, which, because it is fixed at any instant
of time ¢, obeys the condition

d
of = (](6q1 a({ 6q2] (10.7.3)

Solving for 8¢, in terms of dq,

df/9q,
and on substituting into Equation 10.7.2, we obtain

t({ 0L d JL oL d oL \( 9f/oq,
—_————— | === - (|8g,dt=0 10.7.
J, K 3q, dt g, ] (aq2 dt 3G, ](a f1dgy )| 7 (10.7.5)
Only a single coordinate, g, is varied in this expression, and because it can be varied at
will, the term in brackets must vanish. Thus,

(9L/3q,)— (dIdt)AL/3G,) _ (OLI3qy) — (dIdt)AL/G,)
(9f/9q,) (9f/oq,)

The term on the left is a function only of the generalized coordinate ¢, and its derivative,

while that on the right is a function only of g, and its derivative. Furthermore, each term

is implicitly time-dependent through these variables and possibly explicitly as well. The

only way they can be equal at all times throughout the motion is if they are equal to a single

function of time, which we call —A(¢). Thus, we have
oL d JL of

At
20 doq, V3

f1d
8qy = -( f19, ] gy (10.7.4)

(10.7.6)

{i=12 (10.7.7)
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We now have a problem with three unknown functions of time: q,(t), g(t), and A(t), and
we have three independent equations needed to solve for them: two Lagrangian equations
of motion (10.7.7) and an equation of constraint (10.7.1). Thus, even though the two
coordinates are connected by an equation of constraint and we could have immediately
used it to reduce the degrees of freedom in the problem so that the motion could be char-
acterized by a single, “multiplier-free” equation, we did not do so. The reason is that the
Lagrange multiplier terms

Q= /l(t)—a— {i=12 (10.7.8)
aqi

that appear in the two Lagrangian equations of motion (10.7.7) are the forces of constraint
that we desire. They appear in the problem only because we did not initially invoke the
equation of constraint to reduce the degrees of freedom. These terms Q, are called gen-
eralized forces of constraint. They are identical to forces if their corresponding general-
ized coordinate g; is a spatial coordinate. As we shall see, however, they are torques if their
corresponding coordinate g; is an angular coordinate.

The more general problem is describable in terms of n generalized coordinates
connected by m equations of constraint. Thus, if knowledge of the constraining forces
is desired, then the system is described by n Lagrange equations of motion of the
form

of; i=12 ...n
. (10.7.9)

j=L2 ...m
Note, though, that there are m +n unknowns—the n g,(t) and the m A,(t). The additional

information necessary to solve the problem comes from the m equations of constraint usu-
ally known in one—or some combination of —the following forms:

fi(q:,t)=0 (10.7.10a)
of, 3f, i=12 ...n
—Ldg+=Ldt=0 7
2502 % {j:l,z, C.m (10.7.10b)

The second relation (Equation 10.7.10b) is the total differential of the first and so is
equivalent to it. In many instances, the constraints are known in the following differen-
tial form in which there is no explicit time derivative:

o, i=12 ...n
Y a—dq,. =0 , (10.7.10c)

7 9q; j=12,...m
Constraints of this form, when used in Hamilton’s variational principle to derive Lagrange’s
equations, are equivalent to the variation illustrated by Equation 10.7.3 and, thus, lead
directly to the Lagrange equations 10.7.9. Even if the constraints depend explicitly on time
as in Equations 10.7.10a and b, when used in Hamilton’s variational principle, the time
dependence has no effect on the Lagrangian equations of motion because time is held fixed
during the variational procedure, a fact that we invoked in Equation 10.7.3. Thus, when
one desires to know the forces of constraint and the constraints are of the type given by
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Equations 10.7.10a, b or c, the Lagrangian equations of motion to use are the ones given
by Equation 10.7.9.

EXAMPLE 10.7.1

Consider a disc that has a string wrapped around it with one end attached to a fixed sup-
port and allowed to fall with the string unwinding as it falls—as shown in Figure 10.7.1.
(The situation is somewhat akin to that of a yo-yo whose string is attached to a finger
and then allowed to drop, the finger held motionless as a fixed support.) Find the equa-
tions of motion of the falling disc and the forces of constraint.

Solution:

The kinetic energy of the falling disc is given by

1 .2 11 42

T= My +3 1,0

1 _.2.1_ 2.9

=zmy +zma (1]

where m is the mass of the disc,  is its radius, and I, = % ma” is the moment of iner-
tia of the disc about its central axis. The potential energy of the disc is

V=-mgy

where the reference level for the potential energy is located at y = 0, the point of sus-
pension. The Lagrangian is, therefore,

L=T-V= %mg2 +%ma2¢2 +mgy
The equation of constraint is given by

fly.9)=y-ap=0

The system has one degree of freedom, and we could choose either y or ¢ as the gen-
eralized coordinate and then use the equation of constraint to eliminate the other from
consideration. The preceding Lagrangian could then be transformed into a function

Figure 10.7.1 Falling disc unrolling from an attached string,
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of the single generalized coordinate, and we could use Lagrange’s equation (10.4.5)
without Lagrange multipliers to solve for the equation of motion of the falling disc. This
would not produce the desired forces of constraint, however. To find them, we must use
the Lagrange equations (10.7.9) with the undetermined multipliers 4,. In the case here,
Equations 10.7.9 are

9L _d oL .9f _,

3y diay " ay
oL daL ., of
20 dta_q')”‘aqs_o

On carrying out the preceding prescription, we obtain the following equations of
motion:

mg-mij+A=0
—%mazéﬁ'—/la=0

Differentiating the equation of constraint gives

=4

a

and inserting this into the second of the preceding equations of motion yields the
value of 1

l=—%mg

Inserting this into the first of the preceding equations of motion and using the differ-
entiated equation of constraint yields

Q [

g $=2

w] o

y:

Thus, we have the required equations of motion for the two, dependent, generalized
coordinates.

If the disc were to fall freely, unconstrained by the attached string, the downward
acceleration would be g. The upward tension in the string, the force of constraint,
must reduce this by % g. Thus, A must be equal to the tension in the string, one of the
generalized forces of constraint. We can see that is so by calculating the values of the
two generalized “forces”

)
Qy:ﬂ,—a';:l:—%mg
)
Q= —a{;=—la=%mga

The generalized force Q, is indeed the tension in the string that reduces the downward
acceleration of the disc, while Q, is the torque on the disc that causes it to rotate about
its center of mass.
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10.8| D'Alembert’s Principle: Generalized Forces

In Section 10.1, we showed how Hamilton’s variational principle led to Newton’s laws of
motion for the simple situation of a body falling freely in a uniform gravitational field. In
Section 10.4, we used Hamilton’s principle to derive the Lagrange equations of motion for
conservative systems, thereby implying that the Newtonian and Lagrangian formulations
of mechanics are equivalent, at least for that restricted class of problems. In Section 10.7
we showed how the Lagrangian formulation could be modified to include forces of con-
straint not derivable from a conservative potential function. Here we would like to show
that, with a minor alteration, the Lagrangian formulation can be further extended to
include those systems that might exhibit nonconservative forces as well. In doing so, we
hope to eliminate any lingering doubt that the by-now somewhat overwhelmed student
might harbor regarding the issue of the equivalence between the Newtonian and Lagrangian
formulation of mechanics.

To do this we appeal to a principle first suggested by Bernoulli and formalized by
D’Alembert. It is based on an extension of the fundamental condition of equilibrium,
namely that all the forces acting on all the bodies that make up a physical system vanish

when the system is in equilibrium

N
YF, =0 (10.8.1)

=1

Here, F, represents all the forces acting on the ith body, and N bodies comprise the
system. This set of equations represents relationships among vector quantities. The for-
mulation of mechanics developed in the late 17th and early 18th centuries, primarily in
continental Europe, was based on relationships among scalar quantities, like energy and
work. Bernoulli and D’Alembert realized that the net work done on bodies in equilibrium,
if subjected to very small displacements from equilibrium, would also vanish. In essence,
during such displacements, for every force that does positive work on the bodies, there
is one that does an equal and opposite amount of negative work.

Using this idea, the method of finding the conditions necessary for equilibrium is
carried out by imagining that a system of bodies in a given configuration undergo small
displacements away from their assumed positions, calculating the resultant work done
on the system and then demanding that it sum to zero. The displacements are imagined —
bodies actually in equilibrium obviously do not undergo any real displacements—and
they are assumed to be of infinitesimal extent. They are assumed to take place instan-
taneously (i.e., 6t = 0), and they are assumed to take place in a way that is consistent
with any imposed constraints. Such displacements are usually denoted by the symbol
d (as we previously did) and are called virtual displacements. The key point in this for-
mulation is the realization that if the work vanishes for a system subjected to such vir-
tual displacements, then the system is in equilibrium. Thus, we have a way of establishing
the conditions necessary for equilibrium by dealing with the scalar quantity of work,
rather than the vector quantity of force. This is the principle of virtual work men-
tioned at the beginning of the chapter, and it is expressed by the condition

N
SW=F,-6r,=0 (10.8.2)

i=1
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However, problems in dynamics deal with bodies that are not in equilibrium. They
must be solved using Newtons second law of motion

F, = p, {i=12,...N (10.8.3)

D’Alembert’s insight was to realize that problems in dynamics could be cast in the same
language as the principle of virtual work by including the inertial term —p as a real force
in Equation 10.8.2

N
Y (¥ -p,)-6r,=0 (10.8.4)
i=1
The condition expressed in Equation 10.8.4 is called D’Alembert’s principle, and it is
equivalent to Newton's second law of motion, written, however, as though the inertial term
was a real force

F-p,=0 {i=12,...N (10.8.5)

(which we know, from our work in Chapter 5, is a valid way of analyzing motion in an appro-
priate noninertial frame of reference). In effect, D’Alembert reduced a problem in
dynamics to one in statics. We now proceed to derive Lagrange’s equations of motion from
D’Alembert’s principle, (as did Lagrange himself, by the way).

In what follows, however, we do not wish to cloud the derivation with myriad sym-
bols such as double and triple sums and lots of indices, as sometimes happens in our zeal-
ous desire for completeness and rigor. Thus, we derive Lagrange’s equations for the case
of a single particle, assumed, however, to be subjected to some arbitrary number of
forces. Presumably, the ambitious student could generalize the analysis to many forces
acting on a many-particle system based on past material in the text through which we’ve
already laboriously waded.

We begin with D’Alembert’s principle, Equation 10.8.4, for a single particle expressed
in three-dimensional Cartesian coordinates

3

> (F,-p,) 6%, =0 (10.8.6)
i=1
The index i represents one of three Cartesian coordinates, and the F; are the sum of all
the force components acting on the body along the ith direction.

We assume that the motion of the particle is also describable in terms of its gener-
alized coordinates g;, which might or might not be connected by equations of constraint.
For the moment, we assume that they are not and that the relationship between the three
Cartesian coordinates and the three generalized coordinates then necessary to describe
the motion of the particle is given by Equations 10.3.10 for an unconstrained system.

The first term in the sum of Equation 10.8.6 is the virtual work done on the system

8W = Y'F, &z, =2[2(Fi%ﬂ&;]=2g 8q, (10.8.7)
i i i

JLi J
It is not equal to zero! The Qs, given by

o,
Q= ZE oy (10.8.8)
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are called generalized forces corresponding to the generalized coordinates g;. As was the

case with the generalized forces of constraint discussed in Section 10.7, a generalized force

Q;is a force if the corresponding generalized coordinate g; is a position; it is a torque if the

corresponding generalized coordinate g; is an angle. In each case, the product Q; § is work.
We now calculate the inertial term in Equation 10.8.6

z,-“i)" Sz, =zi:m5c'i Oz, = Z[me, 5 }5‘71

3 3 (10.8.9)
_ ox; | . d|odx
Z&“Z [dt{ aqf] idt{aqf ﬂ
Differentiating Equations 10.3.13, we see that
‘ajc—i = % 10.8.10
3, 9, (10.8.10)

and we can insert this relation into the first term in the brackets of Equation 10.8.9 to obtain
d|. ox d|. ox
z,.“ dt{x 9q; J z“mdt{ aqjj
BT
l

To evaluate the second term in brackets in Equahon 10.8.9 we need to take the time deriv-
ative of 0x,/0q . Because the time derivative of any general function of ¢; and ¢ is given by

(10.8.11)

d
f(q],) Z—qk a{ (10.8.12)

on applying this operation we obtain

. d| ox, . %, . . 0, ox,
. t (10.8.13
Z 'dt{aqj Zm"'[gaqkaq, 3, ot ;"”“a (10.8.15)

i

This result is equivalent to reversing the order of differentiation

ddx _ 3 du_ 3

Fq, " 3q &t "3, (10.8.13b)
Thus, the second term becomes
cdfox, ] 9 [w, .2} oT
mx,—| - |==— smx; {=— 10.8.13
zi: i dt{aqf 99, [Zz i i ( 9

The inertial term (Equation 10.8.9) is thus

2 bx, =2 %{a—.TJ - a—T] 8q; (10.8.14)

Jt
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Combining Equations 10.8.7 and 10.8.14, D’Alembert’s principle becomes

. aT _dT

For the moment, we’ve assumed that there are no constraints; therefore, the g can be inde-
pendently varied. Thus, the term in brackets must vanish, and we obtain

d(or) ar
E{M,J %, =Q, (10.8.16)

If the external forces are conservative, they can be derived from a potential energy
function, F; =-V,V, and Equation 10.8.16 can be simplified even further

)
,=2F aq =—ZVV = (10.8.172)
i i i

The latter expression in Equation 10.8.17a is the partial denvative of V with respect to
qj’ thllS

} 8q,=0 (10.8.15)

Q;=—5— (10.8.17b)

and it can be substituted into Equation 10.8.16, yielding

afar)_ar-v
di\3g, | o,

If the potential energy function V is independent of any generalized velocity §;, we can
include that term along with the first term in Equation 10.8.18 as well

dlar-wv]| ac-v) dfeL) oL
it —_ =0 8.
dt{ 3, ] 3, dt[aqu 2%, (10.8.19)

where we have substituted the Lagrangian function L = T — V introduced in Section 10.1.
Equation 10.8.19 is the Lagrangian equation of motion for conservative systems that we
derived previously from Hamilton's variational principle. Here, though, we have emphasized
the restrictions to which the generalized forces and potential must adhere if this standard
formalism is to apply. We emphasize this even further by noting the explicit funcuonal
dependencies permissible in the Lagrangian function used in Equation 10.8.19 °

-0 (10.8.18)

%In some cases generalized forces can be derived from a velocity-dependent potential such as V = V(g;, g; t) and
0= 4 [a_v] v

7 di|9gq, ) 9q
and the standard Lagrangian formalism still applies.
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In general, for a system subject to nonconservative generalized forces and forces of con-
straint which we call Q;, Lagrange’s equations of motion may be written as

d{oL | oL __, .
dt{aqj} ) =0Q; j=12 ...n (10.8.21)
Although our derivation was for a single particle in which at most only three generalized
coordinates are necessary to describe its motion, if N particles are involved, then n = 3N
is the number of generalized coordinates necessary to describe the system. The Lagrangian
contains all conservative potentials, which, therefore, includes the effect of all conserva-
tive forces acting on the system. The forces of constraint comprising some of the Qj may
be obtained using the method of Lagrange multipliers discussed in the previous section.
The nonconservative generalized forces Q, such as frictional or time-dependent forces,
must be specifically included as known or unknown in Equation 10.8.21. If the noncon-
servative forces F; are known, the Q; may be calculated immediately using Equation
10.8.8. If the F; are unknown, then the Q] must be found from the process of solving
Lagrange’s equations. The Lagrangian equation of motion expressed by Equation 10.8.21
is thus completely general and equivalent to Newton’s laws of motion from which it was
derived using D’Alembert’s principle.

Although earlier we derived Lagrange’s equations from Hamilton’s principle only for
the case of conservative systems, it could also be used, as we just did using D’Alembert’s
principle, to derive Lagrange’s equations for the more general case. One might, there-
fore, wonder about the possible equivalence of these two ways of formulating the laws of
mechanics. They are equivalent. The generalized version of Hamilton’s principle is in fact
nothing other than an integral form of D’Alembert’s principle.

Why the Lagrangian Method?

Given that both Hamilton's principle and D’Alembert’s principle are equivalent to Lagrange’s
equations, why not use either of these two approaches as a beginning point for solving prob-
lems in mechanics? You could—and the method proves quite useful as an approximation
technique for solving complicated problems in classical mechanics, but a discussion of
such methods lies beyond the scope of this text.’ Lagrange’s equations, on the other hand,
provide an incredibly consistent methodology and indeed an almost mind-numbingly
mechanistic problem-solving strategy. In that characteristic, they seem to outrank even the
universally applicable Newtonian approach. The question most students ask is then: “Why
even use the Newtonian approach at all when the Lagrangian approach seems so much sim-
pler, mechanistic, and powerful?” It seems to grant the practitioner omnipotent calcula-
tional prowess—enabling him or her to leap tall buildings with a single bound. . . .

The strength of the Lagrangian approach to solving problems is based on its ability
to deal with scalar functions, whereas the Newtonian approach is based on the use of the
vector quantities, forces, and momenta. When problems are not too complex, the
Newtonian method is relatively straightforward to apply but as their complexity increases,
solving problems with the Lagrangian approach begins to show its mettle. It is cast in the

%See, for example, C. G. Gray, G. Karl, and V. A. Novikov, Direct Use of Variational Principles as an
Approximation Technique in Classical Mechanics, Am. J. Phys. 64(9), 1177, 1996.
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language of generalized coordinates that, except in the simplest of problems, are sub-
stantially easier to use as a way of describing the motion of many body systems or those
shaped by complex constraints. The equations of motion are obtained exclusively from
manipulations of scalar quantities in configuration space rather than vector operations in
a rigid Cartesian coordinate system.

The Lagrangian approach is particularly powerful when dealing with a conservative
system for which one only wishes to generate its equations of motion; forces of constraint
are not an issue. Indeed, the standard Lagrangian formulation ignores them. If forces of
constraint are of interest, then one must employ the method involving Lagrange multi-
pliers to ferret them out. In such circumstances, it might be advisable to take the
Newtonian approach instead. When nonconservative or velocity-dependent generalized
forces rear their ugly heads, however, the Newtonian method is invariably the one of
choice; in such cases, one really does need the sledgehammer to crack the walnut; deli-
cate thrusts with the Lagrangian “rapier” will likely prove futile.

Finally, there is a real philosophical difference between the two approaches. The
Newtonian method is differential; it has cause and effect embedded in it. The application
of a force external to a body causes it to accelerate. Lagrange’s equations are also differ-
ential, but they are cast in the language of kinetic and potential energies, scalar “essences”
more intrinsic rather than extrinsic to a body. This distinction is particularly true for con-
servative systems, for nowhere in that Lagrangian formulation does the term force ever
appear. Hamiltons variational principle represents the pinnacle of this point of view: it
gives paramount importance to the energy concept at the expense of the concept of force.
Indeed, in microscopic systems the concepts of force, cause, and effect lose their classic
meaning entirely. In such systems, energies reign supreme, and it is no accident that the
Hamiltonian and Lagrangian functions assume fundamental roles in a formulation of the
theory of quantum mechanics.

The philosophical difference is accentuated even more if one considers Hamilton's vari-
ational principle to be the fundamental formulation of mechanics. It is an integral for-
mulation as opposed to a differential one. The correct motion that a body takes through
space is that which minimizes the time integral of the difference between the kinetic and
potential energies. Such a perspective is a “global” one as opposed to the “local” one of the
Newtonian formulation. Even theories of quantum mechanics exhibit a s1m1lar dichotomy
of perspective, for instance, the path integral approach of Richard Feynman’ (1918-1988)
versus the differential approach of Erwin Schrodinger (1887-1961). Given that nature does
seem to obey such global principles, it is not difficult to understand, as alluded to at the
beginning of this chapter, why a number of philosophers have used them as a basis for the
teleological argument that nature works to achieve some goal—that it has some purpose
in mind— or that there was some purpose in mind for it. Indeed, Maupertuis argued that
dynamical paths taken through space possessing nonminimal values of a mathematical
quantity he called action® would actually be observed if nature exhibited less than perfect

R.P Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.

8 Pierre-Louis-Moreau de Maupertuis, Essai de Cosmologie (1751), in Oeuvres, Vol. 4, p. 3, Lyon, 1768, or see
Henry Margenau, The Nature of Physical Reality, 2nd Ed., McGraw-Hill, New York, 1977. Announced by
Maupertuis in 1747, and the first of the minimum principles, the principle of least action was the foreranner
of Hamilton’s principle.
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laws of motion, thus arguing for the existence of a God who endowed our world with per-
fection. Such teleology smacks of the argument that eyes were designed so that we can see—
as opposed to the view that they evolved slowly over time, each new stage of development
emerging victorious by natural selection until ultimately there existed an eye that bestowed
the survival advantage of sight on its owners.

We cast this philosophical issue aside because it has no bearing on the actual opera-
tional method we should choose when solving a problem in mechanics. Indeed, the actual
motion a mechanical system exhibits is invariant under this choice and, therefore, cannot
be used to decide which philosophy is the superior one to adopt. There is a superior
method of choice when solving a problem, however, and that is the one that possesses those
calculational advantages intrinsic to the particular problem under consideration.

10.9| The Hamiltonian Function:
Hamilton’s Equations

Consider the following function of the generalized coordinates:
H=3qip;—L (10.9.1)

For simple dynamic systems the kinetic energy T is a homogeneous quadratic function of
the ¢’s, and the potential energy V is a function of the g’s alone, so that

L=T(q;,4:)-V(g,) (10.9.2)
Now, from Euler’s theorem for homogeneous funct-_ions,9 we have

Zq pi= Zq. —Zq,

10.9.3
i aqz ( )

Therefore,

H=Y gp,-L=2T—(T-V)=T+V (10.9.4)

That is, the function H is equal to the total energy for the type of system we are
considering,
Suppose we regard the n equations

oL
= i=12 ...,n
Ps %, ( ) (10.9.5)
as solved for the ¢’s in terms of the p’s and the ¢’s:
9 = 4:(pi> 9:) (10.9.6)
®Euler's theorem states that for a homogeneous function f of degree n in the variables x;, x5, . . ., x,
of .. of , f
xlaxl M axz *r —nf
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With these equations we can then express H as a function of the p’s and the ¢’s:
H(p,, 4= X pidi(p14:) - L (109.7)

Let us calculate the variation of the function H corresponding to a variation p;, 8¢,. We have

OH = Zl:pz‘ 8¢, +q,6p; - g—thsqi - a—aqi] (10.9.8a)

i i i

The first and third terms in the brackets cancel, because p; = dL/dg, by definition. Also,
because Lagrange’s equations can be written as P, = dL/dg;, we can write

8H = Y [q; 8p, - p, 69,] (10.9.8b)
i
Now the variation of H must be given by the equation
oH oH
6H= )Y |—6bp,+—¥q, 9
Z[ 3, P g q,] (10.9.8¢)
It follows that
o _
o (10.9.9)
H_
dq,

These are known as Hamilton's canonical equations of motion. They consist of 2n first-order
differential equations, whereas Lagrange’s equations consist of n second-order equations.
We have derived Hamilton’s equations for simple conservative systems. Equations 10.9.9
also hold for more general systems, for example, nonconservative systems, systems in
which the potential energy function involves the ¢’s, and systems in which L involves the
time explicitly, but in these cases the total energy is no longer necessarily equal to H.

Those of you who survive a class in classical mechanics will encounter Hamilton's equa-
tions again when studying quantum mechanics (the fundamental theory of atomic phe-
nomena). Hamilton's equations also find application in celestial mechanics. For further
reading the student is referred to the Selected References (under Advanced Mechanics)
at the end of the book.

EXAMPLE 10.9.1

Obtain Hamilton's equations of motion for a one-dimensional harmonic oscillator.

Solution:
We have
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Hence,
2 Kk o
H=T+V=—p +§x
The equations of motion
oH _._ oH _ _
op ax
then read
P . .
2 _ kx=—
- T xX=—p

The first equation merely amounts to a restatement of the momentum-velocity rela-
tionship in this case. Using the first equation, the second can be written

d
kx=——(mx
dt ()
or, on rearranging terms,
mi+kx=0

which is the familiar equation of the harmonic oscillator.

EXAMPLE 10.9.2

Find the Hamiltonian equations of motion for a particle in a central field.

Solution:

Here we have

T =2 +r%%)

V=V(r)
L=T-V
in polar coordinates. Hence,
oL 24 Pe
== 9 9 -3
Pe=%6~"" mr?

Consequently,
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The Hamiltonian equations

ap, ar T pe a9 e
then read
Pr_,
m
V(r) Py _
or mr® "
Pe A
Po__¢g
mr’
0=—p,

The last two equations yield the constancy of angular momentum:
pe=constant and  mr?0=ml
from which the first two give
mi=, = 2 2O
r or

for the radial equation of motion. This, of course, is equivalent to that found earlier in
Example 10.5.2.

EXAMPLE 10.9.3

Consider the Rutherford scattering problem discussed in Section 6.14 in which a par-
ticle of electric charge ¢ and mass m is moving towards a scattering center, a heavy
nucleus of charge Q assumed to be immovable and at rest. Initially the incoming parti-
cle is infinitely far from the scattering center and moving with speed v, along a straight
line whose perpendicular distance to the scattering center (the impact parameter) is b
(see Figure 6.14.1). Derive an integral expression for the scattering angle 65 using
Hamilton’s equations.

Solution:

Two coordinates are necessary to describe the motion of the particle, which is con-
fined to a plane in space. We choose polar coordinates 6 and r. We choose the direc-
tion of the polar axis such that the initial position of the incoming particle is r = at
0 =0. The Hamiltonian for this problem is the same as the one given in the previous
example (10.9.2). It is

_1( 2. po Y D S
H—%(pr+-;2— +V(r)=E(= gmo})
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The Hamiltonian is equal to the total energy of the incident particle and is a constant of
the motion. Furthermore, @ is an ignorable coordinate so that the angular momentum

pe =mr*0 =L (= muyb)

is also a constant of the motion.
The relevant Hamilton’s equations are

H_o o __
3pe ar
Differentiating the first with respect to r, we get
0, 00H d oH__dp

or  or dp, ape or  dp,
Integrating the above gives us an expression for 6
. 7 Bp [ dp ]
0=-|"Fdr= L or dO=-d||Ldr
I35, opy i j P " 9pe

where, for the moment, we have left out the limits of integration. Examining Figure 6.14.1,
we see that 6, is the change of the angular direction of the particle as it moves from r = co
t0 1 = 1;,,, the distance of closest approach to the nucleus. Because

9 _g

at r=o0,0=0
Ipg

we get

fmar
8 =- azed

We can solve for p, using the expression for the Hamiltonian

g U2
p, = [2m(E V(r))———]

Because the scattering angle is 6 = £ — 26, (see Figure 6.14.1) we get
g U2
=n+ 2]’ [2m(E V(r)- p—f’] dr
We can take the expression one step further by carrying out the differentiation inside

the integral. We get
L

2
s =m-2[™ r dr

[nfe-22)- 2T
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in which we have replaced p, with the constant angular momentum L. We have also
inserted the expression for the particle’s potential energy in the field of the nucleus,

Vi(r)

=qQ/r. The industrious student should be able to show that carrying out the inte-

gral in the above equation yields the value 6,, given by Equation 6.14.6.

Problems

10.1

10.2

10.3

104

105

10.6

10.7

10.8

10.9
10.10

10.11

Lagrange’s method should be used in all of the following problems, unless stated otherwise.
Calculate the integral

J@ = [ Lix(@t),i(et), A1dt

for the simple harmonic oscillator. Follow the analysis presented in Section 10.1. Show that
J(0) is an extremum at a= 0.

Find the differential equations of motion of a projectile in a uniform gravitational field with-
out air resistance.

Find the acceleration of a solid uniform sphere rolling down a perfectly rough, fixed inclined
plane. Compare with the result derived earlier in Section 8.6.

"Two blocks of equal mass m are connected by a flexible cord. One block is placed on a smooth
horizontal table, the other block hangs over the edge. Find the acceleration of the blocks and
cord assuming (a) the mass of the cord is negligible and (b) the cord is heavy, of mass m'.

Set up the equations of motion of a “double-double” Atwood machine consisting of one
Atwood machine (with masses m, and ms) connected by means of a light cord passing over
a pulley to a second Atwood machine with masses m; and m,. Ignore the masses of all pul-
leys. Find the accelerations for the case m, =m, my = 4m, mg = 2m, and m, =m.

A ball of mass m rolls down a movable wedge of mass M. The angle of the wedge is 6, and
itis free to slide on a smooth horizontal surface. The contact between the ball and the wedge
is perfectly rough. Find the acceleration of the wedge.

A particle slides on a smooth inclined plane whose inclination @is increasing at a constant
rate @. If @ = 0, at time ¢ = 0, at which time the particle starts from rest, find the subse-
quent motion of the particle.

Show that Lagrange’s method automatically yields the correct equations of motion for a
particle moving in a plane in a rotating coordinate system Oxy. (Hint: T =% mv « v, where
v=i(% - 0y)+j(§ + 0x), and F, = -3V/dx, F, = 9V/dy.)

Repeat Problem 10.8 for motion in three dimensions.

Find the differential equations of motion for an “elastic pendulum”: a particle of mass m
attached to an elastic string of stiffness K and unstretched length /,. Assume that the motion
takes place in a vertical plane.

A particle is free to slide along a smooth cycloidal trough whose surface is given by the para-
metric equations

= %(29 + sin 20)

y=%(1—cos20)
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where 0 < 8< wand a is a constant. Find the Lagrangian function and the equation of motion
of the particle.

A simple pendulum of length [ and mass m is suspended from a point on the circumference
of a thin massless disc of radius a that rotates with a constant angular velocity @ about its
central axis as shown in Figure P10.12. Find the equation of motion of the mass m.

[

|
|
|
|
Figure P10.12 :

A bead of mass m is constrained to slide along a thin, circular hoop of radius / that rotates
with constant angular velocity @in a horizontal plane about a point on its rim as shown in
Figure P10.13.

Figure P10.13

(a) Find Lagrange’s equation of motion for the bead.

(b) Show that the bead oscillates like a pendulum about the point on the rim diametrically
opposite the point about which the hoop rotates.

(c) What is the effective “length” of this “pendulum”?

The point of support of a simple pendulum is being elevated at a constant acceleration g,

so that the height of the support is 2at and its vertical velocity is a¢. Find the differential
equation of motion for small oscillations of the pendulum by Lagrange’s method. Show that
the period of the pendulum is 27[1/(g + a)]"*, where I is the length of the pendulum.

Work Problem 8.12 by using the method of Lagrange multipliers. (a) Show that the accel-
eration of the ball is 2g. (b) Find the tension in the string.

A heavy elastic spring of uniform stiffness and density supports a block of mass m. If m’ is
the mass of the spring and k its stiffness, show that the period of vertical oscillations is

o ’m+(km/3)

This problem shows the effect of the mass of the spring on the period of oscillation. (Hint:
To set up the Lagrangian function for the system, assume that the velocity of any part of
the spring is proportional to its distance from the point of suspension.)
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10.17

10.18

10.19

10.20

10.21

10.22

10.23
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Use the mathed of Lagrange multipliers to find the tensions in the two strings of the double
Atwood machine of Example 10.5.4.

A smooth rod of length [ rotates in a plane with a constant angular velocity @ about an axis

fixed at one end of the rod and perpendicular to the plane of rotation. A bead of mass m is

initially positioned at the stationary end of the rod and given a slight push such that its ini-

tial speed directed along the rod is @l.

(a) Find the time it takes the bead to reach the other end of the rod.

(b) Use the method of Lagrange multipliers to find the reaction force F that the rod exerts
on the bead.

A particle of mass m perched on top of a smooth hemisphere of radius 4 is disturbed ever
so slightly, so that it begins to slide down the side. Find the normal force of constraint exerted
by the hemisphere on the particle and the angle relative to the vertical at which it leaves
the hemisphere. Use the method of Lagrange multipliers.

A particle of mass m, slides down the smooth circular surface of radius of curvature z of a
wedge of mass mn; that is free to move horizontally along the smooth horizontal surface on
which it rests (Figure P10.20).

Figure P10.20

(a) Find the equations of motion for each mass.
{(b) Find the normal force of constraint exerted by the wedge on the particle. Use the
method of Lagrange multipliers.

(a) Find the general differential equations of motion for a particle in cylindrical coordinates:
R,9, z. Use the relation
0% =0} +05 +0]
=R®+R%® + 2
(b) Find the general differential equations of motion for a particle in spherical coordinates:
7, 6, ¢. Use the relation
o® =0l + 0 + 0}
=2 +r26% + %% sin%0
(Note: Compare your results with the result derived in Chapter 1, Equations 1.12.3 and
1.12.14 by setting F =ma and taking components.)

Find the differential equations of motion in three dimensions for a particle in a central field
using spherical coordinates.

A bar of soap slides in a smooth bowl in the shape of an inverted right circular cone of apex
angle 20 The axis of the cone is vertical. Treating the bar of soap as a particle of mass m,
find the differential equations of motion using spherical coordinates with 8 = o = constant.
As is the case with the spherical pendulum, Example 10.6.2, show that the particle, given
an initial motion with ¢ # 0, must remain between two horizontal circles on the cone.
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(Hint: Show that i* = f(r), where f(r) = 0 has two roots that define the turning points of
the motion in r.) What is the effective potential for this problem?

In Problem 10.23, find the value of ¢, such that the particle remains on a single horizon-
tal circle: r = ;.. Find also the period of small oscillations about this circle if ¢, is not quite
equal to the required value.

As stated in Section 4.5, the differential equation of motion of a particle of massm and elec-
tric charge g moving with velocity v in a static magnetic field B is given by

mi = qg(vXB)
Show that the Lagrangian function
1
L= Emvz +qv-A

yields the correct equation of motion where B =V X A. The quantity A is called the vector
potential. (Hint: In this problem it is necessary to employ the general formula df (x,y, z)/dt =
% df/dx + y df/dy + z f/dz. Thus, for the part involving v + A, we have

d|d(v-A)| d|d . . . _ad
[ ]— [ax(xA‘+yAy+ZA‘)] dt(A")

dt| 9% dt

(OA, .94,
ox dy 9z

and similarly for the other derivatives.)

Write the Hamiltonian function and find Hamilton’s canonical equations for the three-
dimensional motion of a projectile in a uniform gravitational field with no air resistance. Show
that these equations lead to the same equations of motion as found in Section 4.3.

Find Hamilton’s canonical equations for

(a) A simple pendulum

(b) A simple Atwood machine

(c) A particle sliding down a smooth inclined plane

A particle of mass m is subject to a central, attractive force given by
ko
F(r,t)=—e, —exp ™
r

where k and f are positive constants, ¢ is the time, and r is distance to the center of force.
(a) Find the Hamiltonian function for the particle. (b) Compare the Hamiltonian to the total
energy of the particle. (c) Is the energy of the particle conserved? Discuss.

Two particles whose masses are m, and m, are connected by a massless spring of unstressed
length [ and spring constant k. The system is free to rotate and vibrate on top of a smooth
horizontal plane that serves as its support. (a) Find the Hamiltonian of the system. (b) Find
Hamilton’s equations of motion. (¢) What generalized momenta, if any, are conserved?

As we know, the kinetic energy of a particle in one-dimensional motion is 3m %*. If the poten-
tial energy is proportional to 2 say %kxz, show by direct application of Hamilton’s varia-
tional principle, é JL dt =0, that the equation of the simple harmonic oscillator is obtained.

The relativistic mass of a moving particle is given by the expression
m,
mET 02 2
1-0%c

where my is its rest mass, v is its speed, and ¢ is the speed of light.
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(a) Show that the Lagrangian

L =-myc?1-0%c? =V

where the potential energy V is not velocity-dependent, provides the correct equation
of motion of the particle.

(b) Find the generalized momentum of the particle and the Hamiltonian.

(¢) If the relativistic kinetic energy of the particle is

m02

T=—20

,/1 - 0%/c?
showthat H=T+V.

(d) Show that, except for an additive constant, the relativistic expression for the kinetic
energy of slow moving particles reduces to the classical Newtonian expression.

Computer Problems

C 10.1 Assume that the spherical pendulum discussed in Section 10.6 is set into motion with the
following initial conditions: ¢o=0 rad, ¢o= 10.57 rad/s, 6= m/4 rad, and @, =0 rad/s. Let
the length of the pendulum be 0.284 m.
(a) Calculate 6, and 8, the polar angular limits of the motion.

362 =-U(0)+C=0

(Hint: Solve the equation numerically for the condition of 6,=0.)

(b) Solve the equations of motion of the pendulum numerically, and find the period of the
6-motion.

(c) Plot @ as a function of the azimuthal angle ¢ over two azimuthal cycles.

(d) Calculate the angle of precession A¢ that occurs during one complete cycle of 6.

C 10.2 A bead slides from rest down a smooth curve S in the xy plane from the point (0, 2) to the

point (7, 0).

(a) Show that the curve S for which the total time of travel is a minimum is a cycloid,
described by the parametric equations x = 8- sin @and y = 1 + cos 6, where 8 ranges
from O to 7. (Hint: The time of travel is given by T = | ds/v, where ds is a differential
element of displacement and v is the speed of the bead along the curve S. Express ds in
terms of y' = dy/dx and dx. Express the resultant integrand as an explicit function of y,
y’, and possibly x. The integral is a minimum when the integrand satisfies Lagrange’s
equation. Find the differential equation of the curve generated by the Lagrange equa-
tion and solve it.)

(b) Assume that the curve S can be approximated by a quadratic function,
y(@=ap+ax+ ay%". (This function must satisfy the boundary conditions given for the
curve S.) Insert this function (and its derivative) into the integral in part (a) for the bead’s
time of travel. Find the constant coefficients g; that minimize the integral.

(c) Estimate the minimum time of transit.

(d) Plot the function y(x) obtained in part (b) along with the exact solution given by the equa-
tions representing a cycloid (from x = 0 to x = 7). How well do the two solutions agree?



The modern development of physics is continually enhancing Hamilton’s name.
His famous analogy between mechanics and optics virtually anticipated wave
mechanics, which did not have to add much to his ideas, but only had to take
them seriously—a little more seriously than he was able to take them, with the
experimental knowledge of a century ago. The central conception of all
modern theory in physics is “the Hamiltonian.” If you wish to apply modern
theory to any particular problem, you must start with putting the problem
“in Hamiltonian form.”

Thus Hamilton is one of the greatest men of science the world has produced.”

—Erwin Schroedinger, A Collection of Papers in Memory of Sir William Rowan Hamilton,
ed. D. E. Smith, Scripta Mathematica Studies, no. 2, N.Y., 1945

In the preceding chapters we studied simple systems that can oscillate about a configu-
ration of equilibrium, including a simple pendulum, a particle suspended on an elastic
spring, a physical pendulum, and so on. Each of these cases had only one degree of free-
dom characterized by a single frequency of oscillation. Here we consider more compli-
cated systems—systems with several degrees of freedom that are characterized by
several different frequencies of oscillation. The analysis is greatly simplified if we use gen-
eralized coordinates and Lagrange’s method for finding the equations of motion in terms
of those coordinates.

11.1| Potential Energy and Equilibrium: Stability

Before we take up the study of motion of a system with many degrees of freedom about an
equilibrium configuration, let us first examine just what is meant by the term equilibrium.
As a way of introduction, let us recall the oscillatory motion of a mass on a spring about
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its equilibrium position. It is a conservative system, and its restoring force is derivable from
a potential energy function

V(x) = gkx? (11.1.1)
_ dv@)
F(x) = - ==k (11.1.2)

The equilibrium position of the oscillator is at x =0, the position where the restoring force
vanishes or the derivative of the potential energy function is zero. If the oscillator was ini-
tially placed at rest at x = 0, it would remain there at rest.

Let us consider the motion of a simple pendulum of length r constrained to swing in
a vertical plane (See Figure 10.2.1). As in our discussion of Section 10.2, let its position
be described by the single generalized coordinate 6, the angle that it makes with the ver-
tical. Taking the potential energy to be zero at @ = 0, the potential energy function and
the derived restoring “force” are given by

V=mgr(1 - cos 6) (11.1.3)
av .
N, = ~5g = ™& (rsin@) =-mgx (11.1.4)

where 1 is the horizontal displacement of the pendulum bob from the vertical. The gen-
eralized coordinate of the pendulum is an angular variable, and the restoring force is
actually a restoring torque Ny. The pendulum is in its equilibrium position when the
restoring torque is equal to zero. In each of these two cases, regardless of whether the
potential energy is a function of either a positional or an angular coordinate, equilib-
rium corresponds to the configuration at which the derivative of the potential energy
function vanishes.

Now let us generalize the above cases to a system with n degrees of freedom whose
generalized coordinates q;, qs, . . ., g, completely specify its configuration. The ¢’s can
be a mixture of both positional and angular variables. We assume that the system is con-
servative and that its potential energy function is a function of the g’s alone:

V':V(ql: q2: e qn) (11.1.5)

All forces and torques acting on the system vanish when

v _

9
This more complicated system is in equilibrium when Equation 11.1.6 holds true. These
equations constitute a necessary condition for the system to remain at rest if it is initially
at rest in such a configuration. If the system is given a small displacement from this con-
figuration, however, it may or may not return to the equilibrium configuration. If it always
tends to return to equilibrium, given a sufficiently small displacement, the equilibrium
is stable; otherwise, it is unstable. (If the system has no tendency to move either toward
or away from equilibrium, the equilibrium is neutral.)

A ball placed (1) at the bottom of a spherical bowl, (2) on top of a spherical cap, and

(3) on a plane horizontal surface are examples of stable, unstable, and neutral equilibrium,
respectively.

0 k=12,...,n) (11.1.6)
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Intuition tells us that the potential energy must be a minimum in all cases for stable
equilibrium. That this is so can be argued from energy considerations. If the system is
conservative, the total energy T +V is constant, so for a small change near equilibrium
AT =—AV. Thus, T decreases if V increases; that is, the motion tends to slow down and
return to the equilibrium position, given a small displacement. The reverse is true if the
potential energy is maximums that is, any displacement causes V to decrease and T to
increase, so the system tends to move away from the equilibrium position at an ever-
increasing rate.

Extended Criteria for Stable Equilibrium

We consider first a system with one degree of freedom. Suppose we expand the poten-
tial energy function V(q) as a Taylor series about the point ¢ =0, namely,

2 3
V(q) = VO + qVO’ + q_V6’+ q_V(’)” R q_"Vé") IO (11173)
2l 3! n!

where we use the notation Vg = (dV/dg),-, and so on. Now if g = 0 is a position of equi-
librium, then Vg = 0. This eliminates the linear term in the expansion. Furthermore, the
term V, is a constant whose value depends on the arbitrary choice of the zero of the poten-
tial energy, so without incurring any loss of generality we can set V;, = 0. Consequently,
the expression for V(q) simplifies to

2
V(g) = %V(’)’+- . (11.1.7b)

If V¢ is not zero, then for a small displacement g from equilibrium the force is approx-
imately linear in the displacement:

F(gq) = ——“ll—:; =-qVy (11.1.7¢)
This is of a restorative or stabilizing type if V| is positive, whereas, if V{ is negative,
the force is antirestoring and the equilibrium is unstable. If V' =0, then we must exam-
ine the first nonvanishing term in the expansion. If this term is of even order in n, then
the equilibrium is again stable, or unstable, depending on whether the derivative
VY = (d"V/dg"),-o is positive or negative, respectively. If the first nonvanishing deriva-
tive is of odd order in n, then the equilibrium is always unstable regardless of the sign of
the derivative; this corresponds to the situation at point C in Figure 11.1.1. Clearly, if all
derivatives vanish, then the potential energy function is a constant, and the equilibrium
is neutral.

Similarly, for the case of a system with several degrees of freedom, we can effect a
linear transformation so that q; = gy = - - - =¢, = 0 is the configuration of the equilibrium,
if an equilibrium configuration exists. The potential energy function can then be expanded
in the form

V91,95, 292) = é(Kn q1 +2Kyy 195 + Koy g3+ - ) (11.1.8a)
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V(@)
Figure 11.1.1 Graph of a one-
dimensional potential energy
function. The point A is one of
stable equilibrium. Points B and C
are unstable. 0

where

%
K, = (8 2 J
T ) gr=go==g,=0

o’V
K, = ( J
991992 ) gy =m0

and so on. We have arbitrarily set V(0, 0, . . . , 0) = 0. The linear terms in the expansion
are absent because the expansion is about an equilibrium configuration.

The expression in parentheses in Equation 11.1.8a is known as a quadratic form. If
this quadratic form is positive definite,’ that is, either zero or positive for all values of the
g’s, then the equilibrium configuration ¢; =g, = - - = ¢, = 0 is stable.

(11.1.8b)

EXAMPLE 11.1.1

Stability of Rocking Chairs, Pencils-on-End, and the Like

Let us examine the equilibrium of a body having a rounded (spherical or cylindrical) base
that is balanced on a plane, horizontal surface. Let a be the radius of curvature of the base,
and let the center of mass CM be a distance b from the initial point of contact, as shown
in Figure 11.1.2a. In Figure 11.1.2b the body is shown in a displaced position, where
0 is the angle between the vertical and the line OCM (O being the center of curvature),
as shown. Let h denote the distance from the plane to the center of mass. Then the

' The necessary and sufficient conditions that the quadratic form in Equation 11.1.8a be positive definite are
K K K

11 12 13
Ky K,

K,; >0
Ky Ky

>0 Ky Ky Ko3|>0 and so on
Ky Kz Ky
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(a) (b)

Figure 11.1.2 Coordinates for analyzing the stability of equilibrium of a round-bottomed
object.

potential energy is given by
V=mgh=mgla— (a —b) cos 0]
where m is the mass of the body. We have

V’=Z—Z= mg(a—Db)sin@

which gives, for 8 =0,
V=0
Thus, @ = 0 is a position of equilibrium. Furthermore, the second derivative is
V”=mg(a—b) cos@
so,for8=0
Vo=mg(a—b)

Hence, the equilibrium is stable if > b, that is, if the center of mass lies below the center
of curvature O. If a < b, the second derivative is negative and the equilibrium is unsta-
ble, such as with a pencil standing on end. If a =b, the potential energy function is con-
stant, and the equilibrium is neutral. In this latter case, the center of mass coincides with
the center of curvature.

11.2] Oscillation of a System with One Degree of
Freedom about a Position of Stable Equilibrium
If a system has one degree of freedom, the kinetic energy may be expressed as
T=1m§" (11.2.1)

where the coefficient M may be a constant or a function of the generalized coordinate
g. In any case if ¢ = 0 is a position of equilibrium, we consider g small enough so that
M = M(0) = constant is a valid approximation. From the expression for the potential energy
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(Equation 11.1.7b), we can write the Lagrangian function as
L=T-V=_m3*-3Vq’ (11.2.2)

Lagrange’s equation of motion
=== (11.2.3)

then becomes
Ml']'+V6'q=0 (11.24)

Thus, if g = 0 is a position of stable equilibrium, that is, if V' >0, then the system oscil-
lates harmonically about the equilibrium position with angular frequency

w= JE (11.2.5)
M

EXAMPLE 11.2.1

Consider the motion of the round-bottomed object discussed in Example 11.1.1 (see
Figure 11.1.2). If the contact is perfectly rough, we have pure rolling, and the speed
of the center of mass is approximately b6 for small 6. The kinetic energy T is accord-
ingly given by

T =:m(b8)*+;1,6°

where I, is the moment of inertia about the center of mass. Also, we can express the
potential energy function V as follows:

V(0) = mgla—(a—b) cos6]

6* ¢
=mg[a—(a—b)(l——2!—+—2—!——- . ):]

= %mg (a —b)6? + constant + higher terms
We can then write
L=1(mb*+1,)6° - mg(a—b)6*
ignoring constants and higher terms. Comparing with Equation 11.2.2, we see that

M=mb®>+1,
V(’)'= mg(a—Db)

The motion about the equilibrium position 8 =0 is, therefore, approximately simple har-

monic with angular frequency
3 ’ mg(a—b)
®= mb®+1,,
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Attitude Stability and Oscillation of an Orbiting Satellite

In this example we analyze the oscillatory motion of a nonspherical satellite traveling in
a circular orbit. For simplicity, we consider the satellite to be a dumbbell consisting of two
small spheres, of mass m/2 each, connected by a thin massless connecting cylinder of
length 24, Figure 11.2.1. Polar coordinates r, 8 specify the center of mass of the satellite,
and the angle ¢ gives the “attitude” of the satellite axis relative to the radius vector ry. We
treat the two end spheres as particles and assume that the motion is in a single plane, the
plane of the orbit. For a circular orbit r =y = constant, and 6 = @, =v,,,/r, = constant.

The most important quantity to calculate in this example is the potential energy
function of the satellite. It is given by

V=_GMem l_'_l
2 no T

in which M, is Earth’s mass and r; and r, are the distances from the center of the Earth
to the respective end spheres, as shown. From the law of cosines we have

) )
fe = ("g +a® +2ra cos¢) = (rg + (12) (1£€ cosg)”?

where €=2rya/ (r¢ +a*). Nowa <<y, so € is a very small quantity. We, therefore, express
the potential energy function by use of the binomial series (1 + x) 2= 1—% x+ % A T
where x = te€ cos ¢. The result, after collecting and canceling terms, is

2
V() =- CM,m (1 + g—‘-’; cos’+- - ]

1 ro

where we have ignored a® compared with r2 in all terms involving the quantity r2 + a”.
gn p 0 geq Yy o

Figure 11.2.1 Dumbbell- .
shaped satellite in a circular el
orbit. e -
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Taking the first and second derivatives with respect to ¢, we find

Vi) = =M 3,2 sin¢ cos¢
ro

V7(¢p) = 3a cos (2¢)
o

Thus, we have ¢ =0 and ¢ = 7/2 as two positions of equilibrium: V’(0) = V'(7/2) = 0.
The first is stable, because V”(0) > 0. In this case the attitude of the satellite is such that
the satellite’s axis (line connecting the two masses) is along the radius vector r,. The
second position is an unstable equilibrium because V”(7/2) < 0; here the axis is at right
angles to the radius vector.

The rocking motion of the satellite about the position of stable equ111br1um is given
by Equation 11.2.4 with ¢ = ¢, M=1,,,=ma’®, and V{ =3a’GM,m/rj. Thus, the angular

frequency of the oscillation is
_ VY _ |3GM,
I, B ro

(Note that this is independent of m and g ) Now the angular frequency of the circular
orbit around Earth is given by W =02,/ro=GM, /5. (See Example 6.5.3.) Thus, we can
write

©=0y\3

For a synchronous Earth satellite the orbital period T = 27/63, = 23.934 h.” Consequently,
the rocking period of our dumbbell satellite in a synchronous orbit would be

2% _ Ty _13818h

=%

11.3| Coupled Harmonic Oscillators:
Normal Coordinates

Before developing the general theory of oscillating systems with any number of degrees
of freedom, we shall study a simple specific example, namely, a system consisting of two
harmonic oscillators that are coupled together.

We use a model composed of particles attached to elastic springs, although any type
of oscillator could be used. For simplicity we assume that the oscillators are identical
and are restricted to move in a straight line (Figure 11.3.1). The coupling is represented
by a spring of stiffness K’ as shown. The system has two degrees of freedom. We choose

®The sidereal day, corresponding to one full 360° rotation of the Earth relative to the stars, is equal to 23 hr
56 m 3.44 s, about 4 m shorter than the mean solar day.
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/ Equilibrium positions \

Figure 11.3.1 Model of two coupled harmonic oscillators.

coordinates x; and x, the displacements of the particles from their respective equilibrium
positions, to represent the configuration of the system.

Before plunging into the mathematics describing the motion of this system, we should
like to consider just what sort of behavior we might expect. We would guess that the actual
motion would depend critically on the initial conditions of the system, whereas the vibra-
tional frequency (or frequencies) would not. For example, suppose we held one mass at
the position x, = 0 while we pulled the other mass a little to the right, say x, =1, and then
released them both from rest. Just after being released, m, is subject to a restoring force
due to the compression of the right-hand spring and the stretching of the middle spring,
my, even though at rest at x, = 0, is subject to a force due to the stretching of the middle
spring. Hence, both masses start to move, m, away from x; = 0 and m; toward x, =0. The
resulting motion looks to be fairly complex, but one thing is certain: Overall energy is con-
served. Thus, as m,, initially at rest, moves away from x, = 0, it gains energy at the expense
of that of m,. As time goes by we might anticipate that m, will eventually be displaced to
the left at x; = —1 while m; will be at x; = 0, both instantaneously at rest. This configura-
tion is completely symmetrical to the initial one, with m, and my having exchanged ener-
gies. The system should continue to repeat this motion, with m; and m, shuttling their
energy back and forth through the coupling spring. The critical point here is that x; and
%o are never simultaneously zero and that the coupling spring is never relaxed with m; and
my in that configuration. Hence, the two masses continue to exchange energy.

A second important feature of this motion is that each mass vibrates in a multifrequency
fashion. This can be most readily seen by analyzing the cause of single-frequency motion.
Such motion occurs when the acceleration (or force per unit mass) of a mass is propor-
tional to the negative of its displacement. In the situation here, each mass is subject to
two forces, one from each connecting spring. The middle spring generates a force on each
mass that is proportional to the difference in their displacements. Thus, we might antic-
ipate that the general motion of each mass would be a composite of two different fre-
quencies, and we will soon see that this is the case.

Figure 11.3.2 shows the motion of the two previosusly described masses. The spring
constants have values K=4 and K’ = 1 (arbitrary units), so this is a case of moderate cou-
pling. The amplitude of oscillation of m; slowly builds up and then dies away in step with
the dying away and buildup of the amplitude of oscillation of ms. The motion has been
plotted over one complete period. Each of these motions looks like a case of “beats”
between two different single frequencies of the same amplitude. And that is exactly
what they are.

The phenomenon of beats occurs when waves (or vibrations) of two different fre-
quencies are added together. For example, let us assume that x; and x, can be represented
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Figure 11.3.2 Displacement of two
coupled harmonic oscillators.

by the sum (or difference) of two simple, equal-amplitude, harmonic motions whose fre-
quencies are different. The resultant sum is equal to a product of sines (or cosines) of a
sum and a difference of frequencies.

For example, suppose we define Q; and Q, as follows

Q= % cos @t Q, = % cos Wyt (11.3.1)

(The factor j}; has been included in each of the definitions in Equation 11.3.1 solely for
the purposes of normalization). Now, if we add @, and Q; (again normalized with the factor

ﬁ), we get
%(Q1 +Q,)= %(cos Wt + cos wyt)
= cos [%(wl +@,) t] cos [%(wl - wz)t] (11.3.2a)

The resulting sum is equal tox; and is, in fact, the function that is plotted in Figure 11.3.2b.
It has been properly normalized so that it satisfies the condition that x,(0) = 1.



11.3 Coupled Harmonic Oscillators: Normal Coordinates 475

Now suppose we subtract Q, from Q,
% (©1—Q)= %(cos 0, — COS Wyt)

= sin[%(wl + wz)t] sin[% (@ - wz)t] (11.3.2b)

:xl

The resulting difference is equal tox, and is the function that is plotted in Figure 11.3.2a.
It satisfies the condition that x,(0) =0.

The fascinating thing here is that, although the coordinates x, and x, engage in this
composite dance of energy exchange, Q, and Q. do not. They are functions only of the
single frequencies @, and ®,. Because x, and x, are expressible as the difference and sum
of Q, and Q, we can write them in matrix notation as

_I®m)_ 1 -l QI_A
e e

The relation can be inverted to obtain Q, and Q, as functions of x, and x,

0} (1 1Y x -1
Q: (sz=ﬁ(_l 1) (x2J=A X (1133b)

These matrix equations are equivalent to +45° rotations of a two-dimensional coordinate
system. This suggests that we can interpret x, and x, or Q, and Q, as components of a
single vector q whose endpoint represents the instantaneous configuration of the cou-
pled oscillators in either of two different coordinate systems. We show such a vector q
in Figure 11.3.3.

As time goes on, the endpoint of q traces out a path in configuration space whose
components are given by x,(¢) and x,(t), the solutions to the equations of motion. Shown
in Figure 11.3.4a is a plot of this path for the coupled oscillator. The trajectory is con-
fined to a box whose boundaries make 45° lines with the coordinate axes. Because the
Q:-coordinate system is simply the x;-coordinate system rotated through 45°, a similar
plot made in that system ought to trace out a path confined to a box whose boundaries
are parallel to the axes. The plot shown in Figure 11.3.4b demonstrates that this is the case.

x2
QZ\\ q //Ql
\ 7
N . i

Figure 11.3.3 Vector whose components AN e

represent the displacements of two coupled AN P

oscillators. The Q,, Q, coordinates are AN Y/ \'45°

obtained by rotating the x,, x, coordinates

by 45°. X1
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Figure 11.3.4 Motion of two
coupled oscillators in
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That the boundaries lie parallel to the axes in the Q;-coordinate system suggests that they
might be a more suitable basis in which to express the equations of motion of this system.
The significance of the (Q;,Q,) coordinates becomes apparent if we ask ourselves
whether or not the system can be started off such that the two masses vibrate at a single
fixed frequency and never exchange energy. There are two ways to do this. First, suppose
that we release the masses from rest after displacing them by equal amounts from their
respective equilibrium positions. The initial conditions of the resulting motion are

x,(0) =%,(0)=1 %,(0) =%,(0)=0 (11.34)

If we examine Equations 11.3.3a and b, we see that Q5(0) =0 but Q,(0) = V2. The central
spring is neither stretched nor compressed during the initial displacement so no force tries
to separate or pull the masses together any more than they already are. Furthermore, the
two masses must return to their equilibrium positions at the same time, moving in the
same direction with the same velocity because the restoring force on each mass is iden-
tical. But if the central spring always stays in a flaccid state, no energy can be passed back
and forth between the two masses. Thus, at later times we have

x, () = x4(t) = cos w;t
Q,(t) = V2 cosmyt (11.3.5)
Q:(t)=0

The two masses vibrate back and forth as though they were completely independent
simple harmonic oscillators with identical frequencies, @, = ¥ K/m. Once the system is
put in this mode of oscillation, it stays that way. The system is executing a normal mode
of oscillation called the symmetric mode, which is pictured in Figures 11.3.5a~d.

The second way to get the two masses to oscillate at a single frequency is initially to
displace them from their equilibrium positions by equal amounts but in opposite direc-
tions and then release them from rest. Thus

x5(0) = —x,(0) = 1 £(0) = £,(0) = 0 (11.3.6)

If we now examine Equations 11.3.3a and b, we see that Q;(0) = 0 but Q,(0) = V2. This
time, however, the central, connecting spring is initially stretched. But pay close atten-
tion to the central point on the connecting spring—it does not move. It is being pulled
on by equal but oppositely directed forces. When the two masses are released, the cen-
tral point does not move unless one mass moves closer to it than does the other, creating
an imbalance in the two opposing forces. By symmetry, this cannot happen. Again, the
restoring forces acting on each mass are equal and oppositely directed, and they remain
that way throughout the motion. The central point is a nodal point in the vibration, and
no energy can be transferred from one mass to the other across that point. As far as either
mass is concerned, we could cut the central spring in half and attach each of the freed-
up endpoints to a fixed, immobile boundary, exactly like the attachment of the end springs.
The resulting effective spring constant for each mass is K + 2K’ (it is left to the student
to show that this is true). Another way to look at it is to note that when the two masses
pass through their respective equilibrium positions, the central spring is neither stretched
nor compressed. No energy transfer is, therefore, possible, and each mass vibrates 180°
out of phase with the other at the single frequency @, = /(K +2K’)/m. This normal mode
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Symmetric mode
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Figure 11.3.5 (a) Schematic of coupled oscillation in symmetric mode. (b) Displacements
versus time. (¢) Normal coordinates versus time. (d) Configuration space trajectory; generalized
coordinates and normal coordinates.
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of oscillation is called the antisymmetric mode or, for obvious reasons, the “breathing mode.”
Once placed in this mode, the system stays there. Its motion is described by the equations

%, (1) = —x,(t) = cos @t
Q:i(®)=0 (11.3.7)
Q) = 2 cos ,t

and it is pictured in Figure 11.3.6a—d.
The Q-coordinates are called normal coordinates, and if the coupled oscillator is
vibrating such that its configuration space vector q has (Q;, Q;) components given by

1
q= (g;) = (0) B, cos(mt—8) or gq= (gl ) = ((1))32 cos(@yt = 5,)  (11.3.8a)
2

or equivalently (x,, x;), components given by
x 1 -1
qg= ( ! ) = ( JAI cos(@t—8) or g= (xl ) = ( )Az cos(m,t—&8,) (11.3.8b)
Xy 1 X, 1
where A;, B; are amplitudes and &; are phase angles that depend on how the motion is

initialized, then q =either Q, or Q,, and the system is vibrating in one of its possible normal
modes (see Figures 11.3.5¢ and 11.3.6c¢).

Method of Solution

Armed with this discussion of the coupled oscillator of Figure 11.3.1, let us now solve its
equations of motion. The Lagrangian of the system is

L=T-V=_mi} +imi; — 3Kz} — 3 K'(x, —x,)* — Kxj (11.3.9)
Lagrange’s equation then yields the equations of motion
mi; +(K+K)x,— Kx, =0

g (11.3.10a)
mi,— K% +(K+K)x=0
which we can write using matrix notation as
M{g+Kq=0 (11.3.10b)

where q is the vector whose (x;, %) components represent the configuration, or state, of
the system. The matrix equation in component form is

m 0)(%) (K+K' K" \(%)_, 1510
0 m)\#) | -k K+K\z,) (11.3.10c)
As anticipated, the resulting equations of motion are coupled, as evidenced by the cross
terms in Equation 11.3.10a or the nonzero, off-diagonal elements in the “K-matrix” of
Equation 11.3.10c.
A completely general solution should yield a state vector q whose (x;, x;) compo-

nents are functions of two frequencies @, and @,. We know, however, that we can also
search for particular single-frequency solutions that would correspond to the normal
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Antisymmetric mode
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Figure 11.3.6 (a) Schematic of coupled oscillation in antisymmetric mode. (b) Displacements
versus time. (¢) Normal coordinates versus time. (d) Configuration space trajectory; generalized
coordinates and normal coordinates.
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modes of oscillation. In this case, the vector q would be one of the normal mode vectors
Q; whose direction points along one of the (Q;, Q) coordinate axes. Once the solutions
for the normal mode vectors are found, however, a solution for any general state vector
q(x1,%5) can be assembled as a linear combination of the two normal mode vectors exactly
as was the situation described by Equations 11.3.2a and b. We proceed then by search-
ing for solutions of the form

q=acos(®t—9J) (11.3.11a)
whose components are, therefore,
x; = a, cos (Wt — §) X, = ay cos( @t — 8) (11.3.11b)
Thus, each component has the same frequency and phase but a different amplitude.
Plugging this assumed solution into Equation 11.3.10b yields

Ka = 0’Ma

K+K -K (& =w2m 0\ g (11.3.12a)
-K’ K+K’'j\a, 0 m)ia,

The g; (the amplitudes of the oscillation referred to the x; coordinates) are components of
a time-independent vector a that satisfies Equation 11.13.12a. This vector is called an eigen-
vector, and @” is its eigenvalue or, in this case, its eigenfrequency (squared). A way in which
the eigenvectors and eigenfrequencies can be found is by simultaneously diagonalizing the
K and M matrices in Equation 11.3.12a.> We discuss such a method later. First, we pres-
ent a method that is more direct and generally applicable but less physically intuitive.
Equation 11.3.12a is equivalent to a system of linear, homogeneous equations given by

K+K —o’n -K’ (al)_o 13198
-K’ K+K -o*m)\ay (11.3.12b)

These equations have a nontrivial solution (i.e., solutions other than a, = a, = 0) if and

only if

det | K-0°M| =0 (11.3.13a)
or
e ,
: +K_Izw " K_Ii oo | =0 (11.3.13b)
On expanding the determinant, we obtain
(K+K -0*m)® =K% =0 (11.3.13c¢)
which we can rearrange as
(@*m - K)[@*m —(K+2K)]=0 (11.3.13d)

%This problem is equivalent to diagonalizing the moment of inertia matrix discussed in Section 9.2. For a
treatment of this subject, the reader is referred to any text in mathematical physics such as: (1) J. Matthews
and R. L. Walker, Mathematical Methods of Physics, W. A. Benjamin, New York (1970) or (2) S. 1. Grossman
and W, R. Derrick, Advanced Engineering Mathematics, HarperCollins Publ., New York (1988).
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and the eigenfrequencies are now apparent.* They are the roots of Equation 11.3.13d and
are given by

0=k g KH2K (11.3.14)

m m

These are the normal mode frequencies that we obtained previously, based on physical
considerations alone.

We can now substitute each eigenfrequency back into Equation 11.3.12a or b to find
the solutions for @, and a,, the components of the eigenvectors. There are two eigenvec-
tors, however, each with two components, S0 we rename these components a; meaning
the ith component of the jth eigenvector.” Letting ® = @, and inserting its value into
Equation 11.3.12a, we obtain

Ka, = w}Ma,
(K+K' -K’ )(an)=w2(m 0)((111) (11.3.15)
K’ K+K')\ay) 0 mlay
and using the first of the two equations in the matrix Equation 11.3.15
[(K+K")-w>mla;, —K'a, =0 (11.3.16)

yields the solution a;; = ay.

Repeating the preceding process with the second eigenfrequency @, yields compo-
nents @), = —ay, for the second eigenvector a,. Thus, the (x,x,) components of the two
normal mode vectors are

1 -1
Q= (1)011 cos (@t - 8,) Q, = ( Jalz cos(@,t —&,) (11.3.17)

which can be compared with the (x,,x,) components of the normal mode vectors presented
previously in Equation 11.3.8b.

The components [x,(t), x,()], of any state vector q that represent the motion of the
system in general, are linear combinations of the (xy, x,) components of the normal mode
vectors Q, and Q,. We show these components in the following table.

Q Q.
X1 @) Cos (wlt - 61) —ad)9 COS (COzt - 62)
Xy ay; cos(@,t — 61) a9 cos(@yt — 62)

“We use the term eigenfrequency for either @ or ”. The one we mean should be clear from the context.

*When we describe a general n-dimensional eigenvector a, we do so by denoting its components ay, g, . . . , @,
There are n specific eigenvectors a,, ay, . . ., a,, however, that are solutions to the equations of motion for a
coupled oscillator system described by n generalized coordinates. Thus, when we describe one of these specific
eigenvectors ay, we do so by denoting its components ay, sy, . . . , @y Do not confuse a specific eigenvector
ay with the scalar component a;, of some generalized eigenvector a.
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which makes it easy to see the general solutions for x,(¢) and x,(¢)

x,(t) = A; cos(wt—6;)— A, cos(@yt —8y)

x5(t) = A; cos(@t —8,)+ A, cos(w,t —38,) (11.3.18)

To simplify notation, we have defined two new constants A; and A,, such that A/A; =
ayy/a;o. The four unknowns A;, A,, 8, and &, can be determined from the initial values of
the positions and velocities of each mass.

Initial Conditions

Let us now proceed to solve the specific problem that initiated this discussion, namely, mass
my is initially displaced one unit to the right, mass m; is held at x; = 0, and then they are
simultaneously released from rest. These are the initial conditions for this problem. First,
we derive relations for the constants in Equations 11.3.18 in terms of any general set of
initial conditions, and then we invoke the specific initial conditions stated previously to solve
for the constants in this particular problem. At time ¢ = 0, Equation 11.3.18 becomes

x,(0) = A; cosd; — A, cosd,
x,(0) = A; cosd; + A, cosé,

On differentiating Equation 11.3.18 and evaluating the result at ¢ = 0, we obtain

(11.3.19a)

A little algebra yields the following solution for the amplitude constants
| .
A} = 21, (0)+x, (0 + m[x1(0)+ £, (0)
! (11.3.20a)
2 _1 g, 1 .. . (o2
A = 5[x5(0) -2, (0)]" + 4—2[962(0) - %,(0)]
Dy
and for the phase constants
£, (0)+ %,(0) %5(0)—%,(0)
tan §, = _4O+50) and, = —2——L1——  (11.3.20b
ol @ L0l T agln@-gon )
Now, we insert the specific conditions for this problem
H@=0  x5@=1  £(0)=%0)=0 (11.321)

into Equations 11.3.20a and b, and using Equation 11.3.19a to determine the signs of A,
and A, gives

5,=6,=0 A=A, =1 (11.3.22)

Tz
Inserting these into Equation 11.3.18 yields the desired solutions

x t)= % (cos @t —cos wgt) (11.3.23)
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which should be compared with Equations 11.3.2a and b, which were put forth during
our initial description of the motion that we anticipated for the coupled oscillator.

The Equations of Motion in Normal Coordinates

It is worth the effort to see if the Lagrangian can be expressed in a coordinate system such
that no cross terms exist. The resulting equations of motion are not coupled when
expressed in such coordinates. They break apart into two separate sets of linear, second-
order differential equations whose solutions represent two decoupled simple harmonic
oscillators. But this is exactly the characteristic of the normal modes. We suspect then,
that transforming the Lagrangian to a function of the coordinates Q; and Q, ought to pro-
duce the desired decoupling.

In what follows, we carry out such a transformation using matrix methods. First we
write the kinetic and potential energies of the coupled oscillator in (x;,x,) coordinates using
matrix notation

_ 1= c_ 1, . m 0 j:l
T =5xMx = (%, xz)(o m] (12] (11.3.24)
= %mx% +%mx§
The potential energy is
- . K+K" -K' (%
V=§XKX=E(x1 xg) ’ ’
-K’ K+K'/\x, (11.3.25)

=3 (K+K)x} + 3 (K+K)xj - Kxyx,

Applying the transformation between the x; coordinates and the Q; coordinates in
Equations 11.3.3a, we obtain

T = 1QAMAQ

_1-.11"‘()1_101
_Z(Qle) -1 1 0 mlill 1 Q2 (].].326)

1.8 As™m 0 .1
=E(Q1Q2)(O m][gz]

152 1. A2
= mQ7 +3mQ;

in which we have used the matrix identity AQ= QA.

The potential energy is
_1 1 1\YK+K’ -K' Y1 -1\(Q
= Z(Ql Qg)(_l ].]( -K’ K+ K’](l l)(Q2]
SN DN b o
2l 2l g K+2K’ Q,

= 1 KO} + 5 (K+2K)Q}
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The Lagrangian is thus
L=1mQ} +3mQj - KQF - 1 (K+2K)Q3 (11.3.28)

As anticipated, it contains no cross terms, and the resulting equations of motion are

mQ, + KQ; =0 mQ, + (K +2K")Q, =0 (11.3.292)
In matrix notation, they are
m 0 91 + ko0 O _ 0 (11.3.29b)
0 mN\Q,) \0 K+2K')\Q,

These are the equations of motion of two uncoupled, simple harmonic oscillators whose
solutions are

Q, = b, cos(wyt —¢,) Q, = b, cos(w,t —€,) (11.3.30a)
where
=X g K+2K (11.3.30b)
m m

and by, by, €;, and €, are constants of integration. In the Q,-coordinate system, the normal
mode vectors are

1 0
Q= (0) b, cos(ayt —¢€;) Q, = (1] b, cos(w,t —€,) (11.3.31)

which should be compared with those of Equation 11.3.8a.
A solution in terms of x; and x, can be obtained by transforming back to those coor-
dinates using Equations 11.3.3a

% = (@ = Q,)
= B, cos(®;t —€;) — B, cos(@,t —€,)

1
%y, =5 Q1 +0)
= B, (cos@;t —¢€;) + By (cos w,t —€,)

(11.3.32)

) 1
where By, By, €, and €, are constants of integration. The ; factor has been absorbed
by the constants B; and B,. The solutions are identical with those of Equation 11.3.18,
obtained by solving the coupled equations of motion in x; coordinates from the
outset.

Diagonalizing the Lagrangian

Equations 11.3.29a are the equations of motion for two uncoupled, simple harmonic oscil-
lators, and Equation 11.3.29b is its matrix representation. Both the K and M matrices in
that equation are in diagonal form, that is, they have no nonzero, off-diagonal elements.
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Each of those matrices was diagonalized by the congruent transformation

K 4,, = AKA M,,, = AMA (11.3.33)

It is worth the effort to find such a matrix A in any given coupled oscillator problem
for all one has to do to transform the problem to the simpler one of uncoupled oscilla-
tors is to diagonalize the K and M matrices via the transformation in Equation 11.3.33.
The question is: what is the matrix A? Close inspection of A in Equation 11.3.3a shows
that its columns are the (x1,%,) components of the eigenvectors a,, that is,

A=(a,a,)= (Z“ Z:) (11.3.34)
21

Each a; in the preceding matrix is a column vector that was a solution to the equation

of motion transformed to its eigenvector equivalent (Equation 11.3.12a) and written
here as

Ka, = »}Ma,
K+K' —K’' Y(a, _ot(™ O (11.3.35)
-K’ K+K’')\ay o milay,

where a; refers to the jth component of the eigenvector a; and 7 is its eigenfrequency.
Thus, we see that

4,Ka, = 074, Ma, (11.3.362)
or
aKa, w? (11.3.36b)
4,Ma,

Thus, the matrix formed with each eigenvector as one of the columns is the desired
matrix A that transforms the generalized coordinates into normal coordinates and
diagonalizes the M and K matrices that make up the Lagrangian of the system.
Furthermore, note that the eigenfrequencies o} and @}, corresponding to the normal
mode eigenvectors, are simply the ratios of the elements of the diagonal matrices, Ky,
and My;,,. As an example, examination of the Ky, and My, matrices in Equations
11.3.26 and 11.3.27 reveals that the ratios of their diagonal elements are indeed equal
to @] and ;.

However, finding the transformation matrix A that diagonalizes K and M and, thus,
solves the problem, means first solving the coupled equations of motion represented by
Equations 11.3.10b or its equivalent 11.3.12a (or 11.3.35) for the eigenfrequencies @; and
@5, and second—using those solutions to solve for the corresponding normal mode eigen-
vectors a; and a,. In other words, we must first solve the coupled equations of motion
before finding the normal modes that we need to decouple them, a classic “catch-22”
situation. How do we obtain the normal modes first, other than by “educated” guesswork?
There is no general way to do this, but one method works quite well in many situations.
It exploits the fact that the Lagrangian is invariant under certain symmetry operations
and the characteristics of the symmetry operators can be used to obtain the coordinates
of the normal modes. Let’s see how this works.
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The Lagrangian for any two-component coupled oscillator has the following general
form in matrix notation, analogous to Equation 11.3.9

L=T—V=§§Mx—§in
gy Mo M)A 1o (K Ke)(m (11.3.37a)
g 1o My, My \x,) 2 1% K, Ky \x,

The M and K matrices are always real and symmetric. Hence, Ky, = Ky, and M, = M),
facts that we have used in writing down the off-diagonal matrix elements in Equation
11.3.37a. Carrying out the matrix multiplication, L is found to be

L= %Mu"‘% + %Mzzxg + Mgy iy _%Kux% - % Kypxy — Koy, (11.3.37b)

Now suppose, in the preceding Lagrangian, we replace x, with tox; and x, with tx./cx.
If the parameter ochas the right value, the Lagrangian stays the same. It is invariant under
this exchange operation. Carrying out the exchange (0tx; — x, and x,/@ — x;) transforms
the Lagrangian to

M, M, \(ilo K. K.,\(x./o
L'=;(x2/aax1)( . 12}( g )—%(leaaxl)(Ku 12)( 2 J
ox.

M, M, 1 2 Ky J\ 0%y

1,. . o’My, M 12 ), o’Ky Ky x
=§(x1 x5) EEACE?Y
2 || 4 2 2
M, M,loa®)\%, K, Kj/o® j\x,

or, after carrying out the matrix multiplication

(11.3.382)

.2 2
1 Xo 1 2.2 o 1 Xy 1 2.2
L’'= EMll &7+7M22a %] + M x,%, _EKII ?"'EKﬂa x7 — Kjgxe2; (11.3.38b)

The two cross terms in L are identical to those in L, and the transformed Lagrangjan L’

equals the original Lagrangian L if

My _Ky (11.3.39a)
M22 K22
ot =Mu (= _Iiuj (11.3.39b)
M22 K22

The first condition must be a property of the Lagrangian for the system under consider-
ation. The second condition determines the ratio of the x components that must be used
in the exchange process if the Lagrangian is to be invariant under that exchange. Because
this latter condition is imposed on o’ an exchange using —o as the parameter also satisfies
the condition.

This suggests that the two eigenvectors a; and a, that make up the desired transfor-
mation matrix A have (x;, x;) components in which the second is o times that of the

first, that is
1 -1
a = (a] a, = [ a] (11.3.40a)
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The A matrix that generates the transformation from generalized to normal coordinates is thus

1 -1
A=(aa,)= (a o ] (11.3.40b)

The Lagrangian L’ = ALA can have no cross terms if it is to remain invariant
under each of the aforementioned exchange operations. Note what happens to the two
eigenvectors a,; during an exchange: (1) for the exchange ox; — x, and x5/ — x;, we find
that a; — +a, but a;, — —a,, but (2) for the exchange ox; — —x, and x5/ — —x; we find
that a, — +a, but a; — —a,. In each case, one of the normal mode vectors changes sign,
but the other stays the same. If the transformed Lagrangian had any cross terms, they would
change signs but the squared terms would not. Hence, the transformed Lagrangian L would
no longer be invariant under the exchange. We conclude that the transformed Lagrangian
L’ must be a function of normal coordinates with no cross terms if the a;’s really are the
desired eigenvectors and the corresponding matrix A is the desired transformation matrix.

It is worth reexamining the previous example in light of this discussion. Look at the
diagonal elements of the K and M matrices of Equation 11.3.10c. They satisfy condition
11.3.39a. Condition 11.3.39b can be satisfied if &= 1. The matrix A that diagonalizes K
and M is, therefore, given by Equation 11.3.40b and is

A=(aa,)= G _D (11.3.41)

K and M are diagonalized according to the transformations given in Equation 11.3.33
K —agac[ ! LYK+K K1 A
deg AL UK K+KNL 1

_21( 0
“"lo K+2K’

M. - AMA 1 IN(m O0Y1 -1
diag ~ (-1 1)\o m) 1 1 (11.3.42b)

{0 )

The ratio of the diagonal elements of K, and My, yield the eigenfrequencies ®? and
@3 obtained previously in Equation 11.3.14. (The multiplicative factor of 2 that occurs
in Equations 11.3.42a and b cancels out in these ratios and is, therefore, 1rrelevant It could
be eliminated by normalizing the eigenvectors a, and a, by the factor -+ )

(11.3.42a)

and

EXAMPLE 11.3.1

The Double Pendulum (Two Rock Climbers
Dangling on a Single Rope)

Let us consider the motion of a double pendulum that consists of two simple pendula,
each of mass m and length [. The first one is attached to a fixed support, and the second
one is attached to the mass of the first, as shown in Figure 11.3.7a. Assuming that the
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Symmetric ‘& "\ Antisymmetric
mode mode

(a) (b)

Figure 11.3.7 The double pendulum and its normal modes.

pendulum executes small oscillations confined to a single plane, find the normal modes
and the corresponding normal mode frequencies.

Solution 1: "Guessing” the Normal Modes
Let us specify the configuration of the system by the two angles 8 and ¢ as shown in the
figure. The kinetic energy of the double pendulum is given by
T= %mv1 v+ émv2 vy (11.3.43)
The velocities of each mass v; and v, can be expressed in terms of the angular veloci-
ties @and ¢
vi=elf  vy=vi+eyld (11.3.44)

where the second term in the latter expression is the velocity of the second mass rela-
tive to that of the first.
The kinetic energy is, thus,
T=

ml%6* + % m(eqlf + e¢l¢) (el + e¢l¢)

ml*0® + ;m* (0 +¢)° (11.3.45)
ml*(20° + ¢* + 209)

in which we have used e, - €, = 1 because these two unit vectors remain approximately
parallel as long as the angular displacements are small. We can calculate the M matrix
by comparing Equation 11.3.45 with Equations 11.3.37a and b

(2] 11.3.46
M =ml (1 J (11.3.46)
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The sum of the potential energies of the two masses relative to their equilibrium posi-
tion is
V =mgl(1- cosB)+mgl[2 —(cosO + cos )]

11.3.47
~ 1 mgl(20% +¢°) ( )

in which we used the small angle approximation for both cosine functions. We can cal-
culate the K matrix by compairing Equation 11.3.47 with Equations 11.3.37a and b

20
K= mgl[ ) (11.3.48)
The condition given in Equation 11.3.39a is automatically satisfied and that given in

Equations 11.3.39b is satisfied if &® = 2. We, therefore, “guess” that the two eigenvec-
tors for this coupled system, according to Equation 11.3.40a, are

1 -1
a; = (&) a, = (ﬁ) (11.3.49a)
The A matrix is then
o 11.3.49b
"2 42 (11:3:499)

which we then use to diagonalize M

L (1 4E)E (1 -l
Mdmg—AMA—ml [_1 &] . J(& &)

11.3.50
2[2+«/§ 0 ] ( ?
=92ml
0 2-42
then K
) 1 42)2 0y 1 -1
K, =AKA =mgl
R i b
(11.3.50b)

) 110
e 1

The Lagrangian, expressed in terms of the normal coordinates, is

1 d - -~
L=T-V=3;QM,,Q-;QK,Q

e (24420 Ql_ 1 0)(Q
o SOl U2

= m[(2+2)0} +@-2)03 |- 2mgl(Q} +03)
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and it has no cross terus. The ratxo of the diagonal elements of Kj,, and M, yields
the eigenfrequencies @} and ]

2mgl( 1 ,
2= ml% (2_“/_) «/—)— symmetric mode
omel ) (11.3.52a)
w§= me (2 1/_) (2+1/_)— antisymmetric mode

The ratio of the two normal mode frequencies is independent of all the parameters m,
[, and g and is equal to

@ _ [(2+«/‘)] —94L4 (11.3.52b)
o [2-2)

so the oscillation in the faster, antisymmetric mode has a frequency about two and one-
half times that of the slower, symmetric mode.

Solution 2: The General Method

The equations of motion can be written in matrix form (using the M and K matrices
found in Equations 11.3.46 and 11.3.48) as

M{G+Kq=0

2(2 1){6} (2 0](0] (11.3.53)
ml . |+mgl =0
1 1) ¢ 0 1)\¢

where the generalized coordinates (6, ¢) represent components of the generalized coor-
dinate state vector q. As before, let us assume that a solution for a normal mode exists
that takes a form analogous to those found for the coupled oscillator discussed in the
previous section and represented by Equations 11.3.11a and b.

q=acoswt

[a1] (11.3.54)
= coswt
2

a

(For simplicity, we used only a cosine term with no phase angle.)
Plugging the assumed single frequency solution for a normal mode into the equations
of motion yields the following

-20°+2 -0 4
5 5 =0 (11.3.55)
- -w° +1)\a,

in which we further simplified subsequent algebraic manipulation by omitting the fac-
tors g and l. As before, a nontrivial solution (a,, a; # 0) exists only if the determinant of
the matrix in Equation 11.3.55 is zero, that is

—2w?+2 -’
=0 (11.3.56a)

T s |
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or
@ — 4% +9=0 (11.3.56b)

The solution to this quadratic (in ) equation yields the two eigenfrequencies @} and w2,
already obtained in Equations 11.3.52a. We can now calculate the ratio a;/a, for the two
eigenvectors by inserting these two frequencies, one by one, into either of the homogeneous
equations contained in the matrix Equation 11.3.55. For example, the first equation is
(20 +2)a; = w’a,
a _ P (11.3.57a)
a, —20°+2
Inserting the two eigenfrequencies @; and @} from Equations 11.3.52a into Equation
11.3.57 yields the following conditions on the coordinates of the eigenvectors

a4 1 _ 4 _ 1 —
i_+ﬁ(w—w1) i——ﬁ(w—wz) (11.3.57b)

We arbitrarily set a; = 1, which we are free to do because the solution yields only the
ratio a,/a,.
Thus, we obtain

1
V2

-1
V2

which are precisely the eigenvectors that we originally guessed.

0 = cosat ¢=+V2coswt a = ( J symmetric mode

(11.3.58)

6=—coswpt @=+V2coswyt a, = ( J antisymmetric mode

EXAMPLE 11.3.2

A pendulum of mass m and length ris attached to a support, also of mass m, that is able
to move along a frictionless, horizontal track. A spring, of force constant k, is attached
between the support and an adjacent wall (Figure 11.3.8). The values of the mass m,
spring constant k, and pendulum length r are such that 2mg =kr; that is, if the spring
were used to support the weight of the two masses, it would be stretched a distance equal
to the length of the pendulum. Find the normal mode frequencies.

Solution:

We calculated the kinetic and potential energies of a system like this one (minus the
spring) in Section 10.3. The kinetic energy of this system is the same. It is

T = zmX® +m[X* +(rf)" + 2X(r6) cos 6]

The potential energy (defined to be zero at the equilibrium configuration) is

V =mgr(l-cos@)+ %sz
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Figure 11.3.8 Pendulum attached to
movable support which is attached to a
wall with a spring.

Assuming that 6, 8 are small, we can approximate the above expressions to give

T =~ ;mX?+2m[X? +(r6)® +2X(r6)]
2 2
V=mgr L +k X
2 2
We can further simplify these expressions by setting ¢, = X, g, = r6 and, using the con-
ditions given in the problem, setting @ = g/r = k/2m. Then, we have

T = 3m{24] +43 +2ds]

V = ;maj[2q; +43]
These last two expressions are identical in form to Equations 11.3.45 and 11.3.47 in
Example 11.3.1; therefore, the solution is identical to the one we obtained there. The

resulting normal mode frequencies are
0} =@2-V2)0l and @ =@+V2)0l

Does this seem reasonable to you?

11.4| General Theory of Vibrating Systems

We turn now to a system with n degrees of freedom. In Section 10.3 we showed that the
kinetic energy T is a homogeneous quadratic function of the generalized velocities. It can

be written in matrix form as
n

T=;6Mq=;2ijmm (11.4.1)
b
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provided there are no moving constraints. Mj; are the elements of the real, symmetric n X n
matrix M, and ¢; are the n generalized velocities that are the components of the vector
q. Because we are concerned with motion about an equilibrium configuration, we
assume, as in Section 11.2, that the My’s are constant and equal to their values at the equi-
librium configuration. We further assume that the origin of the n-dimensional coordi-

nate system (qy, gz, - - - , §,) has been chosen such that the equilibrium configuration is
given by
G1=qz=---=4,=0 (11.4.2)
Accordingly, the potential energy V, from Equation 11.1.8a, is given by
V=3§Kq= %Z;,Kjkq 19 (11.4.3)
s

K} are the elements of the real, symmetric n X n matrix K, and g; are the n generalized
coordinates in which the state vector q is expressed.
The Lagrangian function then assumes the form

L=14Mq-;§Kq

L& o (11.4.4)
= EZk(Mjkqjqk - Kjkqjqk)
b
and the resulting equations of motion are
d( oL oL
—| =— {=-—=0 k=12 ...,
dt[an 34, (k=12,....m (11.45)
which are equal to
Z(%kfij"'Kjk‘Ij) (k=12,....n) (11.4.6)
J
or in matrix form
Mg + Kq=0 (11.4.7)
If a solution of the form
q=acosmi (11.4.8)

exists, where a is a vector with n components g;, the following equation(s) must be
satisfied:

(K- o™M)a=0 (11.4.9)

This is a matrix representation of a homogeneous set of linear equations for the n com-
ponents of the eigenvector a

2 2
K,-o'M,; Ky-0°M;;, ---|(a

Ky -0"My Ky-0"My -l a, |= (11.4.10)
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A nontrivial solution requires that the determinant of the coefficients of the a vanishes,
that is

det (K- 0*M) =0 (11.4.11)
or
K,-0'M; Ky-0’M,
Ky~0"My Kp-0"My ---|=0 (11.4.12)

The preceding secular equation (11.4.12) is an equation of the nth degree in @”. The n
roots are the eigenvalues or eigenfrequencies of the system.

Thus, if a given system has n degrees of freedom, there are, in general, n different
possible eigenfrequencies of oscillation about the equilibrium configuration, each char-
acterized by its own eigenvector that corresponds to a normal mode. Finding the roots,
or eigenfrequencies, of the secular equation often entails the tedious task of solving a
high-order polynomial, cubic for n = 3, quartic for n = 4, and so on. In some special sit-
uations the roots of the secular equation are either repeated or zero or both. In such
cases, the problem of finding the roots might not be too difficult. Such an example is
given at the end of this section. In the next section, we present a method of determin-
ing the normal mode frequencies for a linear array of coupled oscillators for which n
may have any value.

As in the previous case of two coupled oscillators, the complete solution to
Equation 11.4.12 gives the n eigenfrequencies @}, which can then be used in Equation
11.4.9 or 11.4.10 to calculate the components a; of the n eigenvectors a;. These eigen-
vectors and eigenfrequencies can then be used to construct the n normal mode vectors
Q. which is given by

a1k
Gox
Q,(¢) = a, cos(w;t—8&;) a, =|"- (k=12,...,n) (114.13)

Gk
The amplitudes, or components a;, are not independent but are related because for each
eigenfrequency @ they satisfy the homogeneous eigenvector Equation 11.4.9 or 11.4.10.
This allows us to determine only the ratios of the eigenvector components ay: Gy: . . . : Gy.
We have freedom to normalize them as we choose. For the sake of simplicity, this is fre-
quently done by setting the first component equal to one.

The displacement of each oscillator from its equilibrium position is represented by its
generalized coordinate gy, one of the components of the state vector q for the system. This
is the general solution we desire. Each of these components is a linear combination of the
components of the normal mode vector Qy, which oscillate at their respective frequencies
oy. The components of these normal mode vectors are given in Equation 11.4.13, and
they can be used to construct a table like the one that led to the solutions given in Equation
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11.3.18 for the coupled oscillator. The table shows the linear combinations that make up
the desired solutions g;.

Q, Q o Q.
g apcos(wt—38,) agcos(@t—8,) -+ - a,, cos(m,t—8,)
gy g cos(@t—38)) agcos(@et=38,) -+ - d,, cos(w,t —3,)
gn G cos(@t—08) a,,cos(wet—8y) -+ --- a,, cos(w,t —98,)

The general solution for each generalized coordinate g; is, thus,

Gk = 3. ay; cos(@;t — 8,) k=12,...,n) (11.4.14)
=1
We emphasize that particularly when n > 2, it is well worth the effort to try to guess the
normal mode vectors because constructing the transformation matrix A is then straight-
forward and the complete solution to the problem can be found with relatively simple oper-
ations using this matrix.

EXAMPLE 11.4.1

Linear Motion of a Triatomic Molecule

Let us consider the motion of a three-particle system in which all the particles lie in a
straight line. An example of such a collinear system is the carbon dioxide molecule COs,
which has the structure O—C—0. We consider motion only in one dimension, along the
x-axis (Figure 11.4.1). The two end particles, each of mass m, are bound to the central
particle, mass M, via a potential function that is equivalent to that of two springs of stiff-
ness K, as shown in Figure 11.4.1. The coordinates expressing the displacements of
each mass are %, X5, and x;.

Solution:

In this problem we can easily guess the normal modes. They are pictured in
Figures 11.4.1(a)~(c). If you think about it a while you should realize that what’s going
on here is that the center of mass of the molecule is not accelerating. In mode (c) the
central mass is vibrating 180° out of phase with the two end masses. The ratio of the vibra-
tional amplitudes is such that the center of mass remains at rest. Mode (b) obeys
the same condition. The central mass remains at rest while the two equal end
masses vibrate 180° out of phase with each other, with equal amplitudes, again
fixing the center of mass. Mode (a) depicts overall translation of the center of mass
at constant velocity.
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Figure 11.4.1 Model of a
triatomic molecule and its
three normal modes for
motion in a single line.

We could go on and solve the problem using this guess. We do not do so, however.
We solve it using the general method introduced in the previous example, in which we
assume that the normal modes are unknown. We ultimately generate a secular equation
that, in this example, is of third order in o’ (There are three coordinates, hence, three
normal modes and frequencies in the solution.) It turns out that this particular third-
order equation is very easy to solve. On obtaining the frequencies of each normal mode,
we then insert them into any one of the equations relating the amplitudes of the
displacement coordinates to one another (the matrix equivalent of the secular equa-
tion in a)z), thus, obtaining the normal modes.

The Lagrangian of the system is

L=T-V
m.o M, m.\ [K K (11.4.15)
= (Ex% +?x§ +—2—x§)-—|:—2—(x2 -x;)? +—2-(:)c3 - x2)2]
and Lagrange’s three equations of motion read
—Kx;+Mi, +2Kx, -Kx; =0 (11.4.16)

- Kxy +mi;+Kx; =0
If a solution of the form x; = a; cos ®¢, x; = a, cos W1, x5 = a; cos Mt exists, then
K-ma? -K 0 a
-K  2K-Me®* -K a, |=0 (11.4.17)
0 -K K-ma?® |\ a,



498 CHAPTER 11 Dynamics of Oscillating Systems

The secular equation is thus,

K-mo® -K 0
-K  2K-Meo®* -K |=0 (11.4.18a)
0 -K K-mo?

which, on expanding the determinant and collecting terms, fortuitously becomes the
product of three factors

0’ (~me’® + K)(-mMo® + KM + 2Km) =0 (11.4.18b)
Equating each of the three factors to zero gives the three normal frequencies of the
system:
K2 K K\
w =0 Wy =|— Wy =—+2—
! 2 (m) 3 [m M) (11.4.19)

Let us discuss the modes corresponding to these three roots.

1. The first mode is no oscillation at all but is pure translation of the system as a whole.
If we set @=0 in Equations 11.4.17, we find that a, = a, = a; for this mode.

2. Setting @= @, in Equations 11.4.17 gives a, = 0 and @) = —a3. In this mode the center
particle is at rest while the two end particles vibrate in opposite directions (anti-
symmetrically) with the same amplitude.

3. Finally, setting @ = @; in Equations 11.4.17 we obtain the following relations:
a, = ag and ay = —2a,(m/M) = —2a3(m/M). Thus, in this mode the two end particles
vibrate in unison while the center particle vibrates oppositely with a different ampli-
tude. The three modes are illustrated in Figure 11.4.1.

The ratio @s/®, is independent of the constant K, namely,
V2
9 _ (1 + 2-"1)
, M

In the carbon dioxide molecule the mass ratio m/M is very nearly 16:12 for ordinary CO,
(Cy2 and Oy atoms). Thus, the frequency ratio

L
@,

= (1+2x2)” = (%)y2 =1.915

11.5| Vibration of a Loaded String or Linear Array
of Coupled Harmonic Oscillators

Any real, solid system contains many particles, each bound to a small region of space by
atomic potentials, not just two or three particles coupled together by springs. The bind-
ing potential “felt” by each particle, however, is well represented by a quadratic func-
tion of the difference between each particle’s displacement from its equilibrium position
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and the corresponding displacement of its immediate neighbor. Thus, such a system is
essentially one of many coupled oscillators. Its analysis can lead to a description of the
oscillations of a continuous medium, the propagation of waves through a continuous
medium, or the vibrations of a crystalline lattice. In this section, we take the first step
toward arming you with the theoretical weaponry necessary to attack such problems. We
consider the motion of a simple mechanical system consisting of a light elastic string,
clamped at both ends and loaded with n particles, each of mass m, equally spaced along
the length of the string. Before proceeding with the analysis, however, we make a brief
historical digression on this subject.’

An analysis of the dynamics of a line of interconnected masses was first attempted
by Newton, himself. Two of his successors, the remarkable Bernoullis (John and his son
Daniel), were the ones who had ultimate success with the problem. They demonstrated
that a system of n masses has exactly n independent modes (for one-dimensional motion
only). In 1753 Daniel Bernoulli (1700-1782) demonstrated that the general motion of
this vibrating system is describable as a superposition of its normal modes. According to
Leon Brillouin, a major contributor to the theory of vibrations of a crystalline lattice :

This investigation by the Bernoullis may be said to form the beginning of theoretical
physics as distinet from mechanics, in the sense that it is the first attempt to formulate
laws for the motion of a system of particles rather than for that of a single particle. The
principle of superposition is important, as it is a special case of a Fourier series, and in
time it was extended to become a statement of Fourier’s theorem.

Strong words, these! Let us now begin the analysis.

Let us label the displacements of the various particles from their equilibrium positions
by the coordinates gy, gs, . . - , g,. Actually, two types of displacement can occur, namely,
a longitudinal displacement in which the particle moves along the direction of the string,
and a transverse displacement in which the particle moves at right angles to the length of
the string. These are illustrated in Figure 11.5.1. For simplicity we assume that the motion
is either purely longitudinal or purely transverse, although in the actual physical situation
a combination of the two could occur. The kinetic energy of the system is then given by

T=—é—(q§+q§+- L+47) 115.1)

If we use the letter k to denote any given particle, then, in the case of longitudinal
motion, the stretch of the section of string between particle k and particle k + 1 is

Gre1 = G (11.5.2)

Hence, the potential energy of this section of the string is

5 K@ — g2 (115.3)

in which K is the elastic stiffness coefficient of the section of string connecting the two
adjacent particles.

6See, for example, A. P. French, Vibrations and Waves, The MIT Introductory Physics Series, Norton,
New York (1971).

L. Brillouin, Wave Propagation in Periodic Structures, Dover, New York (1953).
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(2)

(b

Figure 11.5.1 Linear array of vibrating particles or the loaded string. (a) Longitudinal motjon.
(b) Transverse motion.

For the case of transverse motion, the distance between particle k and k + 1 is
1
[d? + (g ~q0)* 1" =d + f‘ﬂ(qkﬂ —q )+ (11.5.9)

in which d is the equilibrium distance between two adjacent particles. The stretch of the
section of string connecting the two particles is then approximately

1
Al= = (G = a)° (11.5.5)

Thus, if F is the force of tension in the string, the potential energy of the section under
consideration is given by

F
FAl = og = q )’ (11.5.6)

It follows that the total potential energy of the system in either the longitudinal or the trans-
verse type of motion is expressible as a quadratic function of the form

K
V=E[q§+(qz-q1)2+- . '+(qn—qn—1)2+qrzt] (11.5.7)

in which

F tension . ,
K=e—a=—8+— transverse vibration

d separation
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or
K = elastic constant longitudinal vibration

The Lagrangian function for either case is, thus, given by

L= %;[mqi ~ K(qe — )’ (11.5.8)
The Lagrangian equations of motion
d oL _dL
dt 35, 3q, (11.5.9)
then become
MGy ==K(qi = 1) + K(Gi1 —q1) (11.5.10)

wherek=1,2,...,n.
To solve the preceding system of n equations, we use a trial solution in which the ¢’s
are assumed to vary harmonically with time:

qi = G cos Wt (11.5.11a)

where g, is the amplitude of vibration of the kth particle. Substitution of the trial solu-
tion (Equation 11.5.11a) into the differential equations (Equations 11.5.10) yields the fol-
lowing recursion formula for the amplitudes:

—mora, = K(a_, - 24, + ar,y) (11.5.11b)
This formula includes the endpoints of the string if we set
Gy=0Gyy; =0 (11.5.11¢)
The secular determinant is, thus,
2K -me® -K 0 S 0
-K  2K-mae? -K - 0
0 -K  2K-mo® --- 0 |=0 (1519
0 0 0 oo 2K-me®

The determinant is of the nth order, and there are, thus, n values of wthat satisfy the equa-
tion. Rather than find these n roots by algebra, however it turns out that we can find them
by working directly with the recursion relation (Equation 11.5.11b).

To this end we define a quantity ¢ related to the amplitudes g; by the following
equation:

@ = A sink¢ (11.5.13)
Direct substitution into the recursion formula (11.5.11b) then yields
—maA sin(k@) = KA[sin(k¢ — ¢) — 2 sin(k¢) + sin(k¢ + ¢)] (11.5.14a)
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which reduces to

mo® = K(2~-2cos ¢) = 4K sin® % (11.5.14Db)
or
o = 20, sin-qzl (11.5.14c)
in which
W, = (E)w (11.5.14d)
m

Equation 11.5.14c gives the normal frequencies in terms of the quantity ¢, which we have
not, as yet, determined. Now, as a matter of fact, the same relation would have been obtained
by any of the following substitutions for the amplitude a;: A cosk ¢, Ac™*? Ae™ or any
linear combination of these. Only the substitution a; = A sin (k ¢) satisfies the end condi-
tion @, = 0, however. To determine the actual value of the parameter ¢, and, thus, find
the normal frequencies of the vibrating string, we use the other end condition, namely,
a,,; = 0. This condition is met if we set

(n+1)¢p=Nrn (11.5.15)
in which N is an integer, because we then have
G =AsinNg=0 (11.5.16)

Having found ¢, we can now calculate the normal frequencies. They are given by

N
wN=2wOSin( x ) (11.5.17)
In+2

Furthermore, from Equations 11.5.13 and 11.5.15 we see that the amplitudes for the
normal modes are given by

a, = Asin[Nﬂk)
K 1 (11.5.18)
Here the value of k =1, 2, . . ., n denotes a particular particle in the linear array,
and the value of N=1, 2, . .., n refers to the normal mode in which the system is

oscillating.

The different normal modes are illustrated graphically by plotting the amplitudes as
given by Equation 11.5.18. These fall on a sine curve as shown in Figure 11.5.2, which
shows the case of three particles n = 3. The actual motion of the system, when it is vibrat-
ing in a single pure mode, is given by the equation

G, = 6, cosWyt = Asin[mjli)coswlvt (11.5.19)
n
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Figure 11.5.2 The three normal modes of a three-particle array.

The general type of motion is a linear combination of all the normal modes. This can be
expressed as

< Nrk
= ) Aysi cos(wyt —
L Z.l N Sm(n +1) 0s(Wyt — €y) (11.5.20)
in which the values of Ay and €y are determined from the initial conditions.
Suppose we look at the case where the number of masses on the string is very
large. A real string is an aggregate of a very large number of very closely spaced atoms.
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Let n increase, but at the same time, let the spacing d between neighboring particles
decrease, such that the length of the string L = (n + 1)d is held constant. Thus, for
N << n, the argument Nz/[2(n + 1)] of the sine term in Equation 11.5.17 is small. So
we have approximately

Nz
Ay =y m (11.5.21)

but for the transverse oscillations we have

K 172 F 2

=[=] =|— 11.5.22

w, (m) [m d] ( )
and substituting this into Equation 11.5.21 gives
V2
F Nrm

= | — 11.5.23

On [m/d] (n+1)d ( %)

But (n + 1)d =L, the total length of the string, and m/d is its mass per unit length p (the
linear mass density). Thus, we have approximately

/2
Wy = NE[EJ (N=12 ...) (11.5.23b)
L\ p
In particular,
_ n(F 12
& =7 u (11.5.23c)

and @y = N@,. The normal frequencies are integral multiples of the lowest, or funda-
mental, frequency @,. Remember, this is only an approximation, but for N < n it is an
exceedingly good one.

Let us now examine the displacements of the particles under these conditions. What
might we guess? They ought to very closely approximate the vibration of a real string. For
the Nth mode the displacement of the kth particle is given by Equation 11.5.19. Instead
of denoting the particle by its k value, however, let us denote it by its distance down the
string from the fixed end x = kd. Hence,

kNz _ Nm(kd) _ Nmx
(n+l) (m+ld L

(11.5.24)

Replacing the argument of the sine term in Equation 11.5.19 by this factor permits us to
rewrite that Equation as

gy(x,t) = Asin(NZx)coszt (N=12, ...)

(11.5.252)
= Asin (2/1&) cos 27fyt

N
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where we have defined the wavelength Ay and the frequency fy by

_2L

[
= fy=n (11.5.25b)

A =
N o2

The meaning of these terms applied to wave motion along a continuous medium is made
more precise in the next section. Equation 11.5.25b expresses the displacement of any
point along a continuous string when it is vibrating in its Nth mode. It represents a stand-
ing wave of wavelength Ay. Each vibrational mode consists of an integral number of half-
wavelength units constrained to fit within the length L such that the endpoints are
nodes; that is, they do not vibrate. The meaning of the term’s fundamental frequency—
first, second, third, and so on harmonics of something like a vibrating violin string—
should also be clear. No wonder the early Pythagoreans had such a high regard for
integers.

In the next section, we treat the preceding situation directly as a continuous medium
instead of one made up of a large number of discrete masses. We develop a differential
“wave” equation governing the motion of the continuous medium, and we obtain stand-
ing wave solutions identical to the one shown earlier.

11.6| Vibration of a Continuous
System: The Wave Equation

Let us consider the motion of a linear array of connected particles in which the number
of particles is made indefinitely large and the distance between adjacent particles indef-
initely small. In other words, we have a continuous heavy cord or rod. To analyze this type
of system it is convenient to rewrite the differential equations of motion of a finite system
(Equation 11.5.10) in the following form:

=K d[( qmd— 9% ) _(qk ‘d‘?k—l )] (11.6.1)

in which d is the distance between the equilibrium positions of any two adjacent parti-
cles. Now if the variable x represents general distances in the longitudinal direction, and
if the number n of particles is very large so that d is small compared with the total length,

then we can write
Qe ~ 9k _ (Eﬁ)
d 0% ), avare

G~ Qo _ (aj)
d 0% ), ra-an

Consequently, the difference between the two expressions in Equation 11.6.2 is equal to
the second derivative multiplied by d, namely,

2

G =0 _ GG _ d(?_q]

~ (11.63)
d d o)

(11.6.2)
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The equation of motion can, therefore, be written

g;‘zl _ Kszg_i% (11.6.4a)
or
g_i_‘zl o gj_cﬂz_ (11.6.4b)
in which we introduced the abbreviation
o2 = K& (11.6.4c)
m

Equation 11.6.4b is a well-known differential equation of mathematical physics. It is
called the one-dimensional wave equation. It is encountered in many different places.
Solutions of the wave equation represent traveling disturbances of some sort. It is easy
to verify that a very general type of solution of the wave equation is given by

q=f@+ot) (11.6.5a)
or
g=fk-vt) (11.6.5b)

where fis any differentiable function of the argument x * vt. The first solution represents
a disturbance that is propagating in the negative x direction with speed v, and the second
equation represents a disturbance moving with speed v in the positive x direction. In our
particular problem, the disturbance g is a displacement of a small portion of the system
from its equilibrium configuration, (Figure 11.6.1). For the cord this displacement could
be a kink that travels along the cord, and for a solid rod it could be a region of compres-
sion or of rarefaction moving along the length of the rod.

Figure 11.6.1 A sequence
of pictures of a wave traveling
to the right. The sequence was
generated using Mathematica’s
Animate function. t—

B
R
L
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Evaluation of the Wave Speed

In the preceding section we found that the constant K, for transverse motion of a loaded
string, is equal to the ratio F/d, where F is the tension in the string. For the continuous
string this ratio would, of course, become infinite as d approaches zero. If we introduce
the linear density or mass per unit length y, however, we have

m
-m (11.6.6)
k=1

Consequently, the expression for v* (Equation 11.6.4c) can be written
o = (F/dyd®> _F

£ (11.6.7a)
ud  n
so that d cancels out. The speed of propagation for transverse waves in a continuous
string is then
V2
v= (E) (11.6.7b)
u

For the case of longitudinal vibrations, we introduce the elastic modulus Y, which is
defined as the ratio of the force to the elongation per unit length. Thus, K, the stiffness
of a small section of length d, is given by

K== 11.6.8
y ( )

Consequently, Equation 11.6.4c can be written as

o2 dd® Y

(11.6.9a)
ud  p
and again we see that d cancels out. Hence, the speed of propagation of longitudinal waves
in an elastic rod is
P\
v=| = 11.6.9b
" o
Sinusoidal Waves
In the study of wave motion, those particular solutions of the wave equation
g _ 29
99 _ 299 (11.6.10)
"t
in which q is a sinusoidal function of x and ¢, namely,
g=A |:~2-Zt—(x + vt)] (11.6.11a)
cos|. A

g=A" [2—”(x - vt)] (11.6.11b)
cos| A
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Figure 11.6.2 A traveling
sinusoidal wave.

are of fundamental importance. These solutions represent traveling disturbances, or
waves, in which the displacement, at a given point x, varies harmonically in time. The
amplitude of the wave is the constant A, and the frequency f is given by

(11.6.12)

Furthermore, at a given value of the time ¢, say ¢ =0, the displacement varies sinusoidally
with the distance x. The distance between two successive maxima, or minima, of the
displacement is the constant A, called the wavelength. The waves represented by Equation
11.6.11a propagate in the negative x direction, and those represented by Equation 11.6.11b
propagate in the positive x direction, as shown in Figure 11.6.2. They are special cases of
the general type of solution mentioned earlier.

Standing Waves

Because the wave equation (Equation 11.6.4b) is linear, we can build up any number of
solutions by making linear combinations of known solutions. One possible linear com-
bination of particular significance is obtained by adding two waves of equal amplitude
A that are traveling in opposite directions. In our notation such a solution is given by

q= Asm[z%(x+vt)]+Asin|i27”(x—vt)] (11.6.13)

By using the appropriate trigonometric identity and collecting terms, we find that the
equation reduces to

g= 2Asin(gf—x) cos @t (11.6.14)

in which @=27v/A. The amplitude of the resultant disturbance is 24. Note that this equa-
tion is identical to Equation 11.5.25a (only there the net amplitude was simply A), which
represents the motion of the loaded string in the limiting situation that the number of dis-
crete masses approaches infinity, while their distance of separation approaches zero in such
away that the total length of string remains constant. Again, Equation 11.6.14 represents
a standing wave. The amplitude of the displacement varies continuously with x. Atx =0,
A2, A, 3472, . . ., the displacement of the string is always zero, because the sine term
vanishes at those points. These points of zero amplitude are the nodes. Atx = 1/4, 34/4,
5A/4, . . .., the amplitude of the vibrating string is a maximum. These points are the
antinodes. The distance between two successive nodes (or antinodes) is A/2. These facts
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Figure 11.6.3 A standing t=t3
sinusoidal wave.

are illustrated in Figure 11.6.3. Note again that there is a well-defined constraint on the
values of allowable wavelengths A. Because the endpoints of the string are fixed, we have
as boundary conditions

g=0 «x=0,L) (11.6.15)

that our solution (Equation 11.6.14) must obey. The first condition at x = 0 is met auto-
matically. The second boundary condition at x = L is met if

A 2L
L=N|- A==
( 2) N (11.6.16)
An integral number of half wavelengths must fit within the length L if the endpoints are
to be nodes. This is precisely the condition obtained previously for the normal modes of
the loaded string.

Problems

11.1 A particle of mass m moves in one-dimensional motion with the following potential energy
functions:
vy =K K
(a) V(x)= rEa
(b) V(x)= kxe ™
(¢) Vx) =k@* - b%P)
where all constants are real and positive. Find the equilibrium positions for each case
and determine their stability.
(d) Find the angular frequency @ for small oscillations about the respective positions of
stable equilibrium for parts (a), (b), and (c), and find the period in seconds for each case
ifm=1g, and k and b are each of unit value in cgs units.

11.2 A particle moves in two dimensions under the potential energy function
Vix,y) = k@® +y° — 2bx — 4by)

where k is a positive constant. Show that there is one position of equilibrium. Is it stable or
unstable?

11.3  The potential energy function of a particle of mass m in one-dimensional motion is given by

Vix)= —-gxz
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11.5

11.6

11.7

11.8

11.9

11.10

11.11

11.12

11.13
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and so the force is of the antirestoring type
Flx)=kx
with x = 0 as a position of unstable equilibrium when  is a positive constant. If the initial
conditions are t =0, x =, and * =0, show that the ensuing motion is given by an expo-
nential “runaway”
x(t) =xo(e™ + e *)y2
where the constant o= +/k/m..

A light elastic cord of length 2! and stiffness k is held with the ends fixed a distance 2! apart
in a horizontal position. A block of mass m is then suspended from the midpoint of the cord.
Show that the potential energy of the system is given by the expression

V(y) = 2kly” - 21(y" +1%)"*) - mgy
where y is the vertical sag of the center of the cord. From this show that the equilibrium
position is given by a root of the equation

u'-2au® + %P - 2au+4d*=0

where u =y/l and a = mg/4kl.
A uniform cubical block of mass m and sides 24 is balanced on top of a rough sphere of
radius b. Show that the potential energy function can be expressed as

V(0) =mg[(a +b) cos 6+ bOsin 6]

where 0is the angle of tilt. From this, show that the equilibrium at 8= 0 is stable, or unsta-
ble, depending on whether a is less than or greater than b, respectively.

Expand the potential energy function of Problem 11.5 as a power series in 6. From this deter-
mine the stability for the case a =b.

A solid homogeneous hemisphere of radius 4 rests on top of a rough hemispherical cap of
radius b, the curved faces being in contact. Show that the equilibrium is stable if @ is less
than 3b/5.

Determine the frequency of vertical oscillations about the equilibrium position in
Problem 11.4.

Determine the period of oscillation of the block in Problem 11.5.
Determine the period of oscillation of the hemisphere in Problem 11.7.

A small steel ball rolls back and forth about its equilibrium position in a rough spherical bowl.
Show that the period of oscillation is 22[7(b - a)/5g]”2, where a is the radius of the ball
and b is the radius of the bowl. Find the period in seconds if b =1 m anda = 1 cm.

For an orbiting satellite in the form of a thin rod, show that the stable equilibrium attitude and
period of oscillation are the same as those found in Example 11.2.2 for the dumbbell satellite.

In the system of two identical coupled oscillators shown in Figure 11.3.1, one oscillator is
started with initial amplitude A, whereas the other is at rest at its equilibrium position, so
that the initial conditions are

t=0 1, (0)= A, %(0)=0 4,(0) = £,(0) =0

Show that the amplitude of the symmetric component is equal to the amplitude of the
antisymmetric component in this case and that the complete solution can be expressed
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as follows:

% ()= %Ao(cosa)at +cosw,t) = Ajcos@t cos At

% (t) = %Ao (cosw,t — cos@,t) = A, sin@t sin At

in which @ = (@, + @,)/2 and A = (@, — ®,)/2. Thus, if the coupling is very weak so that
K’ « K, then @ will be very nearly equal to @, = (K/m)"® and Ais very small. Consequently,
under the stated initial conditions, the first oscillator eventually comes to rest while the second
oscillator oscillates with amplitude A,. Later, the system returns to the initial condition, and
so on. Thus, the energy passes back and forth between the two oscillators indefinitely.

In Problem 11.13 show that, for weak coupling, the period at which the energy trades
back and forth is approximately equal to T,(2K/K") where T, = 2%/@, = 27/(m/K)"? is
the period of the symmetric oscillation.

Two identical simple pendula are coupled together by a very weak force of attraction
that varies as the inverse square of the distance between the two particles. (This force
might be the gravitational attraction between the two particles, for instance.) Show that,
for small departures from the equilibrium configuration, the Lagrangian can be reduced
to the same mathematical form, with appropriate constants, as that of the two identical
coupled oscillators treated in Section 11.3 and in Problem 11.13. (Hint: Consider
Equation 11.3.9.)

Find the normal frequencies of the coupled harmonic oscillator system (see Figure 11.3.1)

for the general case in which the two particles have unequal mass and the springs have

different stiffness. In particular, find the frequencies for the case m, =m, my=2m, K, =K,
12

K, =2K, K’ = 2K. Express the result in terms of the quantity w, = (K/m)™".

Alight elastic spring of stiffness K is clamped at its upper end and supports a particle of mass
m atits lower end. A second spring of stiffness K is fastened to the particle and, in turn, sup-
ports a particle of mass 2m at its lower end. Find the normal frequencies of the system for
vertical oscillations about the equilibrium configuration. Find also the normal coordinates.

Consider the case of a double pendulum, Figure 11.3.7a, in which the two sections are of
different length, the upper one being of length [, and the lower of length [,. Both particles
are of equal mass m. Find the normal frequencies of the system and the normal coordinates.

Set up the secular equation for the case of three coupled particles in a linear array and show
that the normal frequencies are the same as those given by Equation 11.5.17.

A simple pendulum of mass m and length ¢ is attached to a block of mass M that is con-
strained to slide along a frictionless, horizontal track as shown in Figure P11.20. Find the
normal frequencies and normal modes of oscillation.

Figure P11.20
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In Example 11.3.2

(a) Find the normal modes of oscillation.

(b) Relax the assumption that 2mg = kr. Instead, let the support mass be M and the mass
of the pendulum be m and assume that oc=m/(m + M) << 1. Now find the normal modes
of oscillation and the normal mode frequencies.

Three beads of mass m, m, and 2m are constrained to slide along a frictionless, circular hoop.
The two small masses are each connected to the large mass and to each other by springs of
length a and force constants k and k’, respectively. The masses are Shown in Figure P11.22
at their equilibrium positions, which are located at 120° angular separations. The largest
mass is initially displaced 10° clockwise from its equilibrium position, and the other two are
held fixed in place. The three masses are then simultaneously released from rest.

{a) Find the normal frequencies and normal modes of oscillation.

{(b) Solve for the resulting motion of each mass.

Figure P11.22

Find the matrix A that diagonalizes the K and M matrices in the case of the linear triatomic
molecule of Example 11.4.1. Show that the ratio of their diagonal elements is equal to the
eigenfrequencies of the normal modes of oscillation.

A triatomic molecule like hydrogen sulfide (H,S) consists of two hydrogen atoms of mass
m and one sulfur atom of mass M constrained by atomic bonding forces to assume the tri-
angular configuration shown in Figure P11.24. Assume that the bonding forces can be
approximated by springs whose force constant is k. When the three atoms are in their equi-
librium configuration, the HS distance is @ = 1.67 x 10™ m and the H—S—H vertex
angle is approximately 2c:= 90°. Find the normal frequencies and normal modes of oscil-
lation. Assume that the hydrogen atoms do not interact directly with each other.

Figure P11.24 m
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Two waves are traveling through a medium. Assume that the displacements from equilib-
rium of particles that make up the medium are given by the functions

i(wt —kx)

qi1(x, t) = Ae
Gol, ) = ALQ KD

whose real part represents the physical wave.
(a) Show that each of these functions are solutions of the wave equation.
(b) Assume that the frequencies and wave numbers differ by small amounts

Q=0+Aw K=k + Ak

Ignoring small differences of second order, show that the real part of the resultant
wave function is given approximately by

[—————(Aw)t ; Ak ] cos(ot —kx)

Qx,t)=q, + g, = 2cos

The resultant wave has the same frequency and wave number as the original wave, but
it has a modulated amplitude (the wave number k = 27/4).

(¢) Calculate the speed of propagation of the amplitude modulation (this speed is called
the group speed v, of the wave).

Tlustrate the normal modes for the case of four particles in a linear array. Find the numer-
ical values of the ratios of the second, third, and fourth normal frequencies to the lowest
or first normal frequency.

A light elastic cord of natural length [ and stiffness K is stretched out to a length [ + Al and
loaded with a number n of particles evenly spaced along its length. If m is the total mass of
all n particles, find the speed of transverse and of longitudinal waves in the cord.

Work Problem 11.27 for the case in which, instead of being loaded, the cord is heavy with
linear mass density .

In section 3.9, we showed how Fourier series could be used to represent a periodic func-
tion. Here we wish to apply that analysis to a vibrating string. Assume that a string of length
! of mass per unit length u is stretched horizontally between two supports and held with
tension F,. Assume that the middle of the string is displaced a distance a (where a « ) in
the vertical direction. When the string is released, it vibrates in a standing wave pat-
tern. Use Fourier analysis to calculate the pattern of vibration as a function of time
(Figure P 11.29), that is calculate the Fourier coefficients of the series needed to describe
the motion.

Figure P11.29

Find the solution to Problem 11.29 in terms of traveling waves.
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Computer Problems

C 11.1 Consider a single pulse traveling down an infinitely long string. Assume that at ¢ =0, the

shape of the pulse, or the vertical displacement of the string, is

@

y(x) 1+4°

Analogous to the discussion of Fourier series in Section 3.9, this pulse can be thought of
as a superposition of harmonic waves of differing wave numbers k. The infinite sum of
Section 3.9, however, that approximates a repetitive function needs to be replaced here
by an integral over an infinite number of harmonic waves, each one weighted by an appro-
priate amplitude function, that is,

y(@) = [ a(k)cos(kx) dk @)

We use cosine functions because y(x) is an even function of x. The amplitude function a(k)
is given by

[
alk) ==~ [ y@eos(kn s &)

(a) Calculate a(k) using Equation 3.

(b) Substitute a(k) into Equation 2, and show that it yields y(x).

(¢) Integrate Equation 2 numerically for values of x ranging from 0 to 3, and show that the
results agree with the exact values of y(x). Assume that the speed of the pulse is given
by v = w/k = 1. In such a case, the shape of the pulse is preserved as it travels down the
string.

(d) Write down an exact expression for y(x,) assuming that at ¢ = 0, y(x,0) is given by
Equation 1.

(e) Write down the appropriate integral expression for y(x,£) using Equation 2.

(f) Now assume that the pulse is traveling down a “dispersive” string, for which the wave
velocity is not a constant but depends on the wave number of the wave. Assume that
@/k = 1 +0.25 k. The many waves of differing k that are superimposed to make the
traveling pulse change their phase relationship as each moves down the string. Thus,
the shape of the pulse changes. To see this effect, modify the integral expression for
y(x,t) obtained in part (e) using the “dispersive” value of @/k given above. Numerically
integrate the resulting expression to obtain y(x,t) fort =2.5, 5.0, and 10.0 s. Pick a broad
range of x about the location of the peak of the pulse at each of these times.

(g) Plot these resultant waveforms, and compare them with (x,0). Comment on the result.
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Units

Basic S| (Systéme International) Units

Unit Symbol Physical Quantity
meter m length

kilogram kg mass

second $ time

ampere A electric current
Kelvin K temperature

mole mol amount of substance
candela cd luminous intensity

Derived S| Units (not a complete list)

Unit Symbol Physical Quantity Equivalent
newton N force kg m/s®
joule ] work or energy N.m
watt w power /s

pascal Pa pressure N/m?

volt \' electric potential difference W/A
couloumb C electric charge A-s

hertz Hz frequency st

SI Units of Other Physical Quantities

Physical Quantity SI Unit
speed m/s
acceleration m/s*
angular speed (rad) s™
angular acceleration (rad) s~
torque kg m%s’

A-1
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Non-Sl Units Converted to SI Units

Physical Quantity S1 Unit
Energy

1 eV (electron volt) 1.6022x 107]
lerg 1077

1 BTU (British Thermal Unit) 1055

1 cal (calorie) 4.186]

1 XWH (kilowatt-hour) 3.6x10°]
Mass

1 g (gram) 10°kg

1 u (atomic mass unit) 1.661 x 10" kg
1eV/c? 1.783x 10 % kg
11b (pound mass) 0.4536 kg
Force

1 dyne 107 kg m/s*
11b (pound force) 4.448 kg m/s*
Length

1 em (centimeter) 10%m

1 km (kilometer) 10°m

1in (inch) 0.0254 m

1 ft (foot) 0.3048 m

1yd (yard) 09144 m

1 mi (mile) 1609.3 m

1 AU (astronomical unit) 1.496 x 10" m
1ly (light-year) 946x10° m

1 pe (parsec) 3.00x10°m
Volume

1 L (liter) 10° m®

1 qt (quart) 09463 x 103 m®
1 gal (gallon) 3.785x10° m®
1 £t (cubic foot) 0.02832 m’
Angle

1° (degree) 1.745 x 10 rad
1’ (arcminute) 2.909 x 107 rad
1” (arcsecond) 4.848 x 107° rad
Time

1yr (year) 3.156x 10" s
1d (day) 8.640 x 10* s

1 hr (hour) 3600 s

1 min (minute) 60s
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Non-SI Units Converted to Sl Units (Continued)

Physical Quantity S1 Unit

Power

1 KW (kilowatt) 10°wW

1 hp (horsepower) 745.7TW

Speed

1 ft/s (foot per second) 0.3048 m/s

1 mph (mile per hour) 0.447 m/s
Prefixes for Multiplication by a Power of Ten
Name Symbol Factor Name Symbol Factor
hecto h 10° centi c 10
kilo k 10° milli m 107
mega M 10° micro U 10°°
giga G 10° nano n 107°
tera T 102 pico P 1072
peta P 10° femto f 107
exa E 10%® atto a 1078
zetta Z 10* zepto z 10
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Complex Numbers
The quantity

z=x+1iy

is said to be a complex number if x and y are real and i = z =. The complex conjugate is
defined as

Zr=x—iy
The absolute value |z| is given by
0
The following are true
z2+2*=2x=2Rez
z—-2"=2y=2Imz
Exponential Notation

z=x+iy=|z|e” =|z| (cos@ +isin )

2" =x—iy=|z|e™® =|z| (cos@—isin8)

where

tang =Y
X

(For a proof of the relation ¢'® = cos0 + isin O see under Series Expansions in
Appendix D.)
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Circular and Hyperbolic Functions

The following relations are often useful

0, -io
e’ +e
@=——
cos 5
0 _ _-io
sing=2——F
2i
e +ef . .
cosh@ = (hyperbolic cosine)
ef —e?
sinh @ = > (hyperbolic sine)
tanh@ = sinh@ _ e -’ (hyperbolic tangent)

coshg e® +e™®

Relations Between Circular and Hyperbolic Functions
sini@ = isinh @
cos1@ = cosh @
sinhif = isin@

cosh i@ = cos @

Derivatives
-d—sin9=cose —ésinh0=cosh0
de de
i cos@ = —sin @ -d— cosh@ =sinh@
de de
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Trigonometric Identities

cos> @+ sin®0=1

1+tan’0=sec’d

1+cot®@=csc’6

sin(8 * ¢) =sin @ cos ¢ £ cos B sin ¢

cos(@ * ¢) = cos @ cos ¢ ¥ sinOsin g
tan0 = tan¢

1¥ tanf tang

sin 26=2 sin B cos 8

cos 20= cos® 6 sin”@

tan(6+ @) =

tan 20 =

sinz%=%(l—cos0)

00s22=%(1+cos0)
tanzg: 1-cos0
2 1+cosf

sin@ +singp =2 sin(

)cos(
cosB+cosp=2 oos(e ¢) (

sin(0@ % ¢)
cos@ cos¢

)

tan@ + tan¢ =

Hyperbolic Identities

cosh?@ —sinh®>6 =1

tanh® 6 + sech®0 =1

coth®9 — csch®0 =1

sinh (0 £ ¢) =sin 8 cos ¢ + cosh @ sinh ¢

cosh(0 t ¢) = cosh 0 cos ¢ + sinh O sinh ¢
tanh + tanh ¢

1+ tanh @ tanh ¢

sinh 26 =2 sinh @ cosh &

cosh20= cosh®@ + sinh®@

tanh (0 £ ¢) =

2 tanh @
tanh 260 = ———
an 1+ tanh’6
sinh? g = %(coshe—l)

cosh® -g— = %(cosh 6+1)

tanhzg: cosh6-1
2 coshf+1

2

sinh@ + sinh ¢ = 2 sinh (&24") cosh (u

cosh 8 + cosh¢ = 2 cosh (&24") cosh (0;‘1)

sinh(6 + ¢)

tanh 0 + tanh ¢ =
anh 6+ tanh ¢ cosh & cosh ¢

2

)

)
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Conic Sections

A conic section is a curve that is the locus of a point that moves in such a way that the
ratio of its distance from a fixed point to its distance from a fixed line is a constant. This
ratio is called the eccentricity, the fixed point is the focus, and the fixed line is the direc-
trix of the curve. An example of a conic section is shown in Figure C.la. The four possi-
ble conic sections, parameterized by their eccentricity, are shown in Figure C.1b

~

j {«———— Directrix
Conic section

Focus TA 0

o
rO

JRPSRRDR gy Y [

Figure C.1a A conic section.

General Equation of a Conic Section (Figure C.1a) where the focus is at the origin O:

Cartesian coordinates: (1 — & ) P+ 2£2qx + y2 =g q2

Polar Coordinates: r = LT B or 1 = ME—G
l+ecos@ r ro(L+E)
where £= 2 and o = 4
PD 1+¢

A-7
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151 €> 1, Hyperbola
Z €= 1, Parabola
€ < 1, Ellipse
€=0, Circle
-1.5 -1 —‘lS ‘-/y 1.5
-15 _\\
Figure C.1b The four conic sections.
Equation of a Circle
For acircle: £=0,q =, and eg =R
Y Directrix

Area = IR?

(Note: In the figures of the curves that follow (the ellipse, parabola, and
hyperbola), the origin of the coordinate system does not coincide with the focus.
The equation given above for these curves in polar coordinates applies only when
the focus and origin of the coordinate system do coincide.)
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Equation of an Ellipse
For an ellipse: ad-b’=c e=cla,b= av1-¢e2, g=t b%ec
y Directrix associated with F;

a

Area = nab

A
\ b
FI(C»O)
i 5

2 P .
a2 * » q T
(Note:

(a) Only one focus, F, located at (c,0) is shown. There is a second, symmetrically
disposed focus Fy, located at (—c,0) with its own symmetrically disposed direc-
trix.

(b) If the origin of the coordinate system is positioned to coincide with F;, then the
polar equation of the ellipse may be used to relate the semi-major axis, 4, to the
eccentricity, £:

a= -i—@-— where 1y is the minimum distance of r (see Figure C.1a).)

Equation of a Parabola
For a parabola: =1, ¢ =—2¢

F(c,0)

Directrix
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Equation of a Hyperbola

For a hyperbola: ad+b’=c’ e=cla,b=aye’ -1, g=% b%c

~

[} )
] q 1 y—x
) [} /
1 [
] : /
N ot
c | ! __
s
A b
2 .
N Fi(c0)
N
N
N\
1 \\
]
1 N x2 y2
] N — = - == T 1
: \\ a2 b2
a: AN
]
!
!
!
]
]
]
Directrix associated with F;

(Note: Only one focus, F;, located at (c, 0) is shown. There is a second, sym-
metrically disposed focus F,, located at (—c, 0) with its own symmetrically dis-
posed directrix.)
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Series Expansions
Taylor's Series

2 n
fle+a)= f@+xf(@)+ T f @)+ -+ f2 @)+

2 n
f@ = fO+2f O+ f/ O+ -+ f1(O)+- -

where
n a’
a)= x
f*(a) 7 f®) _
Often-Used Expansions
2 n
. x
e =1l+x+—+ - +—+- ..
2! n!
2 %0
smx=x—-3—!+§-—---
2,4
cosx=1l—mtp—=—-..
2! 4
3 .5
sinhx =2+ 0+ +...
31 5!
2 L4
coshr=1++Z 4. ..
a4
2 3
In(l+%) =% —t+ 2= - <1
n(l+x)=x PR l%]
3
tanx =+ — k- - |x|<—’-'i
3 15 2
Complex Exponential
Setting x = i6 in the expansion for ¢* gives
:2n2 303 nnn
=140+ 0 410 T
2! 3! n!

A-11



A-12 Appendix D

Because i = «/:i

+Iin=04,...
. ~“Ln=26,...
b= +i:tn=15,...
-i:n=37,...

then

2 4 3 5
ew=(1_9_+9__...)J,{G_B_J,e__...]
A 4 3! 5!

=cos@ + isin@
from the series for the cosine and sine.

Binomial Series

nin—1 ny .
(a+x)"=a”+na"‘1x+(—2'—)a"‘2x2+---+[ )a” ™
4 m

where the binomial coefficient is
n n!
(m) " (n-m)im!
The series converges for |x/a| < 1.

Useful Approximations

For small x, the following approximations are often used

ef =1+«
sinx = x
cosaczl—%x2

Vl+x =1+—;—x

Lzl-—x
1+x

1
— =]+x
1-x

The last three are based on the binomial series, and the list can be extended for other values
of the exponent:

A+2)" =l+nx+onn-1x*+- -
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Special Functions

Elliptic Integrals
The elliptic integral of the first kind is given by the expressions

¢ de
B 9= o

[ dx
0 (1_x2)]/2 (1_k2x2)]/2

and the elliptic integral of the second kind by
E(k, ¢) = [} (1= k* sin®$)"® dg

I(l kzxz)uz
o (1-x%)"2

Both converge for |k| < 1. They are called incomplete if x = sin¢ < 1, and complete if x =
sin = 1. The complete integrals have the following series expansions:

2
F(k) = F(k,f) = lt—(1+k—+~9—k4 +- ]
2 2 4 64

2
E(k) =E(k,£)=£(1_k___g...k4 - ]
2) 2 4 64

Gamma Function
The gamma function is defined as
[(n)= J: " e dx
For any value of n
nl'(n)=T(n+1)
If n is a positive integer

I'n)=(n-1)!

A-13
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Special values

r(o)= %
rv=1
r(3)=147
r@e-=1

Integrals expressible in terms of gamma functions

n 1)+ wm)
J‘l (l - x2)nxm dx = r(n + l)r[(m + ]-)/2]
0 AI'[(2n +m + 3)/2]

Il dx T Tn)
O V1-2"
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Curvilinear Coordinates

We consider a general orthogonal system of coordinates , v, and w with unit vectors e,
€,, and e;. The volume element is

dV =h,hyhs du dv dw
and the line element is
dr=e h; du + eyhydv + e3hy dw
The gradient, divergence, and curl are as follows:

_ _e9f e 9f eof
Vi=eed f =g 3tk 90 h, duw

o=t |9 9 9
V:Q=divQ= Tuhghs l:&u (hahyQy) + 30 (hsQ,) + FY (hlths)]
) he, hye, hye,
0 P 0
vx = l = — ———— —_—
Q= Q= | % 3 3w
mQ: hyQ: hyQs

The h functions for some common coordinate systems are listed as follows.

Rectangular Coordinates: x, y, z
h,=1 h,=1 h,=1

Cylindrical Coordinates: ?, ¢, z
Xx=RcCos¢Q Yy =Rsin¢
hy=1 hy=R h,=1
Spherical Coordinates: r, 0, ¢
x =1 8in6 cos ¢ y =rsin@sin¢ z=rcosf

h.=1 hg=r hy=rsin @

A-15
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Parabolic Coordinates: u, v, 0

. 1
x =uv cos 6 y = uvsin 0 z=-§(u2—-vz)

h,=h,=vu +0® hy = uv

Example: The curl in spherical coordinates is

e, re, rsinfe,
d 0 ad 1
1Q=— — eV
curl Q or 00 9¢ |r’sind

Q. rQ, rsinfQ,
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Fourier Series

To find the coefficients of the terms in the trigonometric expansion

f) = %" + i [a,cos(nwt) + b,sin(nwt)]

n=1

multiply both sides of the equation by cos (n’@t) and integrate over the interval -7/ to
+T/0:

) , _ Gy ) , had ) ,
_[_Mw f () cos(n’wt) dt = 5 j_m) cos(n’ wt) dt + Z{[an _[_Mw cos(n’wt) cos(nwt) dt +

+b, f::w cos(n’wt) sin(nwt) dt-l

Now if n’ and n are integers, we have the general formulas

il
j cos(n’ wt) dt = 2mlw n'=0
~nlw
=0 n#0
7l ,
I_”/wcos(n’wt) cos(nwt) dt = nlw n=n
=0 n' n
.
j_:w cos(n’@t) sin(nwt) dt =0 for all n’ and n

Thus, for a given n’, all of the definite integrals in the summation vanish except the one
for which n’ = n. Consequently we can write

a, == " f(t) costnoot) dt forn=0,L2,..
T J-nlo

Similarly, if the equation for f(¢) is multiplied by sin (n’@t) and integrated term by term,
we use the general formula

’

7l , .
j Mwsm(n ot) sin(nwt) dt = nlw n=n

’

=0 n#n

A-17
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in addition to the ones shown previously. As before, all of the definite integrals vanish
except for n’ =n, and so we get

b=2[" fysnmond  n=12,...

Because the period T = 27/w, the limits of integration can also be expressed as ~7/2 to
T/2. For more detailed information concerning continuity conditions, integrability, and
so on, the reader should consult a text on Fourier series, such as R. V. Churchill, Fourier
Series and Boundary Value Problems, McGraw-Hill, New York, 1963.
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Matrices

A matrix A is an array of elements a;; arranged thusly

any G T Gy o Oy

Qg Qg """ Qg 0 Qg
A=

ail aiz « o ay D) aim

Qn) Gpg 7 Gp C Gpy

If n =m, it is called a square matrix. Unless stated otherwise, we consider only square
matrices in this appendix. A symmetric matrix is one such that ay = ;. If a; = —a, it s
antisymmetric.

The sum of two matrices is defined as

(A+B);=ay+by

i

The product of two matrices is defined as
(AB)ﬁ = aﬂblj +a‘-2b2j +: = zaikbkj
k
The product AB is not, in general, equal to BA. If AB = BA, the two matrices are said to

commute. A dzagonal matrix is one whose nondiagonal elements are zero, a;; =0 for i #j.
The identity matrix" is a diagonal matrix with all diagonal elements equal to unity,

100 ---0
0160 ---0
1={0 01 --- O
000 ---1
From the definition of the product, it is easily shown that
Al=1A

The inverse A" of a matrix A is defined by
AAT=1=A"A

! This should not be confused with the inertia tensor defined in Chapter 9.
A-19
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The transpose A of a matrix A is defined as

(A)y =(A) i

For two matrices A and B, (AB) = BA.
The determinant of a matrix is the determinant of its elements,

a1 Gy
det A= 021 022

The determinant of the product of two matrices is equal to the product of the respective
determinants,

det AB=det Adet B
It can be shown that the inverse of a matrix A is given by the formula

det A;; detAy

det A det A
Al = det Aj; det A,
det A det A

where the matrix A, is the matrix left after the ith row and jth column have been removed
from the matrix A.

Matrix Representation of Vectors

A matrix with one row, or one column, defines a row vector, or column vector, respectively.
If a is a column vector, then & is the corresponding row vector,

a=| a={(ay,ay,....a,)

For two column vectors a and b with the same number of elements, the product abis a
scalar, analogous to the dot product,

by
ab = (a,,ay,.. )| by |=a;by +azby +- -

Two vectors a and b are orthogonal if db=0.
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Matrix Transformations

A tnatrix Q is said to transform a vector a into another vector a’ according to the rule

91 G2 )& qua + qpa; +
a1 Gaa || %2 9na; + (qga, +

The transpose of a’ is then

(a1,85,- - ) qu 92
a'=aQ= G2 9

=(qua; +qu8y+ Gy +qay o )
A matrix Q is said to be orthogonal if Q = Q™. It defines an orthogonal transformation.
Itleaves ab unchanged, because a'b” = 4QQb = 4Q~'Qb = ab.

The transformation defined by the matrix product Q "AQ is called a siinilarity trans-
formation. The transformation defined by the product QAQ is called a congruent trans-
formation.

If the elements of Q are complex, then Q is called Hermitian if g} = gj;, that is,

Q' =Q. If Q" =Q7, then Q is called a unitary matrix, and the transformation Q'AQ
is called a unitary transformation.

Eigenvectors of a Matrix
An eigenvector a of a matrix Q is a vector such that
Qa=Aa
or
Q-1Ma=0

where A is a scalar, called the eigenvalue. The eigenvalues are found by solving the secular
equation

G- Gy
det Q-1A)=| gy gou—A ---|=0

which is an algebraic equation of degree n (the number of rows or columns or order of
the matrix).

If the matrix Q is diagonal, then the eigenvalues are its elements.

Consider two different eigenvectors a, and ag of a symmetric matrix Q. Then

Qa,=A,a,
Qag=Agap
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where A, and A are the eigenvalues. Multiply the first, in the forward direction, by &,
and the second, transposed, by a,, from the backward direction. Then

45Qa, = 8,8,

ﬁBQaa = Agiga,
But if Q is symmetric, then Q=1Q, so the two expressions on the left are equal. Hence

(A —A,)aga, =0
If the eigenvalues are different, then the two eigenvectors must be orthogonal.
Reduction to Diagonal Form
Given a matrix Q, we seek a matrix A such that

A'QA=D
where D is diagonal. Now
D-A1=A""QA-A1=A"'Q-ADA

Hence, the eigenvalues of Q are the same as those of D, namely, the elements of D. Let
/x be a particular eigenvalue, found by solving the secular equation det (Q — A1) =0. Then
the corresponding eigenvector ay, satisfies the equation

Qa; = L,

which is equivalent to n linear homogeneous algebraic equations

Zqijajk = Aag (i=L2,...,n)
j

These may be solved for the ratios of the a’s to yield the components of the eigenvector a;.
The same procedure is repeated for each eigenvalue in turn. We then form the matrix A whose
columns are the eigenvectors ay, that is, (A); = ag. Thus, the matrix A must satisfy

A 0
0 A,

QA=A =AD
0 0 .2

so that A" QA = D as required. This method can always be done if Q is symmetric and
the eigenvalues are all different.

Application to Oscillating Systems
For a system with n degrees of freedom, the generalized displacement vector is
a4
9z
a=|.
qn
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In matrix notation the kinetic and potential energies (defined in Sections 11.3 and 11.4
of the text) take the compact forms

1 . 1~
=394Mq V=5aKq
in which
M, My,
M=|M; M,
Ky Ky
K=|Kk; Ky

We note that both M and K are symmetric matrices. The differential equations of motion
of the system given by Equation 11.4.6 can then be written as the matrix equation (11.4.7)

Mi+Kq=0
If a harmonic solution of the form
q=acoswt
exists, then
§=-0'q
Consequently

(-Mo’ +K)a=0
A nontrivial solution requires the secular determinant to vanish
det (Mo +K) =0
or
|-M,@ + K| =0

The roots give the normal frequencies, and the associated eigenvectors define the normal
modes. For further reading, see any of the first seven titles under the heading Advanced
Mechanics in Selected References.
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Software Tools: Mathcad and Mathematica'

We presented many examples in the text in which we used the software tools available in
either Mathcad or Mathematica to solve some of the otherwise intractable mathematical
problems that frequently arise in physics. Other similar software packages exist, most
notably, Maple, that we could have used as well. Our choice of Mathcad and Mathematica
should not be taken as an endorsement for those two products. They are simply the ones
with which we are most familiar. The avenues of analysis that mathematical software
tools have opened up to the practicing scientist are virtually unlimited, and we have man-
aged to explore only a few of them. Given this, it ought to come as no surprise that in this
edition of the text we place greater emphasis than ever before on the use of such inex-
pensive and readily available tools for solving problems numerically.

Alternatively, we could have conscripted some business spreadsheet such as Microsoft
Excel, Borland’s Quattro Pro or Lotus 1-2-3 for duty as a scientific analysis engine.
Typically, though, business spreadsheets are much more cumbersome to use this way
than are any of the mathematical software packages already mentioned. Consequently,
we have not described here how they might be used in scientific applications. Instead,
we contend that serious students of physics ought to use one of the excellent computa-
tional tools that have been designed solely for the purpose of solving problems relevant
to their own discipline. Knwledge of how to use such tools is an increasingly essential
weapon that any practicing physicist should have in his or her analysis arsenal.

Space prevents us from attempting a complete discussion of how to use these tools.
The companies that create them distribute massive tomes with the product that describe
their use. Most of these accompanying manuals do an adequate and sometimes excellent
job as a reference, but many suffer deficiencies common to most technical user manuals:
frequently they are poorly organized and poorly written; almost invariably they are loaded
with undefined cryptic jargon; critical information is sometimes buried away in unsus-
pected locations; and rarely do they perform well as a tutorial for the novice user. The
Mathcad manual defies this convention: it is well organized and well written, jargon terms
are usually defined before they are used; critical material is easy to find, and a novice user
can get “up and running” without too much pain. On the other hand, the Mathematica
manual is afflicted with most of the aforementioned ills. Indeed, its writers seem to have
worked hard at rendering their otherwise excellent product unuseable. In spite of its
manual, Mathematica itself proved to be an excellent computational tool and one well

" The interested reader can order Mathcad or Mathematica or related products on the Internet at the following
respective addresses:

(1) http//www.mathsoft.com/ (2} http://www.store.wolfram.com/
A-24
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worth the pain of learning how to use. In fact, it might be the most powerful tool cur-
rently available in the marketplace, if, as we suspect, that computational power is pro-
portional to the cost of a product.

Fortunately, to fill the niche created by the inadequacy of most technical manuals,
many independent companies have arisen that specialize in writing How to . . . blah blah
or blah blah . . . Software for Dummies books. The entire body of such books is devoted
to the presentation of examples that emphasize both how to choose the proper tool and
how to use it to solve a particular problem. In each example, the authors take great pain
to describe the precise details of each step taken in the problem-solving process. It is well
worth having such a book in one’s library to make intelligent use of the relevant software
product. Our presentation here pales into insignificance in this regard——a deficiency for
which we offer no apology given the primary mission of this text. Nonetheless, in what
follows (see also Section 2.5) we present—what is admittedly only a minimal aid to the
student—two worksheets that we set up in Mathcad and Mathematica to illustrate their
use in solving problems. We urge the serious student to purchase a mathematical soft-
ware package (and possibly a reference tutorial distributed by an independent vendor as
well) and use it to try and solve the computer problems given at the end of each chapter.

Quick Plots Using Mathcad

It is frequently desirable to create a plot of numerical data or a function to visualize rela-
tionships between variables. It almost seems as though Mathcad were created especially
for this purpose. Ease of generating plots is one of its strongest features, and for that reason
alone, it is worth the price of its purchase.

To create a plot in Mathcad, simply

e Define the x and y variables.

¢ Type an @ key to open up a graphics region.

e Type the x and y variable names in the placeholder adjacent to the x and y axes.
¢ Move the cursor outside the graphics region, and Mathcad creates the plot.

An example of this process is shown in the following worksheet, which was set up to
create a phase space plot for the simple harmonic oscillator (see Section 3.5). Notice that
each step in the worksheet has a brief, accompanying comment that points to it. Such text
regions can be created anywhere in a Mathcad worksheet, simply by typing the” key, fol-
lowed by the text. Describing each step in a calculation in this or some similar way is a
process well worth emulating. You never know when you might wish to resurrect a work-
sheet that you created sometime in the remote past and the presence of explanatory text
quite often means the difference between looking at an algorithm that is comprehensi-
ble or one that instead bears a close resemblance to Egyptian hieroglyphics.

Phase Space plot for the simple Harmonic oscillator

2-r
T :=4 -1 ®w = — « Define period, angular frequency
T

j:=1 .. .4 A; = 3 ¢« Define 4 amplitudes, 1-4
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i.7T

i :=0 . . . 1000 t, = ¢« Divide period into 1000 time
1000 intervals

Xj,; = A; - sin(@ . t;) ¢« Calculate x-coordinate of point

Vi1 3= @ ¢ Ay . cos(@ - ty) ¢ Calculate y-coordinate of point

2+

4 -3 -2 1 0

—
[
w
~

Figure 3.5.1 Phase-space plot for the simple harmonic oscillator (@, = 0.5 s). No damping
force (y=0 s,

Coupled Differential Equations

The differential equations of motion of a particle expressed in component form quite fre-
quently contain coupling terms that render the analytic solution at best difficult and at
worst impossible. Typically, such terms are caused by forces arising from the motion of
the particle in one dimension that affect its motion in another. Usually, we can find closed
form, that is, analytic solutions to such coupled differential equations only for a limited
number of cases in which either the circumstances that lead to the coupling prove to be
fortuitous or the mathematical approximations that represent the forces are suitably
contrived. In most cases, we must resort to numerical techniques to solve such equations.
The coupled equations of motion governing the trajectory of the baseball discussed in
Example 4.3.2 are an example of the latter kind; they can only be solved numerically.
We used Mathematica to solve Example 4.3.2. The example has the additional virtues
that it not only illustrates how to solve coupled differential equations but also how to

e Create plots

e Create data tables

e Create interpolation functions to estimate values between data points
e Find roots of equations or locations where two lines intersect

¢ Find the extremum of a function.

The Mathematica worksheet solution is shown at the end of this appendix. The steps
should be self-explanatory because each one is accompanied by a liberal dose of com-
mentary. One particular point, made when the solution of Example 4.3.2 was discussed
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in the text, should be reiterated here: the process of solution is iterative. The variables 6,
and vMph, are fixed during each iteration. Initially they were chosen to be 6, =40° and
vMphy = 130 mph. The values actually shown in the worksheet are the final ones that
emerged from the iterative problem solving process.

The iterative steps carried out in the solution of the problem include all those in the
following subsections:

¢ Numerical solution of trajectory with quadratic air resistance
e Find range of baseball

To begin, the steps in these subsections were executed sequentially with vMph, held
fixed at 130 mph. Each trial used a different value of 8, ranging from 35° to 42° in 1° incre-
ments. The range of the baseball was found for each of these trials, and the resulting range
versus 8, values were loaded into the table, thetaData. This data was then used to find
the value of 6, at which the maximum range was obtained. This calculation was carried
out in the subsection

¢ Find optimum angle to launch baseball

Next, the steps in the above two subsections were repeated again, only this time holding
6, fixed at the optimum value just found (39°) and changing the value of vMph, from
130 mph to 155 mph in 5 mph increments. Again the range of the baseball was calculated
for each of these trials, and the resulting range versus vMph, values were loaded into the
table, RusTheta. Interpolation of this data was used to find the value of vMph, required
to achieve a range of 565 ft (172.16 m). This calculation was carried out in the subsection

e Find initial velocity for Ry;; = 172.16 m

EXAMPLE 4.3.2

Calculate the Trajectory of a Baseball in Flight Subject to Air
Resistance Proportional to the Square of Velocity.

Variables
vMphy;  Initial velocity (mph)
Vo; Initial velocity (ms™)
uy, Wo;  Initial velocity (x, z) components
6y; Initial elevation angle (radians)

Riicis Micky Mantle’s range (565 ft = 172.16 m)
TofF; Time of flight (s)

g Acceleration due to gravity (9.8 ms™)

Y; Air resitance factor (0.0055 m™)

vMph, = 143.23;

vo = 0.447 vMph,;

uy =vy Cos{6]; wy = vy Sin{6,];
6 =39 (pi/180);
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Ryiex =172.16;
TofF =9;

g =9.8;

Y =0.0055;

Analytic Solution of Trajectory—no Air Resistance

g 2
z,[t] = wet - SE el = ugt;

Numerical Solution of Trajectory with Quadratic Air Resistance

Call numerical differential equation solver NDSolve.
Plot results using ParametricPlot inhibit display.
Show the plot with curves labelled.

sol = NDSolvel
{z''[t] == g - y(z'[£]® + x" [£1)°% 27 [t], x ' [t] == —y(z'[t]® + x' [£]9)°°
z[0] == 0, z'[0] == wy, x[0] == 0, x'[0] == uo}, {z, x}, {t, O, TofF}]

x'[t],

trajectory = ParametricPlot[{{x,;[t], z, [t]}, (Evaluatel{x[t]l, z[t]1}/.sol]}},
{t, 0, TofF}, Compiled -> False, PlotRange -> {{0, 420}, {0, 90}},
PlotStyle -> {Thickness[0.005]1)}, AxesLable ->{“"x(m)”, “Height(m)”"},
PlotLabel -> ” Baseball trajectories”, DisplayFunction — Identityl];

trajectory = Showltrajectory, Graphics([Text([*no drag”, {310, 80}11,
Graphics [Text [“*Quadratic drag”, {200, 50}111;

show[trajectory, DisplayFunction — $DisplayFunction]

{{z — InterpolatingFunction[{{0., 9.}}, <>], x — InterpolatingFunction [{{0., 9.}}, <>]}}

Height (m) Baseball trajectories
80—
no drag
60 .
40 1~ Quadratic drag
20 -
| | ] | x (m)
100 200 300 400

- Graphics -
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Find Range of Baseball

Calculate time for ball to hit ground, that is, find root ¢, of z[¢]
Calculate range in meters: xDistance = x[t,]
Calculate range in feet: xFeet

Tzero = FindRoot[Evaluate[z([t] == 0/. sol], {t, 7.0}]
xDistance = x[t/. Tzero]/. sol

xFeet = xDistance 3.2808

{t = 6.23961}

{172.155}

{564.807}

Find Optimum Angle to Launch Baseball

Use plot to estimate optimum elevation angle for launching baseball at maximum range.
(Initial velocity guess: vMphg: 130 mph).

Define data table {6,, Range} and interpolation function, RvsTheta.

Call Plot with interpolation function as argument.

Find angle 6, for which range is a maximum (Call FindMinimum).

thetabata = {{35, 154.974}, {36, 155.467}, {37, 155.816}, {38, 156.022},
{39, 156.087}, {40, 156.014}, {41, 155.802}, {42, 155.455}};

RvsTheta = Interpolation[thetaDatal;

Plot [RvsTheta([x], {x, 35, 42}, PlotStyle -> {Thickness[0.005]}, AxesOrigin->
{35, 155}, AxesLabel -> {"0,(degrees)”, "“Range(m)”}, PlotLabel->" Range vs 6,"]
FindMinimum[-RvsTheta[x], {x, 39}]

Range (m) Range vs 6g
156 |~
155.8

1556
155.4

155.2

| | I | | | |
36 37 38 39 40 41 42

- Graphics -
{-156.087, {x —38.9674}}

6 (degrees)
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Find Initial Velocity of Baseball for R, = 565 ft (172.16 m)

Use plot to find initial velocity of baseball required to achieve desired range, R, (ele-
vation angle 6, set to optimum value). Load data table (rangeData) with range versus
initial velocity v,.

Call ListPlot with data input as arguments {v,, range}.

rangeData = {{156.087, 130}, {162.284, 135},
{168.331, 140}, {174.23, 145}, {179.983, 150}, {185.595, 155}};
VvsR = ListPlot[rangeData, PlotJoined->True, AxesOrigin->{156.1, 130},
AxesLabel->{“Range{(m) ", “vy(mph)”}, PlotStyle->{Thickness([0.005]}]

vo (mph)
155

150 —
145 —
140 —

135

l | | | i ]
160 165 170 175 180 185

=~ Graphics -

Range (m)

Find initial velocity for R« = 172.16 m

Define interpolation function for velocity versus range data.
Find optimum speed by interpolation (Call Interpolation).
Call Line primitive to define horizontal and vertical line intercepts.

initSpeed = Interpolation|[rangeDatal;
speed = initSpeed[Ry;ql
143.231

rangeIntercept = Linel {{Rpjexr 130}, {Rupiex, 1453111;
speedIntercept = Line[{{156, speed}, {174.0, speed}}l;
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Redisplay Graph Showing Range and
Corresponding Initial Velocity as Intercepts

Call Show for redisplay.

Show[VvsR, Graphics[{Dashing({0.025, 0.025}], speedIntercept}],
Graphics[{Dashing[{0.025, 0.025}], rangeIntercept}], AxesOrigin-> {156, 130},
AxesLabel->{“Range(m)”, “vy(mph)”}, PlotLabel->" v, vs Range”]

vo (mph) vo vs Range
155

150 —

a5 (17222, 143.2)

140 —

|
|
I
135— |
|
I I L1 1 I |
160 165 170 175 180 185

Range (m)

~ Graphics -






Answers to Selected Problems

CHAPTER 1

11 (a)v6,(b)3i+j—2k (¢)1,d)i-j+k

1.3 cos™ ./5/14 =53.3°

1.7 g=1lor2

1.17 bo(sin® ot + 4 cos’ 0t)"%, 2bw, b

127 v=v8,a=oR+ho’p,lvXal=v.a, =vop =0’

CHAPTER 2

2.1 (a) & = (Fy/m)t + (c/2m)e>, x = (Fol2m)t® + (c/6m)t®
(b) &= (Fylem)(1 — cos ct), x = (Folc’m)(ct — sin ct)
(¢) £=—(Folem)(1 — &™), x = —(Fy/c’m)(ct — ™ + 1)

2.3 (a)V=—-Fg—(c/2x®+C, (b) V=(Fyc)e ™ +C
() V=—(Fy/c)sincx+C

2.9 (a)541, (b) 87, (c) 454

CHAPTER 3

3.1  6.43 m/s, 2.07 X 10°m/s
3.3  x(t)=0.25 cos (207t) + 0.00159 sin (207t) in meters
8.5  [(f —#2)Mx} —x D)%, [(x25] —x2e ] (s — 2 D)]™

319 (a@T-= 271:(l/g)1/2 x 1.041, (b) g comes out to be about 8% low,

(c) B/A=0.0032

CHAPTER 4

4.1 () F =—c(yzi +xzj +xyk), (b) F = —2(0uxi + Byj + 1zk)
©F= Ce_(ax+ﬁy+yz)(ai +Bj+ 7k), (d) F = —enr™ e,
4.3 (a)c:%,(b)c=_1

b
47 0= sin‘l(—-‘%z—]

0

4.21 Itleaves at height h =b/3

ANS-1
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CHAPTER 5

5.1 Up: 150 1b, Down: 90 Ib

5.3 1.005 mg, about 5.7°

5.5 (a) 2g/6 forward, (b) g/3 toward rear
59 (Vi/p)i'+ [(Vﬁ/b) +(Vebip®)j

CHAPTER 6

6.1 About2x10™

6.3 Aboutl4h

6.23 w=n[(l+c)/(1+4c)]"? where c = pdma®/3M,,,
625 a>(ek)?

6.29 y = 180.7° for orbits near Earth.

6.31 6=-30°

CHAPTER 7

71 r,=@i+2j+2k)/3, v, =@Gi+2j+ky3,p=3i+2j+k

7.5  Direction: downward at an angle of 26.6° with the horizontal, Speed: 1.118 v,

7.7  Car: vy/2, Truck: vy/8. Both final velocities are in the direction of the initial
velocity of the truck.

7.15 Proton: v; = vy = 0.558 v, Helium: v; =0.110 v, v, =-0.140 v,

7.17 Approximately 57.3°

727 -mg=mb+ Vi, m./m, = exp (Vk— g/kv,) - my/m)—1, m/m, =77

CHAPTER 8

8.1  (a) b/3 from center section, (b) x,,,
(©) % =0, Y, = 3b/5, (d) X0, = Yo

8.3 a/l4from center of large sphere

8.5 31/ 70)'ma

8.11 2m(2a/g)"?, 2m(3a/2g)""

815 g(m, - mz)/(ml +mg+ 1/d%

8.19 vot——gt (sin 8+ u cos 6)
(2vo/g)(sm 0+ 61 cos B)/(2 sin 6+ T cos 6)°

Yom = 4b/3m, where lamina is in xy-plane,
0, 2., = 2b/3, (€) b/4 from base

CHAPTER 9
9.1 (@I,=—d,I, _Am ey 5m e
3¢ 3 3
I,=1,=01I,=-""d
Iy 3

(b) =ma’, (¢) L = (ma’w/6\5)(i +2j), (d) T = - ma’0®
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9.3 (a) Inclination of the [-axis is %tan"1 1=225°

(b) Principal axes in the xy-plane are parallel to the edges of the lamina.
9.9 (a)1414s,0.632s; (b) 1.603 s, 0.663 s
9.13 o tan ' [(I/L)tan o] = oI, — I)/L, = 0.00065 arc sec

128ga(a® b* N
917 S>|—=2-|—+—|| =2910
7 >[ X (3+16ﬂ Ips
CHAPTER 10

103  i=(C)gsing

10.5 my—(%)g, Mmy: (%)g, my: (%)g, my: —(1_51)g

10.7  x=x,cosh wt - (g/2a)2) sin @t + (g/2a)2) sin @t

109  F, =m(i-20y-0’x), F, = m(j+ 20 - 0°y), F, = mz

22
10.23 U(r) = ! 521n2 2. gr cos a, where | = r’¢ = constant
T

10.27 (a) 6 = py/mi®, py = —mgl sin6
(b) i = p,Am, +my), p, = g(m, —m,)
(¢) x=p,/m,p, = mgsinf

CHAPTER 11

11.1  (a)x =k stable

(b) x = 1/b unstable

(¢) x =0 unstable, x = + b/4/2 stable

(d) (3k/m)", 3.628 s; 2b(k/m)">, 3.14 s for parts (a) and (c), respectively.
119  2mal5/3g(b - a)]"*
11.11 2.363s

1/2
1117 @ = (k/m)?2 G102

1127 o, = \/z(z +Al)
m
0, = /%(HAZ)AZ

ANS-3
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centrifugal, 208—209, 221, 290
centripetal, 43, 193, 194, 221, 222
Coriolis, 193, 196, 208, 209, 290, 295
in rectangular coordinates, 31-36
transverse, 43, 193
uniform, 60—63
velocity and, 36-39
o-Centauri system, 293
Adams, John Couch, 242
Addition, commutative law of, 12
Air gyroscope, 401-402
Air resistance, linear, projectile motion
and, 161-162
projectile motion and, 158-161
Airy, Sir George, 242
Alpha particles, scattering of, 264269
Angle(s), apsidal, 262
Eulerian, 391-397
of kinetic friction, 63
Angular frequency, 87

Angular momentum, conservation of, 226229
general theorem concerning, 344345

and kinetic energy, 278-283, 361-371
principle of conservation of, 279

of rigid body in laminar motion, 344347

spin, 406
Angular momentum vector, 365367
Antinodes, 508-509
Aphelion, 234
Aphelion points, 262
Apocenter, 234
Apogee, 234
Approximations, A-12
successive, 125-127
Apsidal angle, 262
Apsides and apsidal angles, for nearly
circular orbit, 262 -264
Apsis(es), 262
Aristotle, 48, 49
Armstrong, Lance, 409-410, 412
Associative law, 12
Asteroids, Trojan, 295-302
Astronomical unit, 291
Atmosphere, 66
Atomic clock, cesium, 4-5

Atwood’s machine, 433
double, 434—435
Axis{es), fixed, body constrained
to rotate about, 382383

principle, determination of, 375377, 378381

B

Balancing, dynamic, 374-375
Baliani, Giovanni, 157
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“Baseball bat theorem,” 354-356
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Bernoulli, Daniel, 499

Bernoulli, Johann, 417, 418, 449, 499
Binary stars, 285—288, 2929, 499

Binding energy, of diatomic hydrogen molecule, 68

Binomial series, A-12

Black holes, 285—-288

Blueshift, 54

Body, falling, 206, 221, 421
rolling, 348, 349350

Borelli, Giovanni, 220221

Bovard, Alexis, 241-242

Brahe, Tycho de, 225

Brillovin, Leon, 499

Bullet, deflection of, 206-207
speed of, 305-306

Burnout, time of, of rocket, 315

C

Cartesian coordinate system, 28, 156

Cartesian coordinates, 427—429, A-7
scalar equations, 145

Cartesian unit vectors, 13-14

Center-of-mass coordinates, 306—312

Center of oscillation, 340-341

Center of percussion, 354—356

Centimeter, 5

Centrifugal acceleration, 208-209

Centrifugal force, 197, 221

Centrifugal potential, 257

Centripetal acceleration, 43, 193, 194

Centripetal force, 221

cgs system, 265

Challis, James, 242

Chaotic motion, 129-135

-1
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Circle, 235
equation of, A-8
Circular disc, moment of inertia of, 331, 334
Circular function, A-5
Circular hoop, 330
Circular motion, 34-35, 220
Circular orbits, stability of, 260-261
Coefficient(s), of restitution, 303, 304
of sliding friction, 62
static, 62
of static friction, 351-352
of transformation, 25
Collision(s), 303-306
direct, 303-305
elastic, 303
endoergic, 303
impulse in, 305
oblique, and scattering, 306312
of rigid bodies, 354-356
totally inelastic, 304
Comet(s), 240
orbit of, 234, 253-254, 260
Complex exponential, A-11-A-12
Complex numbers, A-4
Compound pendulum, 338-344
Computer software packages, 75, A-24 — A-31
Cone, of variable density, center of
mass of, 326—328
Configuration space, 453—454, 475477
Conic sections, 233, 234, 235, A-7 — A-8
Conservative systems, Lagrange’s equations of
motion for, 430—431
Constraint(s), generalized forces of, 418, 444-448
holonomic, 425426
nonholonomic, 426
smooth, energy equation for, 176-177
Continuous system, vibration of, 505-509
Contour plot, 293-294, 299
Coordinate system(s), accelerated, and inertial
forces, 184189
change in, 25-30
fixed, rotation of rigid bodies and, 391-397
rotating, 189201
Coordinate(s), Cartesian, 427429
center-of-mass, 306—312
curvilinear, A-15
cylindrical, 39-40, 208, A-15
generalized, 423426, 438—444
generalized momenta conjugate to, 438—439
kinetic and potential energy calculated in
terms of, 426—429
normal, 472—493
equations of motion in, 484485
parabolic, A-16
plane polar, 3639
of point on Earth, 425
rectangular, A-15
velocity and acceleration in, 32—-33
spherical, 40-43, A-15
Copernicus, Nicolaus, 218-219
Coressio, Giorgio, 50

Coriolis acceleration, 193, 196, 208, 209
Coriolis force, 197, 202, 204, 207, 211, 295, 299
Cosines, laws of, 18—-19
Cosmic microwave background, 53, 54
Coulomb’s law, 265
Coupled harmonic oscillators. See Harmonic
oscillator(s), coupled
Critical damping, 98-99
Crosetti, Frank, 166
Cross product, 19-23
of two vectors, 21
Curl, 250, A-15, A-16
Curve, directrix of, A-7
Curvilinear coordinates, A-15
Cycloid, 36
constrained motion on, 178—-179
Cyclotron, 176
Cygnus X-1, 286, 287
Cylinder, moment of inertia of, 331, 336, 337
rolling, rotational motion of, 346, 347
without slipping, 352-353
stability of, 468469
Cylindrical coordinates, 39-40, 208, A-15

D
da Vinci, Leonardo, 3
D’Alembert, Jean LeRond, 417
D’Alembert’s principle, 418—419, 449-455
Damping factor, 97
Deep Space I rocket, 317, 318
del Monte, Marquis and General, 157-158
Del operator, 151-156
de’Medici, Antonio, 158
Descartes, René, 48—49
Diagonal form, reduction to, A-22
Differential scattering cross section, 267
Dimensional analysis, determining
relationships by, 7-9
of equations, 5-7
Dimensions, 5-7
Displacements, virtual, 449
Distributive law, 12-13
Divergence, A-15
Doppler Effect, 54
Doppler shift, 54
Dot product, 16
Dugas, René, 323
Dunaway, Donald, 166
Dyad product, 366

E
Earth, atmosphere of, 66
high-pressure system in, 197

coordinates of point on, 425

free precession of, 396—399

gravity of, 222

Moon and, 220-221, 23, 241, 292293, 294,

300-301

rotation of, effects of, 201-207

surface of, plumb bob hanging above, 202, 203
Earth satellite, launching of, 314



Eccentricity, A-7
Effective potential. See Potential, effective
Eigenfrequency, 481-482, 495
Eigenvalue, 481
Eigenvector(s), 481, 482, 487—488, 495
of matrix, A-21 — A-22
Einstein, Albert, 1, 2, 54, 57, 184, 264, 418
Electric field, motion of charged
particle in, 173-174
Electrical-mechanical analogs, 123-124
Electromagnetic theory, electric field and, 174
Ellipse(s), definition of, 233, 235
eccentricity of, 233
equation of, A-9
law of, 225, 229238
Ellipsoid(s), 388, 390
Poinsot, 383—-384, 385
Elliptic integrals, 341-343, A-13
Energy, harmonic motion and, 93—96
kinetic. See Kinetic energy
and laminar motion, 350
of particle, 63—64
potential. See Potential energy
of simple pendulum, 95
spin, 403
Energy balance condition, 306-307
Energy equation(s), 64, 176177, 251, 401-407
Equation(s), of circle, A-8
differential, coupled, Mathematica to
solve, A-26 —A-31
of orbit, 231
dimensional analysis of, 7-9
of ellipse, A-9
energy, 64, 176-177, 251, 401-407
energy balance, 306—307
Euler’s, 381383, 384390, 435-436
for free rotation of rigid body, 384—390
Hamilton’s, 455—-460
of hyperbola, A-10
Lagrange’s, applications of, 431-438
of motion for conservative systems, 430—431
of motion, Hamilton’s canonical, 455-456
in normal coordinates, 484—485
for restricted three-body problem, 289290
of rigid body, 381-383
of parabola, A-9
scalar, in Cartesian coordinates, 145
for translation and rotation about
fixed axis, 329-330
van der Pol, 127-128
vector form of, motion of particle, 144-145
wave, 505-509
one-dimensional, 506
Equilibrium, 465-467
potential energy and, 465469
stable, 466 —467
oscillation of system and, 469—472
Equipotentials, 153
Escape speed, 66
Euclidean space, 2
Euler, Leonhard, 391, 418

Index -3

Eulerian angles, 391-397
Euler’s equations, for free rotation of rigid
body, 384390, 435—436
of motion of rigid body, 381-383
Euler’s identity, 100, 116
Euler’s theorem for homogenous
functions, 455
Exchange operation, 487, 488
Expansions, A-11
series, A-11
Exponential, complex, A-11 — A-12
Exponential notation, A-4

F
Fall, vertical, through fluid, 71-74
Falling body, 206, 221, 421
Falling chain, attached to disc, 333
Falling disc, kinetic energy of, 447
Feynman, Richard, 454
Field, central, nearly circular orbits in, 260—261
orbit in, energy equation of, 251
particle in motion of, 457—458
potential energy in, 250
force. See Force field(s)
gravitational, 244245, 247
inverse square, orbital energies in, 251-257
inverse square repulsive, motion in, 264—269
Find minimum function, 301-302
Fluid, vertical fall through, 71-77
Fluid resistance, and terminal velocity, 6974
Foot, 5
Force(s), 10
central, 218, 227
centrifugal, 197, 221
centripetal, 221
conservative, 64, 146-150
constant external, 9093
Coriolis. See Coriolis force
fictious, 185
generalized, 449455
of constraint, 418, 444448
gravitational, between uniform sphere
and particle, 223225
of gravity, 222
impressed, 58
impulsive, 305
inertial, 185
accelerted coordinate systems and, 184217
inverse-square law of, 156
effective potential for, 257-259
linear repulsive, 250
linear restoring, 84-93
mass and, 57-58
moment(s) of, 22—23
nonsinusoidal driving, 135-139
and position, 63—68
retarding, 78
separable type, 156167
transverse, 197
velocity dependent, 6974
Force field(s), 146150
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central, single particle in, 432
conservative, 146
equipotential contour curves, 151-152
nonconservative, 147
Foucault, Jean, 214, 361
Foucault pendulum, 212-214
Fourier series, 135-138, A-17 — A-18
Fourier’s theorem, 136
Free fall, 65, 92
Frequency, angular, 87
Friction, coefficient of, 62
static, coefficient of, 351-352
Frictionless pivot, thin rod suspended from, 356357
Frisbee, precession of, 396
Functions, special, A-13 — A-14

G
Galactic rotation curve, 243
Galileo, 28, 48, 4950, 51, 54-55, 157, 160, 219,
220, 222, 295
Galle, Johann, 242
Gamma function, A-13 — A-14
Gauss, Karl Friedrich, 418
Geiger, Hans, 265
Generalized forces, 449—455
Geodesics, 418
Gradient, A-15
Gram, 5
Gravitation, 218-274
universal, Newton’s law of, 219-220
universal constant of, 219-220
universality of, 241-244
Gravitational field, 244245
potential energy in, 244250
uniform, projectile in, 157-158
Gravitational field intensity, 247
Gravitational force field, acting on planet, 263
Gravitational forces, between uniform sphere and
particle, 223-225
Gravitational mass unit, 291
Gravitational potential, 244250
Gravitational singularity, 292—293
Gravity, of Earth, 222
forces of, 222
and height, 65-66
mass and, 222
Gyration, radius of, 336-337
Gyrocompass, 407—-409
Gyroscope, 400-401, 406
air, 401402

H

Hall, Asaph, 263-264

Halley, Edmond, 226

Halley’s Comet, 234

Hamilton, Sir William Rowan, 418

Hamiltonian function, 455—460

Hamilton’s equations, 455460

Hamilton’s variational principle, 418, 419-423, 426,
430-431, 446, 452

Harmonic law, 225, 238—-244

Harmonic motion, 83, 84—-93, 113-124
damped, 96-105
energy considerations in, 93-96
forced, 113-124
Harmonic oscillator(s), 90-93, 104113, 431
coupled, 472-493
displacement of, 473—474
linear array of, vibration of, 498505
loaded string of, vibration of, 498505
vibration of, 498-505
critically damped, 109-110, 111
damped, energy considerations for, 101-102
frequency of, 104
quality factor of, 102-105
simple, 106-108
driven, damped, 116-120, 131-135
linear isotropic, 168
nonisotropic, 170-171
one-dimensional, 456—457
overdamped, 111-113
simple, 84-88
no damping force, 106-108
three-dimensional isotropic, 167-170
energy considerations in, 171-173
two-dimensional isotropic, 167-170
underdamped, 108-109, 110
weakly damped, 109, 110
Height, gravity and, 65—66
maximum, 66
Helix, 175, 176
Hemisphere, solid, center of mass of, 325
Hertz, Heinrich, 88
Hertz (unit), 88
Hipparchus, 225
Hooke, Robert, 82, 226
Hooke’s law, 86, 94, 125, 179
Hoop, circular, 330
Horizontal motion, with resistance, 70-71, 163-164
Huygens, Christian, 179, 275
Hyperbola, 235, 266
equation of, A-10
Hyperbolic function, A-5
Hyperbolic identities, A-6
Hyperfine transition, 4-5

I
Impact parameter, 266
Impulse, coefficient of restitution and, 303-304, 305
in collisions, 305
ideal, 305
involving rigid bodies, 354356
rotational, 354
specific, of rocket engine, 315
Impulsive forces, 305
Inertia, 51
law of, 48—49, 50
moment(s) of, 281, 328-338, 361-371
Inertial forces, accelerated coordinate
systems and, 184217
Inertial frame of reference, 51-53, 55—-56
Inertial reference systems, 51-53



Initial conditions, 483—484
Integrals, elliptic, 341-343, A-13
line, 146
Invariable line, 394
Inverse-square field, orbital energies in, 251-257
Inverse-square law, 220222, 232, 258
Inverse time unit, 291
Ion rockets, 317-319

I
Jupiter, 220221, 295-298, 209300
Great Red Spot, 295

K
Kelvin, Lord, 264
Kepler, Johannes, 219
Kepler’s laws, 221, 225244
Kilogram, 5
Kinetic energy, 63—68, 282283
angular momentum and, 278283, 361371
caleulation of, in terms of generalized
coordinates, 426—429
of falling disc, 447
rotational, of rigid body, 370-371
Kinetic friction, coefficient of, 62
Krypton, 4

L
L5 colony, 298—-300
Lagrange, Joseph Louis de, 289, 293, 417
Lagrange multipliers, 444448
Lagrange’s equations, applications
of, 431-438, 479
of motion, for conservative
systems, 418, 430—431
Lagrangian mechanics, 417—464, 484488, 497, 501
Lagrangian points, 293—-295, 301-302
diagonalization of, 486
invariance of, 487—-488
Lamina, plane, perpendicular-axis
theorem for, 334-335
semicircular, center of mass of, 326
square, moment of inertia of, 367-368
Latus rectum, 233
Lawrence, Ernest, 176
Law(s), associative, 12
commutative, of addition, 12
of cosines, 18-19
Coulomb’s, 265
distributive, 12
of ellipses, 225, 229238
of equal areas, 225
harmonic, 225, 238—244
Hookes, 86, 94, 125, 179
of inertia, 48—49, 50
inverse-square, 220-222, 232
of inverse-square force, 156
effective potential for, 257260
Keplers, 221, 225-244
Kepler’s third, 221
of motion. See Motion, laws of

Index -5

Newtor’s, of universal gravitation, 219-220, 222
of sines, 203
Leibniz, Gottfried Wilhelm von, 144, 218, 417
Length, unit of, 3—4
Leverrier, Urbain Jean, 241-242, 263
Light, velocity of, 4
Linear momentum, 58—-60
center of mass and, 275-278
conservation of, 277, 306
Linear motion, of triatomic molecule, 496—498
Linear restoring force, 84—93
Lines of nodes, 391, 399
Lissajous figure, 171, 173
Low earth orbit rocket, 315, 316

M
Mach, Ernst, 1
Magnetic field, motion of charged
particle in, 174-176
static, 174
Magnetic induction, 174
Magnitude, vector expressed by, 13
Mantle, Mickey, 164-166, 167
Marsden, Ernest, 265
Martin, Billy, 166
Mass, of attracting object, forces
of attraction and, 222223
center of, and linear momentum, 275-278
of rigid body, 323-328
and force, 57-58
and gravity, 222
point. See Particle(s)
reduced, 283288
unit of, 5
variable, motion of body with, 312—319
Mass unit, “gravitational,” 291
Mathcad, 75,76-78, 112, 113, 128-129, 132, 297,
A-24 — A-26
Mathematica, and Maple, 75
quick plots using, A-25 — A-26
Mathematica, 75, 164, 166, 211, 296-298, 301-302,
326-328, 388—389, A-24 — A-31
FindMinimum, 301-302
NDSolve, 296298, 388—389, A-28
ParaMetricPlot, 298, A-28
to solve coupled differential
equations, A-26 — A-31
Matrix multiplication, 26
Matrix(ices), A-19 — A-23
Maupertius, Pierre-Louis-Moreau de, 454455
Mazzoleni, Marc’antonio, 157
Mechanics, Lagrangian, 417-464
Newtonian, 47—-81, 185, 264
quantum, 454
Meter, 5
definition of, 3—4
Milky Way galaxy, 53
Minkowski, Hermann, 2
Molecule, triatomic, linear motion of, 496498
Moment(s), of force, 22-23
of inertia, 281, 328—-330, 361-371
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calculation of, 330-338
diagonalizing matrix of, 378-381
and products of, 361-371
of inertia tensor, 364
principal, of rigid body, 371-373
Momentum, angular. See Angular momentum
generalized, 438—444
linear, 58—60, 276
center of mass and, 275-278
conservation of, 277, 306
Moon, and Earth, 220-221, 223, 241,
292-293, 294, 300-301
Morse function, 67
Morse potential, 8486
Motion, of body with variable mass, 312-319
chaotic, 129-135
of charged particles, in electric and magnetic
fields, 173-176
circular, 34-35, 220
constants of, 88
constrained, on cycloid, 178-179
of particle, 176179
equations of. See Equation(s), of motion
general, of rigid bodies, 410-411
geometric description of, 383384
Hamilton’s canonical equations of, 455456
harmonic. See Harmonic motion
horizontal, with resistance, 70-71, 163164
in inverse-square repulsive field, 264—269
isochronous, 179
Lagrange’s equations of, for conservative
systems, 418, 430-431
laminar, of rigid bodies, 344-353
laws of, 47—60, 186, 210-211, 222,
225-244, 276, 418, 420, 450
linear, of triatomic molecule, 496—498
multifrequency, 472473
with no slipping, 349
of particle, 60, 94
in central field, 457-458
in three dimensions, 144183
periodic, 82
planar, 323-360
planetary, 49, 218
Kepler’s laws of, 225-244
projectile, 33, 156-167, 204212
radial, limits of, 257-260
rectilinear, 60—63
of particle, 47-81
retrograde, 218
of rigid body(ies), Euler’s equations of, 381-383
in three dimensions, 361-416
of rocket, 312-319
simple harmonic, 83, 89-90
steady-state, 114
three-dimensional, potential energy
function, 151-156
of top, 397-401
transient, 114
turning points of, 64
of two interacting bodies, 283288
uniform circular, 89-90

Multi-stage rockets, 315-317
Multiplication, by power of ten, A-3

N

NDSolve function, 296298, 388389, A-28

Neptune, discovery of, 242

Newcomb, Simon, 263

Newton, Sir Isaac, 1-2, 47, 51, 144, 218, 219, 220,
221-222 225, 264, 499

Newtonian mechanics, 47-81, 185, 264

Newton’s law of universal gravitation, 219-220

Newton’s laws of motion, 47-60, 186, 210-211, 418,
420, 450

NlIntegrate function, 328, 388

Nodal point of vibration, 477

Nodes, 508

lines of, 391, 399

Noninertial frame of reference, 54

Noninertial reference systems, 184—217

Nonlinear oscillator, 125-135

Nonsinusoidal driving force, 135-139

Null vector, 12

Numerical integration, 326328

Nutation, 401-402

0
One length unit, 291
Orbit(s), apocenter of, 234
in central field, energy equation of, 251
circular, 239
stability of, 260—261
of comet, 253354
differential equation of, 231
energies of, in inverse-square field, 251-257
nearly circular, apsides and apsidal angles
for, 262264
in central field, 260-261
energy equation of, 251
pericenter of, 234
reentrant, 262
turning points of, 403404
Orthogonal transformations, 28
Oscillating systems, dynamics of, 465514
matrices and, A-22 — A-23
Oscillation(s), 82-143, 343
amplitude, at resonance peak, 120
antisymmetric mode of, 477-479, 480, 491
“breathing” mode of, 477479, 480
center of, 340-341
of orbiting system, 471-472
symmetric mode of, 477, 491, 492
of system with one degree of freedom, 469-472
Oscillator(s), harmonic. See Harmonic oscillator(s)
nonlinear, 125-135
pulse-driven, 138
quality factor of, 103-105
self-limiting, 127-129, 130
simple harmonic, 84—88
undamped, 115, 117, 122
van der Pol, 128
Overdamping, 98



P
Parabola, 160, 174, 235
equation of, A-9
Parabolic coordinates, A-16
ParametricPlot function, 298, A-28
Particle(s), 5
alpha, scattering of, 264—269, 310
areal velocity of, 227
charged, motion in electric field, 173-174
motion in magnetic field, 174-176
collisions of. See Collision(s)
connected by rod, 424
constrained, motion of, 176-179
in free-fall, variation of coordinate
of, 419-420
motion of, 60, 94
in three dimensions, 144183
position vector of, 31-36
rectilinear motion of, 47—81
in rotating coordinate system, 196201
single, in central force field, 432
sliding, on movable inclined plane, 436438
on smooth sphere, 176-177
systems of, dynamics of, 275-322
test, 147-148
total energy of, 6364
and uniform sphere, 223-225
Patterson, Red, 166
Pendulum, attached to movable support, 423424,
439-440, 492-493
compound, 338-344
conical, 442
double, 488-492
Foucault, 212-214
physical, 338-344, 347
simple, 92-93, 95, 126-127, 131, 281, 427
spherical, 212-214, 440444
suspended, 186-187
Newton’s second law for, 186
swinging, 423424
upside-down, 341-342
Percussion, center of, 354-356
Pericenter, 234
Perigee, 234
Perihelion, 234
Perihelion points, 262
Period doubling, 133, 134
Periodic motion, 82
Periodic pulse, 137-139
Periodicity, 8283
Perpendicular-axis theorem, for plane
lamina, 334-335
Phase difference, 115-116, 122-123
Phase space, 106-113
Physical pendulum, 338-344
Planar motion, 323-360
Plane, inclined, body rolling down, 348, 349-350
movable, particle sliding down, 436438
of lamina, 334-335
Plane polar coordinates, 3639
Planets, 240, 285

Index

gravitational force field acting on, 263
motion of, 49, 218
Kepler's laws of, 225-244
Plato, 1
Plumb line, 201-204
Poincaré section, 133-134
Poinsot ellipsoid, 383-384, 385
Point mass. See Particle(s)
Polar coordinates, A-7
Pollio, Vitruvius, 3
Position, forces and, 6368
Position vector, 31-36
Potential, centrifugal, 257
effective, 257-260, 291-295, 403-405
gravitational, 244250
Potential energy, 6368, 246, 247
calculation of, in terms of generalized
coordinates, 426429
and equilibrium, 465-469
in general central field, 250
in gravitational field, 244-250
Potential energy function, 64, 84, 151-156,
468, 470
Pound, 5
Power of ten, multiplication by, A-3
Precession, free, of Earth, 396-397
gyroscopic, 400-401
nutational, 404—406
of thin disc, 396
Primary (secondary, tertiary), 288
Principle axes, determination of, 375-377
Product(s), cross, 19-23
dot, 16
dyad, 366
scalar, 15-19
triple, 23-25
vector, 19-22
Projectile, deflection of, 206207
motion of, 33, 204-212
with linear air resistance, 161-162
with no air resistance, 158—161
in rotating cylinder, 207-212
in uniform gravitational field, 157-158
Pseudo-vector, 392
Ptolemy, 218
Pythagorean theorem, 233

Q

Quadratic form, 468

Quality factor, 103105, 121, 122
Quantum mechanics, 454

R

Radius, of gyration, 336337
Rayleigh, Lord, 127, 418

Rectangular coordinates, 32-33, A-15
Rectilinear motion, 60—63

Redshift, 54

Reduced mass, 283288

Reduction, to diagonal form, A-22
Reference, frames of, 52, 293
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Reference systems, noninertial, 184217
Resonance, 113-124
amplitude of oscillation, 120
sharpness, 120121
Restitution, coefficient of, 303—304
and impulse, 305
Restricted three-body problem, 288302
Right-hand rule, 21
Rigid bodyf(ies), 275
center of mass of, 323328, 346347
definition of, 323
free rotation of, 383-384, 435-436
with axis of symmetry, 384—390
Euler’s equations for, 384390
with three principal moments, 371-373
general motion of, 410-411
impulse and collisions involving, 354356
laminar motion of, 344-353
mechanics of, 323—360
motion of, Euler’s equations of, 381-383
in three dimensions, 361-416
parallel-axis theorem for, 335-336
principal axis of, 371-381
rotation of, about arbitrary axis, 361-371
about fixed axis, 329-330
relative to fixed coordinate system, 391-397
with three principal moments, 387—390
rotational kinetic energy of, 370-371
symmetric, motion of, 397-401
symmetry of, 324325
Ring, thin, potential and field of, 248—250
rkfixed function, 76, 128, 129
Rocket(s), 315-319
Deep Space I, 317, 318
ion, 317-319
low earth orbit, 315, 316
motion of, 312—319
multi-stage, 315-317
specific impulse of engine of, 315
time of burnout, 315
Rod, thin, moment of inertia of, 330
suspended from frictionless pivot, 356—357
Rolling wheel, 35-36, 194-196, 410411, 412
Rotating cylinder, projectile motion in, 207
rotational motion of, 346, 347
Rotation, of Earth, 201-207
of rigid bodies. See Rigid body(ies)
Rotational impulse, 354
Runge-Kutta technique, 76, 128, 297
Ruth, Babe, 165-166
Rutherford, Ernest, 264, 265
Rutherford scattering formula, 267-268

S

Satellite, orbiting, 273
boosting of, 255
Earth, launching of, 314
oscillation of, 471-472
period of, 240241
speed of, 236

Saturn V, 316, 318
Saturnian moons, 300
Scalar, 9
multiplication of, 11-12, 15
Scalar product, 15-19
Scalar triple product, 23-24
Scattering, of alpha particles, 267
oblique collisions and, 306—307
Schrodinger, Erwin, 454, 465
Second, 5
Seismograph, 118-1206
Semicircle, center of mass of, 326
Series expansions, A-11 — A-12
Shell, cylindrical, moment of inertia of, 330
hemispherical, center of mass of, 325326
spherical, gravitational field of, 223224, 225
moment of inertia of, 332-333
potential of, 247-248
SI system of units, 4, A-1
Sidereal day, 472
Sidereal month, 241
Silly Putty, 304
Sines, law of, 203
Sinusoidal waves, 507—508
Sleeping top, 400
Slipping, and laminar motion, 351352
Solar system, 49, 53
Space, 1, 2
configuration, 453454, 475477
Euclidean, 2
force-field free region of, 422423
measurement of, 2-5
Space cone, 394-395
Spaoecra.ft, 237-238, 254257
Speed, 32-33
of bullet, determination of, 305-306
escape, 66
terminal, 72, 73, 74
and time, 4243
of waves, evaluation of, 507
Sphere, moment of inertia of, 332
and particle, gravitational forces
between, 223225
Spherical body, stability of, 468—469
uniform, particle attraction by, 225
Spherical coordinates, 40-43, A-15
Spherical pendulum, 212-214, 440—444
Spherical shell, gravitational field of, 223224, 225
uniform, potential of, 247-248
Spheroid, prolate, 386
Spin, 398
Spin energy, 403
Spring, restoring force of, 86
Spring constant, 86
Stability, 465469
attitude, 471-472
of circular orbits, 260—261
Standing waves, 508509
Stars, binary, 285-288, 292
Statics, 450
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Steady precession, 399—400 Units, 2—-6, A-1 — A-2
Steady rolling, 411 Universal constant of gravitation, 219—220
Steady-state motion, 114
Stobbs, Chuck, 165, 167 \"
Stokes’ theorem, 150 van der Pol, B., 127
Sun, 226, 227, 234, 239, 243, 253, 264, 285 Variational principle, of Hamilton, 418, 419423,
Superposition principle, 83, 135, 138 496, 430431, 446, 452
Symmetry, axis of, free rotation of rigid Vector(s), 1-46
body with, 384390 acceleration, velocity and, 38
Synchronous locking, 295 addition of, 11
Synodic month, 241 angular momentum, 365—367
angular velocity, 190191
T basis, 13
Talleyrand-Perigord, Charles in Cartesian coordinates, 9, 10
Maurice de, 3 Cartesian unit, 13—14
Taylor series, 467 components of, 9-10
Taylor’s expansion, 150, A-11 concept of, 9
Tensors, 364 constant, 279
Terminal speed, 72, 73, 74 cross product of two, 21
Terminal velocity, 71-74 derivative of, 30-31
Test particle, 147148 dot product between two, 15, 16
Thomson, ].]J., 264 equality of, 10, 11
Thomson atom, 264, 265 magnitude of, 13
Three-body problem, restricted, 288-302 matrix representation of, A-20
Time, 1, 2 multiplication by scalar, 11-12
characteristic, 71, 74 normal mode, 495
measurement of, 2-5 null, 12
speed and, 4243 position, 31-36
unit of, 4-5 rotating, 8990
Time units, 291 subtraction of, 12
Top, motion of, 397-401, 406407 unit, 13, 37, 40-41
sleeping, 400 unit coordinate, 13, 16
symmetric, 398 velocity, 362
Torque(s), 22-23 Vector algebra, 10-15
Tour de France, 409-410 Vector product, 19-22
Trajectory, of baseball, 164-167, A-27 — A-31 Vector triple product, 24-25
horizontal, of golf ball, 163-164 Velocity, 32—33
Transformation(s), coefficients of, 25 and acceleration, 36 —39
congruent, 486 in cylindrical coordinates, 39-40
matrix, 25-30, A-21 in spherical coordinates, 4043
orthogonal, 28 and acceleration vectors, 40
Transient, 114 angular, as vector quantity, 190-191
Transverse acceleration, 43, 193 areal, of particle, 227
Transverse force, 197 in rectangular coordinates, 31-39
Triatomic molecule, linear motion of, 496498 terminal, 71-74
Trigonometric identities, A-6 fluid resistance and, 6974
Trimble, Joe, 166 Velocity-dependent forces, 69—74
Triple products, 23-25 Velocity vector, 362
Trojan asteroids, 295302 Vibrating systems, general
Turning points, of motion, 64 theory of, 493—498
Vibration(s), 82
U of continuous system, 505509
Ullrich, Jan, 409410 of coupled harmonic
Underdamping, 98, 99-100 oscillators, 498-505
Uniform acceleration, 60—63 longitudinal, 501
Uniform spherical body, particle nodal point of, 477
attraction by, 225 transverse, 500
Unit coordinate vectors, 13, 16 Virgo cluster, 53
Unit tensor, 365 Virtual displacements, 449

Unit vectors, 13, 37, 40—41, 191 Virtual work, 449



1-10 Index

w

Wave(s), displacement of, 506
sinusoidal, 507-508
speed of, evaluation of, 507
standing, 508-509

Wave equation, 505—509
one-dimensional, 506

Wavelength, 508

Wheel, crooked, balancing of, 376-377
rolling, 35-36, 194-196, 410-411, 412
rotating, 43, 190, 194-195

White dwarfs, 285-288

Work, 17
virtual, 449

Work principle, 145-146

Wren, Christopher, 226
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